
����������
�������

Citation: Mandza, Y.S.; Raji, A.

IoTivity Cloud-Enabled Platform for

Energy Management Applications.

IoT 2022, 3, 73–90. https://doi.org/

10.3390/iot3010004

Academic Editor: Hyun-Ho Choi

Received: 8 November 2021

Accepted: 17 December 2021

Published: 27 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

IoT

Article

IoTivity Cloud-Enabled Platform for Energy
Management Applications

Yann Stephen Mandza * and Atanda Raji

Department of Electrical, Electronics and Computer Engineering, Cape Peninsula University of Technology,
Bellville, Cape Town 7500, South Africa; rajia@cput.ac.za
* Correspondence: 211007242@mycput.ac.za

Abstract: In developing countries today, population growth and the penetration of higher standard
of living appliances in homes has resulted in a rapidly increasing residential load. In South Africa,
the recent rolling blackouts and electricity price increase only highlighted this reality, calling for
sustainable measures to reduce overall consumption and peak load. The dawn of the smart grid
concept, embedded systems, and ICTs have paved the way for novel Home Energy Management
Systems (HEMS) design. In this regard, the Internet of Things (IoT), an enabler for intelligent and
efficient energy management systems, is the subject of increasing attention for optimizing HEMS
design and mitigating its deployment cost constraints. In this work, we propose an IoT platform
for residential energy management applications focusing on interoperability, low cost, technology
availability, and scalability. We addressed the backend complexities of IoT Home Area Networks
(HAN) using the Open Consortium Foundation (OCF) IoTivity-Lite middleware. To augment the
quality, servicing, reduce the cost, and the development complexities, this work leverages open-
source cloud technologies from Back4App as Backend-as-a-Service (BaaS) to provide consumers and
utilities with a data communication platform within an experimental study illustrating time and
space agnostic “mind-changing” energy feedback, Demand Response Management (DRM) under a
peak shaving algorithm yielded peak load reduction around 15% of the based load, and appliance
operation control using a HEM App via an Android smartphone.

Keywords: internet of things; IoTivity; HEMS; HAN; cloud; Backend-as-a-Service; RTOS; contiki

1. Introduction

The growing energy consumption in South Africa constitutes a significant impediment
to energy supply sustainability. This situation is particularly alarming in domestic areas,
which make up a growing share of peak loads and energy wastage. The recent rolling
blackouts and electricity price increase only highlighted this reality and calls for sustainable
measures to reduce overall consumption [1]. But in such context, the cost and complexities
of grid interventions in the residential sector has limited energy utility initiatives to an
awareness and educational campaign and flash addresses on digital media to address
energy wastage [2].

However, the growing demand emphasized the limitation of these interventions.
Therefore, it is necessary for the grid to extend its technological tools to residential build-
ings. HEMS provides consumers with feedback on appliances or equipment operation
and offers an automation platform for implementing energy management strategies [3].
However, traditional HEMS suffer several design and architectural limitations. Indeed, con-
straints related to device interoperability, data granularity, system reusability and scalability,
computing power, and hardware cost have impeded HEMS performance and restricted
their penetration in households [4].

Nevertheless, the advent of IoT, cloud computing, and related technologies mitigate
these factors and open novel opportunities in HEM design and deployment. Furthermore,
the size reduction of embedded systems, and the proliferation of networking equipment

IoT 2022, 3, 73–90. https://doi.org/10.3390/iot3010004 https://www.mdpi.com/journal/iot

https://doi.org/10.3390/iot3010004
https://doi.org/10.3390/iot3010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/iot
https://www.mdpi.com
https://orcid.org/0000-0003-2005-4607
https://orcid.org/0000-0002-7799-2314
https://doi.org/10.3390/iot3010004
https://www.mdpi.com/journal/iot
https://www.mdpi.com/article/10.3390/iot3010004?type=check_update&version=2

IoT 2022, 3 74

in living spaces offers the opportunity to build sophisticated and cost-effective home area
networks (HAN).

Focusing on the “everything connects to each other” principle, IoT bridges the semantic
gap regarding the ubiquity of IoT network devices [5]. It mitigates the cost and device
resources limitations and cost factors that restrict HEM real-world applications. However,
IoT is not a stand-alone paradigm. Rather, it is an assortment of several technologies
working together. In recent times the interaction between IoT devices and the surrounding
environment has expanded and generated an enormous amount of data to be handled [6].

The resource-limited nature of IoT demands expensive hardware and software to
store the bulk amount of data [7]. To avoid these limitations, data communications in IoT
leverage cloud-based computing infrastructures to accommodate big data requirements,
provide protocols translation, data abstraction, and higher computing power (Figure 1) [8].
Lately, numerous research ventures have focused on combining cloud computing and IoT
to provide users improved services accessible anywhere at the same time.

IoT 2022, 2, 2

Nevertheless, the advent of IoT, cloud computing, and related technologies mitigate
these factors and open novel opportunities in HEM design and deployment. Furthermore,
the size reduction of embedded systems, and the proliferation of networking equipment
in living spaces offers the opportunity to build sophisticated and cost-effective home area
networks (HAN).

Focusing on the “everything connects to each other” principle, IoT bridges the se-
mantic gap regarding the ubiquity of IoT network devices [5]. It mitigates the cost and
device resources limitations and cost factors that restrict HEM real-world applications.
However, IoT is not a stand-alone paradigm. Rather, it is an assortment of several tech-
nologies working together. In recent times the interaction between IoT devices and the
surrounding environment has expanded and generated an enormous amount of data to
be handled [6].

The resource-limited nature of IoT demands expensive hardware and software to
store the bulk amount of data [7]. To avoid these limitations, data communications in IoT
leverage cloud-based computing infrastructures to accommodate big data requirements,
provide protocols translation, data abstraction, and higher computing power (Figure 1)
[8]. Lately, numerous research ventures have focused on combining cloud computing and
IoT to provide users improved services accessible anywhere at the same time.

Figure 1. IoT heterogeneity and computing constraints.

As stated in [9], the cloud “promises high reliability, scalability, and autonomy” for
future IoT applications. That is, cloud-based platforms support connectivity to things.
Such platforms make anything accessible in a time and space agnostic manner, thus fa-
voring user-friendliness and performance through backend services (computing, storage,
connectivity) or BaaS [10]. Currently, research on IoT middleware has shown that IoT
middleware can greatly alleviate issues related to device interoperability, network scala-
bility, and device management within HAN networks. Thus, IoT middleware favor real-
world HEM applications. As stated in [7], middleware in the IoT shall address internet
and things issues, handle semantics gap, context awareness, device discovery, manage
device resources, big data, and privacy.

2. State of the Art
IoT is a novel ICT paradigm showing promise in various studies regarding IoT plat-

forms for HEM. The authors in [11] designed and implemented a home automation sys-
tem that leverages IoT to control most household appliances over an easily adaptable web
interface. The planned system offers great flexibility by using Wi-Fi technology to connect
its spread-out sensing devices to a home automation server. Such an implementation goal
is to decrease the system deployment cost and facilitate future system upgrades and re-
configuration.

Nevertheless, this setup is archaic and incurs a scalability issue added to the fact that
the connection to the home gateway via its IP requires the restrictive private DNS in many
developing contexts as this suggests a payable subscription to some ISP. Here the Cloud
is used as SaaS to forward an email notification to users. However, the non-real-time na-
ture and textual format of email limit the depth of feedback and analytics that can be done
on the consumption data.

Figure 1. IoT heterogeneity and computing constraints.

As stated in [9], the cloud “promises high reliability, scalability, and autonomy” for
future IoT applications. That is, cloud-based platforms support connectivity to things. Such
platforms make anything accessible in a time and space agnostic manner, thus favoring user-
friendliness and performance through backend services (computing, storage, connectivity)
or BaaS [10]. Currently, research on IoT middleware has shown that IoT middleware
can greatly alleviate issues related to device interoperability, network scalability, and
device management within HAN networks. Thus, IoT middleware favor real-world HEM
applications. As stated in [7], middleware in the IoT shall address internet and things issues,
handle semantics gap, context awareness, device discovery, manage device resources, big
data, and privacy.

2. State of the Art

IoT is a novel ICT paradigm showing promise in various studies regarding IoT plat-
forms for HEM. The authors in [11] designed and implemented a home automation system
that leverages IoT to control most household appliances over an easily adaptable web
interface. The planned system offers great flexibility by using Wi-Fi technology to connect
its spread-out sensing devices to a home automation server. Such an implementation
goal is to decrease the system deployment cost and facilitate future system upgrades
and reconfiguration.

Nevertheless, this setup is archaic and incurs a scalability issue added to the fact that
the connection to the home gateway via its IP requires the restrictive private DNS in many
developing contexts as this suggests a payable subscription to some ISP. Here the Cloud is
used as SaaS to forward an email notification to users. However, the non-real-time nature
and textual format of email limit the depth of feedback and analytics that can be done on
the consumption data.

In [12], the authors propose an IoT platform targeting residential consumers leveraging
smartphone and cloud technologies to offer Smart grid empowered energy management
(DRM signal) and home automation as services. To this end, the authors proposed a UHG
transmitting collected data to the cloud via the network layer using Openfire as middleware
on the Gateway to provide the pub-sub mechanism to push information to subscribers. This

IoT 2022, 3 75

architecture alleviates the need for a private DNS at the consumers’ side and significantly
mitigates implementation constraints and cost.

Nonetheless, the XMPP is TCP-oriented (heavyweight) and expensive for lower-end
devices. Moreover, it is unrecognized by the IETF standard for IoT. The Openfire server
essentially lacks functionalities such as discovery and provisioning, and security is not
supported on lower-end devices, thus increasing the cost. In [8], software architecture
is proposed for efficient and secure energy management within the smart grid. At the
heart of their platform is the IoT gateway (raspberry-PI) running on the Eclipse Kura
framework, a free and scalable framework built on Java/OSGi used as middleware to offer
hardware interoperability.

Moreover, cloud connectivity within the platform is enabled using Mosquito MQTT,
pushing the stream of smart meter data to a message broker at the edge for analytics and
knowledge extraction, and later forwarding the aggregated data securely to the cloud,
preserving privacy. In this work, less attention is given to HAN devices management,
resources provisioning, device discovery, and security. Furthermore, the middleware
being used required higher category hardware (see Figure 1) that can run the Java Virtual
machine (JVM). This has the drawback of mitigating the expected miniaturization of IoT
implementation, increasing cost, and limiting scalability in developing contexts.

In [13], a fog computing-based platform for energy management focusing on inter-
operability, scalability, adaptability, and local and remote monitoring while leveraging
open-source software/hardware enabled users to implement energy management with
the customized control-as-services. The authors focused on facilitating the deployment of
their platform in residential places by mitigating the cost associated with computing and
communications devices software stacks. Thus, they focused on using popular, open-source
hardware within their HAN. In this regard, The Raspberry PI acts as a home gateway and
TelsoB mote running TinyOS communicating over Zigbee.

To support device-to-device communication, security, and device management, the
author used the Devices Profile for Web Services (DPWS) middleware to abstract the
management of HAN devices and provide web connectivity. However, the web interface
provided relies on local router DNS info. This limits operation on the local network and
increases the cost of implementation when an ISP subscription is required for remote
control operations.

In [14], the authors proposed an energy management cloud platform based on the
SaaS cloud model to enhance interoperability via the use of a universal smart energy
management gateway based on a free Internet of Things (IoT) framework named IoTivity.
The author used the IoTivity middleware to abstract from the monolithic, ad hoc imple-
mentation that locks traditional HEMS to a private protocol or mechanism, limiting the
choice and spectrum of possible HAN. Therefore, a completed architecture that handles the
platform requirement for data communication and device management from appliances on
the HAN to services provided in the cloud was provided. However, because IoTivity is a
CoAP based framework, the authors proposed a REST framework for bridging CoAP to
HTPP to access their dedicated cloud infrastructure.

In [15], the authors proposed a framework for energy management applications run-
ning on a home gateway offering energy services for multi-homes running on Azure Cloud
using dedicated 3rd party providers. Each home is incorporate a gateway (Intel (R) Core
(TM) i3-2100 CPU) powered with Microsoft Lab of Things (Homes) middleware. The au-
thors provided an Android mobile terminal and web dashboard using a publish/subscribe
MQTT model and Azure push notification for front-end requirements. Nevertheless, being
a gateway dedicated middleware, IoT limits the miniaturization of IoT HAN devices, thus
increasing implementation costs.

2.1. Research Challenges and Concept Overview Section

In summary, the implementation of the HEM platform poses the following major issue:

IoT 2022, 3 76

• Semantic gap (interoperability) and interactivity among various manufacturer and
communication protocols.

• Miniaturization and performance of IoT devices for seamless penetration of HEM platform.
• Middleware offering hardware abstraction, device management and discovery, con-

nectivity, scalability, adaptability, services customization, and security.
• Cloud platform either as SaaS or BaaS to export processing and add computing power,

remote connectivity, and services.
• Cost of implementing, hardware availability, and protocol stack.

2.2. Research Contributions

To address the above-mentioned challenges, our novel platform for HEM employs:

• Open-source middleware using free and accepted IoT protocol stack and scalable to
lower-end hardware to provide disaggregated interoperability, scalability, adaptability,
HAN device management, discovery provisioning, and seamless device-to-device
(D2D) connectivity and security.

• Leverage, ubiquitous, low-cost and low-power embedded devices as HAN node,
enhancing technology availability and penetration in a developing context.

• Open-source cloud computing and storage as Software-as-a-Service and BaaS off-
setting heavy computation and storage to cloud infrastructure as well as providing
service for two-way connectivity via subscriptions mechanisms and free APIs to both
local gateways and mobile devices for end-users providing integration and control
that is both time and space agnostic.

3. Cloud-Enabled IoTivity Platform

Novel platforms for HEM should incorporate the features and requirements defined
in Section 1 in order to be economical and affordable for the common consumer, and thus
increase their penetration in living spaces. A cloud-enabled energy management platform
based on the Backend-as-a-Service (BaaS) model built around the OCF IoTivity framework
is proposed. The platform’s architecture centers on standard protocols and open-source
services and software.

Figure 2 below, depicts an overview of the proposed architecture. We thus present a
three-layer architecture consisting of a HAN gathering consumption data and controlling
appliances. Next a home gateway to manage HAN devices and to handle cloud connectivity.
Finally, a Cloud layer for computing, data storage, and remote services over the third-
party tools and a smartphone App as user front-end for enhanced feedback. Additionally,
the Cloud provides an interface to smart grid services as these are made available by
utilities providers.

3.1. Architecture

The hardware of the HEM platform comprises multiple device categories.

• Though the traditional HEM platform disaggregates devices in terms of connecting,
sensing, actuating and communicating, today’s advances in the embedded system
allow having all these functionalities in one package within the HAN known as
a network node. Our platform uses the popular Arduino AVR&ARM and ESP32
hardware as central slave processing units.

• Gateway: Communication within IoTivity middleware is mainly IP-based based (Wi-Fi
and ethernet). The gateway thus offers protocol translation from the Local COAP
based HAN to HTTP/S-based cloud connectivity either as BaaS or SaaS providing the
platform with pub-sub (Live-Query) mechanism.

• Computing: The devices that store, process, and analyze data within the platform.
Low-level computation is performed at the HAN servers or nodes. However, high-
level computation and storage are distributed between the local gateway and the
Back4App BaaS infrastructure for performance and processing disaggregation.

IoT 2022, 3 77

Figure 2 shows the hardware architecture used for a two-way communication, data
acquisition, processing, and storage within the proposed platform. As described in Section 1,
our novel platform incorporates all state-of-art, open-source IoT Enabling technologies for
higher-end HEM deployment.

IoT 2022, 2, 5

Figure 2. Cloud-based IoTivity-Lite platform HEM architecture.

3.1.Architecture
The hardware of the HEM platform comprises multiple device categories.

• Though the traditional HEM platform disaggregates devices in terms of connecting,
sensing, actuating and communicating, today’s advances in the embedded system
allow having all these functionalities in one package within the HAN known as a
network node. Our platform uses the popular Arduino AVR&ARM and ESP32 hard-
ware as central slave processing units.

• Gateway: Communication within IoTivity middleware is mainly IP-based based (Wi-
Fi and ethernet). The gateway thus offers protocol translation from the Local COAP
based HAN to HTTP/S-based cloud connectivity either as BaaS or SaaS providing the
platform with pub-sub (Live-Query) mechanism.

• Computing: The devices that store, process, and analyze data within the platform.
Low-level computation is performed at the HAN servers or nodes. However, high-
level computation and storage are distributed between the local gateway and the
Back4App BaaS infrastructure for performance and processing disaggregation.
Figure 2 shows the hardware architecture used for a two-way communication, data

acquisition, processing, and storage within the proposed platform. As described in Section
1, our novel platform incorporates all state-of-art, open-source IoT Enabling technologies
for higher-end HEM deployment.

Each node can be interacted with outside the Local COAP Network. However, min-
iaturization and cost-effectiveness require the gateway to primarily handle computations
and all non-local resources and data requests while acting as a proxy server for the local
node to remote clients.

3.2. Software Architecture
Several technologies facilitating IoT application development and deployment for

smart homes are adopted to guide experimental development. Adopting state-of-the-art
solutions, we focus on open-source software technology to alleviate the complexity of pro-
prietary software and the related cost.

For the sensing and actuating and resource server node, the firmware leverages open
real-time operating system (RTOS), namely Contiki OS, a bundle whose memory footprint

Figure 2. Cloud-based IoTivity-Lite platform HEM architecture.

Each node can be interacted with outside the Local COAP Network. However, minia-
turization and cost-effectiveness require the gateway to primarily handle computations
and all non-local resources and data requests while acting as a proxy server for the local
node to remote clients.

3.2. Software Architecture

Several technologies facilitating IoT application development and deployment for
smart homes are adopted to guide experimental development. Adopting state-of-the-art
solutions, we focus on open-source software technology to alleviate the complexity of
proprietary software and the related cost.

For the sensing and actuating and resource server node, the firmware leverages open
real-time operating system (RTOS), namely Contiki OS, a bundle whose memory footprint
is scaled to fully run-on different Arduino architecture (AVR & ARM), thus adding more
consistency, scalability, modularity, and compactness to the local server firmware.

3.2.1. HAN Middleware

Our platform will handle local networks’ interoperability, scalability, and device man-
agement complexities using the OCF-IoTivity framework, a communications framework
for IoT enabling smooth peer-to-peer connectivity amongst devices irrespective of the
underlying OS or protocol satisfying several requisites of the Internet of Things [8].

Therefore, IoTivity eases the home area network management by handling resource
discovery, device management, protocol conversion, and security requirement for the
platform. IoTivity-Lite, the OCF release for the constrained devices was recently released
primarily for hardware within category 3 (Figure 1). Thus, an adaptation or port was
developed to support lower category devices on IoTivity-Lite.

IoT 2022, 3 78

3.2.2. IoTivity-Lite Arduino Port

To maintain low cost within the platform, we decided to port the IoTivity-Lite frame-
work to lower category devices (category 1 & 2). In this regard, we targeted the popular
Arduino MCU and the Espressif ESP32 Wi-Fi MCU. However, the port of the IoTivity
framework relies on an OS running on the MCU.

Based on the literature review on RTOS and the state-of-art, we considered two OS,
mainly FreeRTOS and Contiki OS. These RTOS are popular for low power, low-cost MCU.
However, we used the Contiki OS on the Arduino MCU because of its low memory footprint
and simplicity in developing firmware that is seamless to IoTivity-Lite integration using
Contiki OS itself within its stack. In the case of the ESP32 (~500 Kbytes of RAM), we
adapted an Initial IoTivity port based on the FreeRTOS OS.

3.2.3. Gateway to Local HAN Server Interaction

The OCF IoTivity group avails a JavaScript port of the IoTivity stack running on the
Node engine or IoTivity-node for the high-level device. Using the IoT-rest-API-server, a
NodeJS REST server for HTTP-based communication leveraging IoTivity-node as a client
for the local CoAP network devices.

Thus, we used the IoTivity-node empowered IoT-rest-API-server on the gateway de-
vice (Raspberry PI) to manage discovery and resources access within the IoTivity-Lite network.

3.2.4. Cloud Tools and Infrastructure

In this work, the Cloud is mainly used as a Backend-as-a-Service (BaaS), offering the
pub-sub mechanism (Live Query) subscriptions service on the platform data. It provides
storage, backend service related to computation, and Home Automation (HA) services. We
used Parse, an open-source server providing a RESTful API for a plethora of devices and
OS on the different programming languages (the JavaScript API was used).

Parse server is flexible and can be hosted and migrated from one cloud platform
to another. Though Google Cloud and Amazon are the most popular in terms of Cloud
Hosting, there are no native Parse server environments and lack important Parse BaaS
tools. In this regard, we used the back4App Cloud platform to provide computing, storage
(mango DB), server management, Live-Query, Cloud background Jobs and third-party
login (i.e., Facebook), and mobile push notification (mainly Android) all as BaaS for an IoT
platform centered on a mobile or web application.

3.3. Communication Architecture

In this work, the Cloud is mainly used as a Backend-as-a-Service (BaaS), offering the
pub-sub mechanism (Live Query) offering subscriptions service on the platform data. It
provides storage, backend service related to computation, and feedback Home Automation
(HA) services. We used Parse, an open-source server providing a RESTful API for a plethora
of devices and OS for the different programming languages (We use the JavaScript API).

Parse server is flexible and can be hosted and migrated from one cloud platform to
another. Though Google Cloud and Amazon are the most popular in terms of Cloud
Hosting, there are no native Parse server environments and important Parse BaaS tools
are lacking. In this regard, we used the back 4AppCloud platform to provide computing,
storage (Mango DB), server management, Live-Query, Cloud background Jobs and third-
party login (i.e., Facebook), and mobile push notification (mainly Android) all as BaaS for
an IoT platform centered on a mobile or web application.

The IoT-rest-API-server provides the gateway with HTTP/HTTPS access to IoTivity-
Lite HAN slave servers when powered on. Next, the “main server” process initializes
connectivity to the cloud BaaS infrastructures on Back4App cloud. On the cloud BaaS, we
create an App, databases table, namely, “Loads” storing appliances data, “SmartHomes”
storing all registered smart home data, “DRM” storing DRM data for each smart home
(Figure 3). We implemented an “owning” relationship amongst the different classes to scale
this deployment to multiple smart homes.

IoT 2022, 3 79

IoT 2022, 2, 7

3.3. Communication Architecture
In this work, the Cloud is mainly used as a Backend-as-a-Service (BaaS), offering the

pub-sub mechanism (Live Query) offering subscriptions service on the platform data. It
provides storage, backend service related to computation, and feedback Home Automa-
tion (HA) services. We used Parse, an open-source server providing a RESTful API for a
plethora of devices and OS for the different programming languages (We use the JavaS-
cript API).

Parse server is flexible and can be hosted and migrated from one cloud platform to
another. Though Google Cloud and Amazon are the most popular in terms of Cloud Host-
ing, there are no native Parse server environments and important Parse BaaS tools are
lacking. In this regard, we used the back 4AppCloud platform to provide computing, stor-
age (Mango DB), server management, Live-Query, Cloud background Jobs and third-
party login (i.e., Facebook), and mobile push notification (mainly Android) all as BaaS for
an IoT platform centered on a mobile or web application.

The IoT-rest-API-server provides the gateway with HTTP/HTTPS access to IoTivity-
Lite HAN slave servers when powered on. Next, the “main server” process initializes con-
nectivity to the cloud BaaS infrastructures on Back4App cloud. On the cloud BaaS, we
create an App, databases table, namely, “Loads” storing appliances data, “SmartHomes”
storing all registered smart home data, “DRM” storing DRM data for each smart home
(Figure 3). We implemented an “owning” relationship amongst the different classes to
scale this deployment to multiple smart homes.

Figure 3. Platform databases structure and connections on Back4App BaaS.

This mechanism scales the system by enabling many owners in the “User” table to
own a specific “smart home” that owns many different appliances in the “Loads” table
and a specific “DRM” object (Figure 4). Moreover, this method allows us not to create a
class/table for each smart home context, thus keeping all related data together, easing de-
velopment and maintenance. Following a user login/signup process, the “main server”

Figure 3. Platform databases structure and connections on Back4App BaaS.

This mechanism scales the system by enabling many owners in the “User” table to
own a specific “smart home” that owns many different appliances in the “Loads” table
and a specific “DRM” object (Figure 4). Moreover, this method allows us not to create
a class/table for each smart home context, thus keeping all related data together, easing
development and maintenance. Following a user login/signup process, the “main server”
starts a pub-sub subscription to the related “smart home”, DRM, and Loads resources on
the cloud platform using the Parse Server Live Query mechanism (Figure 4).

This connection is realized by authenticating the user and defining the “smart home”
against the username. This tool is part of the Back4App BaaS services and is user-
configurable by adding the classes (holding database entries/objects) that will be part
of the subscription services. It enables each client endpoint to receive events on the entry in
the subscription list.

The events emitted within the subscription are the “create” and “update” events re-
ceived in real-time by the subscribed client alongside meta-data regarding the specific entry
being created/updated. We initialized the Parse server Live Query mechanism using our
Back4App application ID, JavaScript Key, and its Master Key for authentication purposes.

A useful feature of the Parse server on the Back4App platform is the cloud code func-
tionality. This tool enables the developer to run NodeJS functions directly on the Back4App
cloud. This step immediately makes the cloud code functions available to the IoT platform.
Cloud code functionality offers energy utilities a backdoor to implement incentives and
management programs (Utility DRM portal). After configuration, the gateway server
initiates a login/signup sequence with the cloud user authentication services.

Next, the gateway server initiates the local DBs (“Monitor” and “Loads” tables are
created if not existing already). For offline storage we used MySQL DB engine. This storage
is synchronized with an initial DB query to the online storage which returns the provisioned
number of loads. This process is two-fold.

IoT 2022, 3 80

IoT 2022, 2, 8

starts a pub-sub subscription to the related “smart home”, DRM, and Loads resources on
the cloud platform using the Parse Server Live Query mechanism (Figure 4).

Figure 4. Local and cloud configuration and communication in the platform.

This connection is realized by authenticating the user and defining the “smart home”
against the username. This tool is part of the Back4App BaaS services and is user-config-
urable by adding the classes (holding database entries/objects) that will be part of the sub-
scription services. It enables each client endpoint to receive events on the entry in the sub-
scription list.

The events emitted within the subscription are the “create” and “update” events re-
ceived in real-time by the subscribed client alongside meta-data regarding the specific
entry being created/updated. We initialized the Parse server Live Query mechanism using
our Back4App application ID, JavaScript Key, and its Master Key for authentication pur-
poses.

A useful feature of the Parse server on the Back4App platform is the cloud code func-
tionality. This tool enables the developer to run NodeJS functions directly on the
Back4App cloud. This step immediately makes the cloud code functions available to the
IoT platform. Cloud code functionality offers energy utilities a backdoor to implement
incentives and management programs (Utility DRM portal). After configuration, the gate-
way server initiates a login/signup sequence with the cloud user authentication services.

Next, the gateway server initiates the local DBs (“Monitor” and “Loads” tables are
created if not existing already). For offline storage we used MySQL DB engine. This stor-
age is synchronized with an initial DB query to the online storage which returns the pro-
visioned number of loads. This process is two-fold.

First, the gateway server sends a DB query for the number of known and provisioned
appliances. Then, it retrieves those from the local storage that can store newly discovered
appliances. Secondly, a resource discovery request is sent to the IoT-rest-API-server ser-
vice. This server generates a multicast request on the IoTivity COAP network to retrieve

Figure 4. Local and cloud configuration and communication in the platform.

First, the gateway server sends a DB query for the number of known and provisioned
appliances. Then, it retrieves those from the local storage that can store newly discovered
appliances. Secondly, a resource discovery request is sent to the IoT-rest-API-server service.
This server generates a multicast request on the IoTivity COAP network to retrieve all
resources. Subsequently, each appliance in the local DB is updated after submitting GET
requests for their properties (state, power, and current).

Lately, the remote DB appliance properties are also updated. After initialization, an
observation service on the IoTivity network using the OBSERVE mechanism is started, and
resource properties are regularly updated.

When a mobile client using the energy app participates in the platform information
exchange, first, the app establishes a connection to the cloud backend and starts a client
subscription (Figure 5). After the client successfully completes login/signup, Parse server
BaaS security features are used on the client and the home gateway to provide two-way
secured data communication. All GET requests are submitted as Parse GET queries for
each mobile client to access the related homes databases.

Lastly, the remote DB appliance properties are also updated. After initialization, an
observation service on the IoTivity network using the OBSERVE mechanism is started and
resource properties are regularly updated.

When a mobile client uses energy, the app participates in the platform information
exchange. First, the app establishes a connection to the cloud backend and starts a client
subscription (Figure 5). The client successfully login/signup as an authenticated user. The
system uses the Back4App Parse security features on the client and the home gateway side
to provide secured data communication in both ways. All GET requests are submitted as
Parse GET queries for each mobile client to access the related homes databases.

IoT 2022, 3 81

IoT 2022, 2, 9

all resources. Subsequently, each appliance in the local DB is updated after submitting
GET requests for their properties (state, power, and current).

Lately, the remote DB appliance properties are also updated. After initialization, an
observation service on the IoTivity network using the OBSERVE mechanism is started,
and resource properties are regularly updated.

When a mobile client using the energy app participates in the platform information
exchange, first, the app establishes a connection to the cloud backend and starts a client
subscription (Figure 5). After the client successfully completes login/signup, Parse server
BaaS security features are used on the client and the home gateway to provide two-way
secured data communication. All GET requests are submitted as Parse GET queries for
each mobile client to access the related homes databases.

Figure 5. Communication flow with remote/local Android smartphone app.

Lastly, the remote DB appliance properties are also updated. After initialization, an
observation service on the IoTivity network using the OBSERVE mechanism is started and
resource properties are regularly updated.

When a mobile client uses energy, the app participates in the platform information
exchange. First, the app establishes a connection to the cloud backend and starts a client
subscription (Figure 5). The client successfully login/signup as an authenticated user. The
system uses the Back4App Parse security features on the client and the home gateway
side to provide secured data communication in both ways. All GET requests are submitted
as Parse GET queries for each mobile client to access the related homes databases.

A PUT request is forwarded to the Parse server on the cloud platform. As the gate-
way server is in Live Query mode, those requests are received as update events. The gate-
way server thus generates an HTTP POST request to the IoT-rest-API-server which gen-
erates a CoAP POST (i.e., /api/oic/ktn/kettle? di =’’) with the new state (i.e., state:
true/false) that turn the corresponding appliance on/off. Using the Parse Live query mech-
anism (observation), the smartphone App listens to updates on appliances’ power prop-
erties from the gateway server’s observer process and updates the App front-end.

Figure 5. Communication flow with remote/local Android smartphone app.

A PUT request is forwarded to the Parse server on the cloud platform. As the gateway
server is in Live Query mode, those requests are received as update events. The gateway
server thus generates an HTTP POST request to the IoT-rest-API-server which generates
a CoAP POST (i.e., /api/oic/ktn/kettle? di =”) with the new state (i.e., state: true/false)
that turn the corresponding appliance on/off. Using the Parse Live query mechanism
(observation), the smartphone App listens to updates on appliances’ power properties from
the gateway server’s observer process and updates the App front-end.

4. Experimental Results of Case Study

To evaluate the performance of our cloud-based IoTivity platform in addressing the
challenges of HEM design, we implemented an experimental setup. Leveraging an energy
application on an Android smartphone tested the platform’s performance in providing
real-time energy monitoring and home automation (HA). We then implemented a peak
load management DRM algorithm to manage consumption at home. The HEM platform
was deployed for the resistive load (appliance) as shown in Figure 6.

The detailed specification for the hardware used is listed in Table 1 below.

Table 1. Experimental setup hardware used for the home area network.

Devices Model Processors Operating System

Arduino Mega 2560
ARM (DUE)

Atmega 2560
32 bits SAM3X8E ARM Cortex-M3 Contiki OS

ESP32 ESP-WROOM-32 Xtensa Dual-Core 32-bit LX6 MCP FreeRTOS
Ethernet Shield 2nd Generation Wiznet W 5500 N/A

Raspberry PI 3rd Generation Model B + 64-bits BCM28374 ARM Cortex-A53,
1.2 GHz 32 Bits Raspbian Stretch

IoT 2022, 3 82

IoT 2022, 2, 10

4. Experimental Results of Case Study
To evaluate the performance of our cloud-based IoTivity platform in addressing the

challenges of HEM design, we implemented an experimental setup. Leveraging an energy
application on an Android smartphone tested the platform’s performance in providing
real-time energy monitoring and home automation (HA). We then implemented a peak
load management DRM algorithm to manage consumption at home. The HEM platform
was deployed for the resistive load (appliance) as shown in Figure 6.

Figure 6. Experimental setup under evaluation.

The detailed specification for the hardware used is listed in Table 1 below.

Table 1. Experimental setup hardware used for the home area network.

Devices Model Processors Operating System

Arduino
Mega 2560

ARM (DUE)
Atmega 2560

32 bits SAM3X8E ARM Cortex-M3
Contiki OS

ESP32 ESP-WROOM-32 Xtensa Dual-Core 32-bit LX6 MCP FreeRTOS
Ethernet Shield 2nd Generation Wiznet W 5500 N/A

Raspberry PI 3rd Generation Model B +
64-bits BCM28374 ARM Cortex-

A53, 1.2 GHz
32 Bits Raspbian

Stretch

The HAN’s devices or motes are designed and manufactured as plug-and-play
shields (Figure 7). These shields provide the sensing and actuating interface to existing
home appliances via non-invasive and safe electronics devices a DAQ shield on each mote
is embedded with sensing and actuating electronics for 1Vrms CT sensor signal output
and 30A AC actuating relays.

Communication within the HAN for the Arduino-based mote is Hardwire (Ethernet
using the Wiznet 5500 ethernet shield), whereas Wi-Fi is used the ESP32 based motes.

The AVR-based mote is augmented with an external memory bank to improve its
performance in handling the secured deployment of the IoTivity-Lite stack. The firmware
running on the HAN devices (Arduino and ESP32) comprises the IoTivity-Lite server code
and the low-level sensing and actuating code interfacing to the device’s ADC and GPIO
registers to control the mote actuation devices. This code is used by the higher-level server
firmware within the GET and PUT methods.

The firmware calculates from the sensed current and voltage the power properties of
each appliance connected to a mote based on the Arduino or ESP32 MCU. This computa-
tion is based on the algorithm that samples the current and voltage transformers for 25

Figure 6. Experimental setup under evaluation.

The HAN’s devices or motes are designed and manufactured as plug-and-play shields
(Figure 7). These shields provide the sensing and actuating interface to existing home
appliances via non-invasive and safe electronics devices a DAQ shield on each mote is
embedded with sensing and actuating electronics for 1Vrms CT sensor signal output and
30A AC actuating relays.

IoT 2022, 2, 11

cycles (at 50Hz) or 500 ms to calculate the different Root Mean Square (RMS) power accu-
mulated to compute the power consumption. We used a 10 bits ADC setting on Arduino
AVR and 12 bits on ARM and ESP32.

Figure 7. IoTivity HAN servers (appliance interface nodes): (a) AVR/ARM DAQ node prototype;
(b) ESP32 node DAQ Prototypes.

4.1. Experimental Results
In this section, we present the case study results focusing on the observation of all

scenarios executed to establish our platform performance. Using the setup in Figure 4, we
test the feedback and home automation scenario within the platform. That is, we present
the response from the IoTivity-Lite HAN server device. That is, the Arduino and ESP32
slaves’ response to resource requests.

Then, we show the underlying software services handling the smart-home local and
remote connectivity. In this regard, describing the different initialization steps via cur-
tailed logs of each of the services running on our raspberry PI local home server. Secondly,
we present feedback results, i.e., home consumption in real-time, and enhanced visuali-
zation anytime, anywhere via the energy app.

Thirdly, we demonstrate home automation using the energy app to turn home appli-
ances on/off. Lastly, we detailed the DRM scenario condition and assumption and show
the result of our peak shaving algorithm.

The firmware burnt on the HAN resource server runs the IoTivity-Lite core ported
to the AVR and ARM Arduino Arch. In Figure 8 below, we see the initialization logs for
the devices, which request a local IP address within the 192.168.0.1 subnet, initializing the
IoTivity core, and starting a listening server on IPv4 port 56789 for Arduino devices. The
ESP32 slaves use both IPv4 and IPv6 listening sockets provided by the IoTivity-Lite stack.

Figure 8. HAN slavers initialization logs.

4.1.1. Feedback via Energy App
For the energy monitoring scenario, we evaluated the platform’s ability to provide

space-agnostic and real-time feedback. The firmware loaded in all slaves allows these de-
vices to serve the client with resources data handling those as GET/POST requests. The

Figure 7. IoTivity HAN servers (appliance interface nodes): (a) AVR/ARM DAQ node prototype;
(b) ESP32 node DAQ Prototypes.

Communication within the HAN for the Arduino-based mote is Hardwire (Ethernet
using the Wiznet 5500 ethernet shield), whereas Wi-Fi is used the ESP32 based motes.

The AVR-based mote is augmented with an external memory bank to improve its
performance in handling the secured deployment of the IoTivity-Lite stack. The firmware
running on the HAN devices (Arduino and ESP32) comprises the IoTivity-Lite server code
and the low-level sensing and actuating code interfacing to the device’s ADC and GPIO
registers to control the mote actuation devices. This code is used by the higher-level server
firmware within the GET and PUT methods.

The firmware calculates from the sensed current and voltage the power properties of
each appliance connected to a mote based on the Arduino or ESP32 MCU. This computation
is based on the algorithm that samples the current and voltage transformers for 25 cycles
(at 50 Hz) or 500 ms to calculate the different Root Mean Square (RMS) power accumulated
to compute the power consumption. We used a 10 bits ADC setting on Arduino AVR and
12 bits on ARM and ESP32.

IoT 2022, 3 83

4.1. Experimental Results

In this section, we present the case study results focusing on the observation of all
scenarios executed to establish our platform performance. Using the setup in Figure 4, we
test the feedback and home automation scenario within the platform. That is, we present
the response from the IoTivity-Lite HAN server device. That is, the Arduino and ESP32
slaves’ response to resource requests.

Then, we show the underlying software services handling the smart-home local and
remote connectivity. In this regard, describing the different initialization steps via curtailed
logs of each of the services running on our raspberry PI local home server. Secondly, we
present feedback results, i.e., home consumption in real-time, and enhanced visualization
anytime, anywhere via the energy app.

Thirdly, we demonstrate home automation using the energy app to turn home appli-
ances on/off. Lastly, we detailed the DRM scenario condition and assumption and show
the result of our peak shaving algorithm.

The firmware burnt on the HAN resource server runs the IoTivity-Lite core ported
to the AVR and ARM Arduino Arch. In Figure 8 below, we see the initialization logs for
the devices, which request a local IP address within the 192.168.0.1 subnet, initializing the
IoTivity core, and starting a listening server on IPv4 port 56789 for Arduino devices. The
ESP32 slaves use both IPv4 and IPv6 listening sockets provided by the IoTivity-Lite stack.

IoT 2022, 2, 11

cycles (at 50Hz) or 500 ms to calculate the different Root Mean Square (RMS) power accu-
mulated to compute the power consumption. We used a 10 bits ADC setting on Arduino
AVR and 12 bits on ARM and ESP32.

Figure 7. IoTivity HAN servers (appliance interface nodes): (a) AVR/ARM DAQ node prototype;
(b) ESP32 node DAQ Prototypes.

4.1. Experimental Results
In this section, we present the case study results focusing on the observation of all

scenarios executed to establish our platform performance. Using the setup in Figure 4, we
test the feedback and home automation scenario within the platform. That is, we present
the response from the IoTivity-Lite HAN server device. That is, the Arduino and ESP32
slaves’ response to resource requests.

Then, we show the underlying software services handling the smart-home local and
remote connectivity. In this regard, describing the different initialization steps via cur-
tailed logs of each of the services running on our raspberry PI local home server. Secondly,
we present feedback results, i.e., home consumption in real-time, and enhanced visuali-
zation anytime, anywhere via the energy app.

Thirdly, we demonstrate home automation using the energy app to turn home appli-
ances on/off. Lastly, we detailed the DRM scenario condition and assumption and show
the result of our peak shaving algorithm.

The firmware burnt on the HAN resource server runs the IoTivity-Lite core ported
to the AVR and ARM Arduino Arch. In Figure 8 below, we see the initialization logs for
the devices, which request a local IP address within the 192.168.0.1 subnet, initializing the
IoTivity core, and starting a listening server on IPv4 port 56789 for Arduino devices. The
ESP32 slaves use both IPv4 and IPv6 listening sockets provided by the IoTivity-Lite stack.

Figure 8. HAN slavers initialization logs.

4.1.1. Feedback via Energy App
For the energy monitoring scenario, we evaluated the platform’s ability to provide

space-agnostic and real-time feedback. The firmware loaded in all slaves allows these de-
vices to serve the client with resources data handling those as GET/POST requests. The

Figure 8. HAN slavers initialization logs.

4.1.1. Feedback via Energy App

For the energy monitoring scenario, we evaluated the platform’s ability to provide
space-agnostic and real-time feedback. The firmware loaded in all slaves allows these
devices to serve the client with resources data handling those as GET/POST requests. The
IoT-rest-API-server provisioned devices and resources on the IoTivity-Lite local network
after issuing a multicast request on the endpoint (localhost: 8000/ioc/res).

A client can thus request local resources to issue HTTP requests to the REST server.
Figure 9 shows logs of GET requests received from the slaves, followed by the IoTivity-Lite
stack processing of the request and a response (74 bytes of resource data) to the client on
192.168.0.111:59264.

IoT 2022, 2, 12

IoT-rest-API-server provisioned devices and resources on the IoTivity-Lite local network
after issuing a multicast request on the endpoint (localhost: 8000/ioc/res).

A client can thus request local resources to issue HTTP requests to the REST server.
Figure 9 shows logs of GET requests received from the slaves, followed by the IoTivity-
Lite stack processing of the request and a response (74 bytes of resource data) to the client
on 192.168.0.111:59264.

Figure 9. HAN server GET response.

Using a Sony Xperia Z5 smartphone we tested Energy feedback on our platform us-
ing the IoTSmartApp as shown in Figure 10 below.

The energy consumption is presented in engaging visual tools both graphic and tex-
tual with compelling colors (red under the consumption curve). The evaluation shows
that feedback can be dispatched via the platform within ~3 s from HAN to the Back4App
BaaS then to the smartphone App (Figure 10).

Figure 10. Energy consumption monitoring on IotSmartApp.

4.1.2. Home Automation via Energy App
We evaluated the platform’s ability to provide space agnostic on/off control of the

home appliances under consideration. In Figure 11, a POST interaction is performed
whenever the client request and update an appliance status (On/Off).

After updating the state of an appliance from a POST request, the resource server
sends a 39 bytes acknowledgment response to the requesting client at 192.168.0.111:8000.

Figure 11. HAN server POST response.

Figure 9. HAN server GET response.

Using a Sony Xperia Z5 smartphone we tested Energy feedback on our platform using
the IoTSmartApp as shown in Figure 10 below.

IoT 2022, 3 84

IoT 2022, 2, 12

IoT-rest-API-server provisioned devices and resources on the IoTivity-Lite local network
after issuing a multicast request on the endpoint (localhost: 8000/ioc/res).

A client can thus request local resources to issue HTTP requests to the REST server.
Figure 9 shows logs of GET requests received from the slaves, followed by the IoTivity-
Lite stack processing of the request and a response (74 bytes of resource data) to the client
on 192.168.0.111:59264.

Figure 9. HAN server GET response.

Using a Sony Xperia Z5 smartphone we tested Energy feedback on our platform us-
ing the IoTSmartApp as shown in Figure 10 below.

The energy consumption is presented in engaging visual tools both graphic and tex-
tual with compelling colors (red under the consumption curve). The evaluation shows
that feedback can be dispatched via the platform within ~3 s from HAN to the Back4App
BaaS then to the smartphone App (Figure 10).

Figure 10. Energy consumption monitoring on IotSmartApp.

4.1.2. Home Automation via Energy App
We evaluated the platform’s ability to provide space agnostic on/off control of the

home appliances under consideration. In Figure 11, a POST interaction is performed
whenever the client request and update an appliance status (On/Off).

After updating the state of an appliance from a POST request, the resource server
sends a 39 bytes acknowledgment response to the requesting client at 192.168.0.111:8000.

Figure 11. HAN server POST response.

Figure 10. Energy consumption monitoring on IotSmartApp.

The energy consumption is presented in engaging visual tools both graphic and textual
with compelling colors (red under the consumption curve). The evaluation shows that
feedback can be dispatched via the platform within ~3 s from HAN to the Back4App BaaS
then to the smartphone App (Figure 10).

4.1.2. Home Automation via Energy App

We evaluated the platform’s ability to provide space agnostic on/off control of the
home appliances under consideration. In Figure 11, a POST interaction is performed
whenever the client request and update an appliance status (On/Off).

IoT 2022, 2, 12

IoT-rest-API-server provisioned devices and resources on the IoTivity-Lite local network
after issuing a multicast request on the endpoint (localhost: 8000/ioc/res).

A client can thus request local resources to issue HTTP requests to the REST server.
Figure 9 shows logs of GET requests received from the slaves, followed by the IoTivity-
Lite stack processing of the request and a response (74 bytes of resource data) to the client
on 192.168.0.111:59264.

Figure 9. HAN server GET response.

Using a Sony Xperia Z5 smartphone we tested Energy feedback on our platform us-
ing the IoTSmartApp as shown in Figure 10 below.

The energy consumption is presented in engaging visual tools both graphic and tex-
tual with compelling colors (red under the consumption curve). The evaluation shows
that feedback can be dispatched via the platform within ~3 s from HAN to the Back4App
BaaS then to the smartphone App (Figure 10).

Figure 10. Energy consumption monitoring on IotSmartApp.

4.1.2. Home Automation via Energy App
We evaluated the platform’s ability to provide space agnostic on/off control of the

home appliances under consideration. In Figure 11, a POST interaction is performed
whenever the client request and update an appliance status (On/Off).

After updating the state of an appliance from a POST request, the resource server
sends a 39 bytes acknowledgment response to the requesting client at 192.168.0.111:8000.

Figure 11. HAN server POST response.

Figure 11. HAN server POST response.

After updating the state of an appliance from a POST request, the resource server
sends a 39 bytes acknowledgment response to the requesting client at 192.168.0.111:8000.

In Figure 12, we present feedback about home automation via our IotSmartApp. This
experimentation targets an iron-rated 1200 W within the tested setup. On Figure 12a the
iron is off, thus its state is false (the lamp is grey). On Figure 12b the iron is turned on (lamp
is yellow), the consumption (power) at that instant was recorded as 1.16 kW. In Figure 6,
can practically be seen the Arduino server connected to the physical appliance control
circuit in an activated (red light is on).

IoT 2022, 3 85

IoT 2022, 2, 13

In Figure 12, we present feedback about home automation via our IotSmartApp. This
experimentation targets an iron-rated 1200 W within the tested setup. On Figure 12a the
iron is off, thus its state is false (the lamp is grey). On Figure 12b the iron is turned on
(lamp is yellow), the consumption (power) at that instant was recorded as 1.16 KW. In
Figure 6, can practically be seen the Arduino server connected to the physical appliance
control circuit in an activated (red light is on).

(a) (b)

Figure 12. Home Automation via the IoTSmartApp; (a) Appliance is turned off; (b) Appliance is
turned on.

4.1.3. DRM via Energy App
We implemented a DRM algorithm for peak load management as a service that aims

to demonstrate the impact of our platform on residential load efficiency. We followed re-
lated works around HEM to define our experimental model.

To demonstrate the performance of their IoT architecture for residential load, the au-
thor in [15] implemented an experiment based on a maximum allowable peak threshold
of 33 KW. The author’s algorithm controls light bulbs at each house at peak time, slotting
a 24-h time duration into 8640 time periods. That is their smart grid simulation detected
the total demand every 10 s. The author in [13], implemented a smart transformer control-
as-a-service over fog computing, limiting the load of each home at 4 KW. The algorithm
monitors the status of the power source and activates a DR signal when overload by cy-
cling all homes and shedding load in a home that has exceeded the 4 KW thresholds. In
both studies, the demonstrated DRM does not consider user preferences. In [16], the au-
thors introduced three-level priority scheduling for home appliances so users can switch
on home appliances subject to their satisfaction level and preferences. Peak load DRM
depends on mathematical models. The case study considers regularly operated or fixed
home appliances and develops an algorithm based on appliances operation priority set-
tings and equations from works proposed in [17,18].

The DRM algorithm used a default value of 5 KW based on the literature. Figure 13
depicts the experimental platform and its two-way data transmission.

Figure 12. Home Automation via the IoTSmartApp; (a) Appliance is turned off; (b) Appliance is
turned on.

4.1.3. DRM via Energy App

We implemented a DRM algorithm for peak load management as a service that aims to
demonstrate the impact of our platform on residential load efficiency. We followed related
works around HEM to define our experimental model.

To demonstrate the performance of their IoT architecture for residential load, the
author in [15] implemented an experiment based on a maximum allowable peak threshold
of 33 kW. The author’s algorithm controls light bulbs at each house at peak time, slotting
a 24-h time duration into 8640 time periods. That is their smart grid simulation detected
the total demand every 10 s. The author in [13], implemented a smart transformer control-
as-a-service over fog computing, limiting the load of each home at 4 kW. The algorithm
monitors the status of the power source and activates a DR signal when overload by cycling
all homes and shedding load in a home that has exceeded the 4 kW thresholds. In both
studies, the demonstrated DRM does not consider user preferences. In [16], the authors
introduced three-level priority scheduling for home appliances so users can switch on home
appliances subject to their satisfaction level and preferences. Peak load DRM depends
on mathematical models. The case study considers regularly operated or fixed home
appliances and develops an algorithm based on appliances operation priority settings and
equations from works proposed in [17,18].

The DRM algorithm used a default value of 5 kW based on the literature. Figure 13
depicts the experimental platform and its two-way data transmission.

The algorithm runs with an electricity price per unit considering a household in the
research context (City of Cape Town) with consumption equal to or above 600 kWh/month.
Municipality regulation rated the power consumption unit at 278.46 c/kWh (City of Cape
Town, 2019).

The developed energy app is used to test the DRM scenario. In Figure 14, configuration
windows are proposed to the user to set up the current DRM algorithm threshold, reset
the smart home’s appliance IDs, and activate/de-activate the DRM service running on the
gateway server. When the user activates the DRM service, both the new status and threshold
are passed to the listening home server via the Parse Live Query mechanism. The algorithm
output for analysis was logged and plotted to appreciate the benefit of the peak-saving
algorithm. The maximum allowable peak demand is 5 kW with a 10% positive margin

IoT 2022, 3 86

(5.5 kW) based on appliances properties and priority setting in Table 2 above. We calculate
the average power and energy cost, and maximum peak power. This data is made available
as statistical info to each smart home user. The guiding Equations (A1)–(A3) digitized for
the DRM algorithm are detailed in Appendix A. In Figure 14 below, configuration windows
are proposed to the user to manage the DRM algorithm threshold (using the knob), reset
the smart home′ s appliance IDs, and activate/de-activate (via the switch widgets) the
DRM service running on the home server.

IoT 2022, 2, 14

Figure 13. Case study system architecture.

The algorithm runs with an electricity price per unit considering a household in the
research context (City of Cape Town) with consumption equal to or above 600
Kwh/month. Municipality regulation rated the power consumption unit at 278.46 c/kWh
(City of Cape Town, 2019).

The developed energy app is used to test the DRM scenario. In Figure 14, configura-
tion windows are proposed to the user to set up the current DRM algorithm threshold,
reset the smart home’s appliance IDs, and activate/de-activate the DRM service running
on the gateway server. When the user activates the DRM service, both the new status and
threshold are passed to the listening home server via the Parse Live Query mechanism.
The algorithm output for analysis was logged and plotted to appreciate the benefit of the
peak-saving algorithm. The maximum allowable peak demand is 5 kW with a 10% posi-
tive margin (5.5 kW) based on appliances properties and priority setting in Table 2 above.
We calculate the average power and energy cost, and maximum peak power. This data is
made available as statistical info to each smart home user. The guiding Equations (A1)–
(A3) digitized for the DRM algorithm are detailed in Appendix A. In Figure 14 below,
configuration windows are proposed to the user to manage the DRM algorithm threshold
(using the knob), reset the smart home's appliance IDs, and activate/de-activate (via the
switch widgets) the DRM service running on the home server.

Table 2. Appliances in the considered home with their typical priority level.

Home Appliances Maximum Rating(W)
Priority

Morning Evening
Electric geyser 3000 High Low

Kettle 2200 Medium Medium
Toaster 950 High Low
Oven 2350 Low High
Stove 3000 Medium High
Iron 1800 Medium Low

Figure 13. Case study system architecture.
IoT 2022, 2, 15

Figure 14. DRM with energy app.

We sampled appliance consumption at 10 min duration. However, a 5 min timeframe
was used for peak simulation, running the algorithm at a 10 s interval then normalizing
the resultThe grey and blue curve of Figure 15 denotes the load profile with and without
the demand management, respectively, whereas the brown and green curves represent
the peak cost of consumption with and without demand management.The red line shows
the maximum allowable demand threshold (about 5.5 KW). When the demand exceeds
the peak limit, the DRM service turns some appliances off according to the priority as-
signed. We can see the DRM load profile (brown curve) peak is lowered and the valleys
are filled as expected of a peak shaving algorithm.

Figure 15. Peak load profiling via IoTivity HEM platform.

5. Discussion
The main highlights from the experimental setup concerning the research objectives:

1. IoTivity-Lite middleware: The IoTivity middleware from OCF was selected to handle
interoperability, scalability, and resource management semantic gaps inherent in IoT
systems. Experimentation showed that indeed both Wi-Fi and ethernet devices could
effectively and uniformly exchange data through the IoTivity-Lite HAN. Though the
essential functions of the IoTivity-lite middleware are effective; functionalities such
as provisioning, and security are only available in Arduino DUE and ESP32 due to
AVR board limited RAM. Latencies in data delivery of ~4 s were observed for Gate-
way-to-cloud communicating over the Back4App cloud services.

Figure 14. DRM with energy app.

IoT 2022, 3 87

Table 2. Appliances in the considered home with their typical priority level.

Home Appliances Maximum Rating(W)
Priority

Morning Evening

Electric geyser 3000 High Low

Kettle 2200 Medium Medium

Toaster 950 High Low

Oven 2350 Low High

Stove 3000 Medium High

Iron 1800 Medium Low

We sampled appliance consumption at 10 min duration. However, a 5 min timeframe
was used for peak simulation, running the algorithm at a 10 s interval then normalizing
the resultThe grey and blue curve of Figure 15 denotes the load profile with and without
the demand management, respectively, whereas the brown and green curves represent the
peak cost of consumption with and without demand management.The red line shows the
maximum allowable demand threshold (about 5.5 kW). When the demand exceeds the
peak limit, the DRM service turns some appliances off according to the priority assigned.
We can see the DRM load profile (brown curve) peak is lowered and the valleys are filled
as expected of a peak shaving algorithm.

IoT 2022, 2, 15

Figure 14. DRM with energy app.

We sampled appliance consumption at 10 min duration. However, a 5 min timeframe
was used for peak simulation, running the algorithm at a 10 s interval then normalizing
the resultThe grey and blue curve of Figure 15 denotes the load profile with and without
the demand management, respectively, whereas the brown and green curves represent
the peak cost of consumption with and without demand management.The red line shows
the maximum allowable demand threshold (about 5.5 KW). When the demand exceeds
the peak limit, the DRM service turns some appliances off according to the priority as-
signed. We can see the DRM load profile (brown curve) peak is lowered and the valleys
are filled as expected of a peak shaving algorithm.

Figure 15. Peak load profiling via IoTivity HEM platform.

5. Discussion
The main highlights from the experimental setup concerning the research objectives:

1. IoTivity-Lite middleware: The IoTivity middleware from OCF was selected to handle
interoperability, scalability, and resource management semantic gaps inherent in IoT
systems. Experimentation showed that indeed both Wi-Fi and ethernet devices could
effectively and uniformly exchange data through the IoTivity-Lite HAN. Though the
essential functions of the IoTivity-lite middleware are effective; functionalities such
as provisioning, and security are only available in Arduino DUE and ESP32 due to
AVR board limited RAM. Latencies in data delivery of ~4 s were observed for Gate-
way-to-cloud communicating over the Back4App cloud services.

Figure 15. Peak load profiling via IoTivity HEM platform.

5. Discussion

The main highlights from the experimental setup concerning the research objectives:

1. IoTivity-Lite middleware: The IoTivity middleware from OCF was selected to handle
interoperability, scalability, and resource management semantic gaps inherent in IoT
systems. Experimentation showed that indeed both Wi-Fi and ethernet devices could
effectively and uniformly exchange data through the IoTivity-Lite HAN. Though
the essential functions of the IoTivity-lite middleware are effective; functionalities
such as provisioning, and security are only available in Arduino DUE and ESP32
due to AVR board limited RAM. Latencies in data delivery of ~4 s were observed for
Gateway-to-cloud communicating over the Back4App cloud services.

2. Porting IoTivity-Lite Arduino AVR & ARM: The IoTivity middleware is a recent
ongoing project with a growing community and interest. However, this framework
was not available on low-memory, low-cost hardware such as the Arduino architecture.
Therefore, the IoTivity middleware is ported to the Arduino MCU representing one

IoT 2022, 3 88

of the novelties of this work. To this end, Contiki OS was used and adapted for
Arduino Arch. The experimentation shows that Contiki OS on Arduino is stable and
responsive, and its memory footprint is lightweight enough to allow sufficient space
on the Arduino RAM for IoTivity stack features such as discovery, CRDUN operations,
device, and resource provisioning on AVR arch as well security on DUE devices.

From the above observations, further work and focus should be placed on:

3. Enhancing security using the IoTivity onboarding and provisioning mechanism to
authenticate the client that interfaces to the HAN resource server. This feature was
not fully implemented because of software inconsistency with the IoT-rest-API-server.

4. IoTivity Cloud, OCF has updated its IoTivity-Lite framework to add a cloud interface
to the IoTivity network. This facility can be used to remove the need for the IoT-rest-
API-server easily implementing all security mechanisms available. This also reduces
the development load and facilitates maintenance.

5. Wireless communication, Wi-Fi should be adapted to all HAN devices for easier
penetration and adaptation in residential places. We recommend using technology
with embedded wireless protocol to optimize the HAN data communication.

6. Smart grid signals from the energy utility can take advantage of this platform. But
the interface needs to be fully defined from the cloud backend, this can be a cloud job
provided as SaaS in response to requests from the utility.

6. Conclusions

This article strives to participate in the growing research concerning the smart grid’s
potential for modernization of the electricity grid in the effort of energy utilities to effectively
handle increasing peak load, especially in the residential sector.

Therefore, “Cloud-based IoTivity platform for Home Energy Management Applica-
tions”, a cost-effective, efficient, and performing communication platform leveraging IoT
enabling technologies, was presented and deployed to provide and demonstrate intelligent
energy management applications, mainly in domestic places within the South African
context. This article addressed the IoT semantic gaps regarding interoperability, scalability,
and the cost and availability of technology issues pertaining to HEM.

Thus, we focused on the architectural design and backend requirements of the platform
around open source IoT technologies and developed a completed prototype providing an
experimental setup to test the platform’s performance for smart-grid-related interventions
in households. The experimental DRM load profile shows that the demand promptly falls
back below the peak limit after performing the peak shaving algorithm, generating savings
of up to 17% on the morning and evening peak loads. The overall response time for GET or
POST requests for device-to-device and cloud-to-device resource requests average ~4 s for
feedback and appliance actuation.

7. Future Research

The low-cost and miniaturization requirements present noticeable performance issues
in terms of hardware memory constraints and response time and limit the deployment of
IoTivity middleware security and management tools. Improvement of the platform could
focus on:

• Security can be increased in the platform using the IoTivity onboarding and provision-
ing mechanism to authenticate the client that interfaces to the HAN resource server.
This capability was not fully implemented because of software inconsistency with the
IoT-rest-API-server

• A higher-end embedded device for HAN servers able to handle multiple clients while
maintaining a fast response time was observed as an issue with AVR motes, and
in some capacities with the DUE servers due to its reduced processing speed and
constrained memory. A miniaturized, higher memory wireless MCU running at a
faster clock would provide a faster response time.

IoT 2022, 3 89

• Smart grid signals from the energy utility can take advantage of this platform. How-
ever, the interface needs to be fully defined from the cloud interface. This can be a
cloud job that requires monitoring or listening via an API provided by utility-to-smart-
grid incentives and propagation of these to home gateways. A more modern approach
would be to leverage “Data Lakes” on cloud platforms.

Author Contributions: Y.S.M.: Conceptualization, Literature review, Formal analysis, Methodology,
Validating, Writing original draft. A.R.: Conceptualization, review and editing. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Supporting data and current regarding the porting of the IoTivity-Lite
middleware to Arduino AVR&ARM can be found here: https://github.com/yannS2016/iotivity-
constrained-arduino. (accessed on 12 December 2021). Home Area Network server running the
IoTivity Lite firmware, Parse backend development scripts and Gateway server development files for
the experimental platform can be found here: https://github.com/yannS2016/iotsmartapp (accessed
on 12 December 2021).

Acknowledgments: I acknowledge the support of Atanda Raji, from the Cape Peninsula University
of Technology, my supervisor for the entirety of this work for his support in providing both technical
and administrative support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We consider a home focus on fixed consumption load comprises primarily those
with resistive load. For our model, let Anε {a1, a2, a3,· · · , an}, such that a1, a2, a3,· · · , an
represents each appliance. For this model we considered 6 appliances (Table 2). The peak
periods in the south African context are two. The morning peak is from 6 am to 9 am
while the evening peak is from 6 pm to 9 pm. In the model each peak period is sliced into
a horizon time slot series T ε {1, 2, 3,· · · , T}. since each peak period span the same time
length of Tpeak (4 h), considering that each time slot is 15 min long, thus T is a series of 16
elements. The total power consumption during a peak period is expressed as StAnTL

StAnTL =
T

∑
t=1

(
An

∑
n=1

Pn(t)× ζ(t)

)
(A1)

where Pn(t) is the power consumption for appliance an at time slot t ε T. ζ(t) ε [0, 1] is
the operational state of appliances in time interval t ε T. Similarly, the total cost per peak
period of the An

£AnTL =
T

∑
t=1

(
An

∑
n=1

Pn(t)× ε(t)× ζ(t)

)
(A2)

where ε(t) represents the cost of electricity at time t ε T.
Based on Equation (A1), we develop the algorithm for our DRM case study as below

StAnTL =
T

∑
t=1

(
An

∑
n=1

Pn(t)× ζ(t)

)
≤ γ(t) (3) (A3)

where γ(t) is the home threshold. That is, γ(t) is the maximum allowable peak load at time
t ε T. We start with a dynamic value for γ(t) of 5 kW.

https://github.com/yannS2016/iotivity-constrained-arduino
https://github.com/yannS2016/iotivity-constrained-arduino
https://github.com/yannS2016/iotsmartapp

IoT 2022, 3 90

References
1. Abu-Mahfouz, A.M.; Olwal, T.O.; Kurien, A.; Munda, J.; Djouani, K. Toward developing a distributed autonomous energy

management system (DAEMS). In Proceedings of the AFRICON 2015, Addis Ababa, Ethiopia, 14–17 September 2015; pp. 1–6.
[CrossRef]

2. Numsa, D.; Mudumbe, J.M.; Ndwe, T. The internet of things for a smart South African grid architecture. In Proceedings of the 8th
International Development Informatics Association Conference, Port Elizabeth, South Africa, 3–4 November 2014; pp. 95–107.

3. Blanco-Novoa, Ó.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. An Electricity Price-Aware Open-Source Smart Socket
for the Internet of Energy. Sensors 2017, 17, 643. [CrossRef] [PubMed]

4. Vine, D.; Buys, L.; Morris, P. The Effectiveness of Energy Feedback for Conservation and Peak Demand: A Literature Review.
Open J. Energy Effic. 2017, 2, 7–15. [CrossRef]

5. Wang, F.; Hu, L.; Zhou, J.; Zhao, K. A Data Processing Middleware Based on SOA for the Internet of Things. J. Sens. 2015,
2015, 827045. [CrossRef]

6. Khana, R.; Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. JECE 2017, 2017, 9324035.
[CrossRef]

7. Lin, H.; Bergmann, N.W. IoT Privacy and Security Challenges for Smart Home Environments. Information 2016, 7, 44. [CrossRef]
8. Beligianni, F.; Alamaniotis, M.; Fevgas, A.; Tsompanopoulou, P.; Bozanis, P.; Tsoukalas, L. An internet of things architecture for

preserving privacy of energy consumption. In Proceedings of the Mediterranean Conference on Power Generation, Transmission,
Distribution and Energy Conversion (MedPower 2016), Belgrade, Serbia, 6–9 November 2016; pp. 1–7. [CrossRef]

9. Stojkoska, B.R.; Trivodaliev, K.V. A review of Internet of Things for smart home: Challenges and solutions. J. Clean. Prod. 2017,
140, 1454–1464. [CrossRef]

10. Khatu, M.; Kaimal, N.; Jadhav, P.; Rizvi, S. Implementation of Internet of Things for Home Automation. IJEERT 2015, 3, 7–11.
11. Sagar, V.; Kusuma, S.M. Home Automation Using Internet of Things. IRJET 2015, 2, 56–72.
12. Lee, C.-H.; Lai, Y.H. Design and Implementation of a Universal Smart Energy Management Gateway based on the Internet of

Things Platform. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
7–11 January 2016; pp. 67–68.

13. Al Faruque, M.A.; Vatanparvar, K. Energy Management-as-a-Service Over Fog Computing Platform. IEEE Internet Things J. 2016,
3, 161–169. [CrossRef]

14. Li, X.; Nie, L.; Chen, S.; Zhan, D.; Xu, X. An IoT Service Framework for Smart Home: Case Study on HEM. In Proceedings of the
IEEE International Conference on Mobile Services, New York City, NY, USA, 27 June–2 July 2015; pp. 438–445. [CrossRef]

15. Viswanath, S.K.; Yuen, C.; Tushar, W.; Li, W.-T.; Wen, C.-K.; Hu, K.; Chen, C.; Liu, X. System design of the internet of things for
residential smart grid. IEEE Wirel. Commun. 2016, 23, 90–98. [CrossRef]

16. Rasheed, M.B.; Javaid, N.; Ahmad, A.; Awais, M.; Khan, Z.A.; Qasim, U.; Alrajeh, N. Priority and delay constrained demand side
management in real-time price environment with renewable energy source. Int. J. Energy Res. 2016, 40, 2002–2021. [CrossRef]

17. Hussain, H.M.; Javaid, N.; Iqbal, S.; Hasan, Q.U.; Aurangzeb, K.; Alhussein, M. An Efficient Demand Side Management System
with a New Optimized Home Energy Management Controller in Smart Grid. Energies 2018, 11, 190. [CrossRef]

18. Khan, A.; Javaid, N.; Yousafzai, A.A. A priority-induced demand side management system to mitigate rebound peaks using
multiple knapsack. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1655–1678. [CrossRef]

http://doi.org/10.1109/afrcon.2015.7332008
http://doi.org/10.3390/s17030643
http://www.ncbi.nlm.nih.gov/pubmed/28335568
http://doi.org/10.4236/ojee.2013.21002
http://doi.org/10.1155/2015/827045
http://doi.org/10.1155/2017/9324035
http://doi.org/10.3390/info7030044
http://doi.org/10.1049/cp.2016.1096
http://doi.org/10.1016/j.jclepro.2016.10.006
http://doi.org/10.1109/JIOT.2015.2471260
http://doi.org/10.1109/MobServ.2015.66
http://doi.org/10.1109/MWC.2016.7721747
http://doi.org/10.1002/er.3588
http://doi.org/10.3390/en11010190
http://doi.org/10.1007/s12652-018-0761-z

	Introduction
	State of the Art
	Research Challenges and Concept Overview Section
	Research Contributions

	Cloud-Enabled IoTivity Platform
	Architecture
	Software Architecture
	HAN Middleware
	IoTivity-Lite Arduino Port
	Gateway to Local HAN Server Interaction
	Cloud Tools and Infrastructure

	Communication Architecture

	Experimental Results of Case Study
	Experimental Results
	Feedback via Energy App
	Home Automation via Energy App
	DRM via Energy App

	Discussion
	Conclusions
	Future Research
	Appendix A
	References

