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Abstract: The scale of Internet of Things (IoT) systems has expanded in recent times and, in tandem
with this, IoT solutions have developed symbiotic relationships with technologies, such as edge
Computing. IoT has leveraged edge computing capabilities to improve the capabilities of IoT
solutions, such as facilitating quick data retrieval, low latency response, and advanced computation,
among others. However, in contrast with the benefits offered by edge computing capabilities, there
are several detractors, such as centralized data storage, data ownership, privacy, data auditability, and
security, which concern the IoT community. This study leveraged blockchain’s inherent capabilities,
including distributed storage system, non-repudiation, privacy, security, and immutability, to provide
a novel, advanced edge computing architecture for IoT systems. Specifically, this blockchain-based
edge computing architecture addressed centralized data storage, data auditability, privacy, data
ownership, and security. Following implementation, the performance of this solution was evaluated
to quantify performance in terms of response time and resource utilization. The results show the
viability of the proposed and implemented architecture, characterized by improved privacy, device
data ownership, security, and data auditability while implementing decentralized storage.

Keywords: IoT; edge computing; auditability; Blockchain; non-repudiation; privacy; security

1. Introduction

Over the years, the Internet of Things (IoT) has evolved across different facets of
our lives. This ranges from its usage in homes, healthcare, and supply chain, as well
as for industrial purposes. It has been projected that the adoption of IoT devices will
increase, reaching approximately 75 million devices connected by 2025 [1]. This increase in
the number of devices may be attributed to diverse deployments of IoT solutions across
many application domains, including smart homes [2], healthcare [3], smart grid [4], smart
cities [5], agriculture [6], and supply chain management [7].

Irrespective of the use case, IoT systems have a great potential to enhance both the
functionalities and capabilities of the service they provide or support [8]. However, these
use cases and emerging new ones will result in new dimensions of challenges. A major
challenge is centralized data storage. As the number of IoT devices increases, the amount of
data aggregated in a single location, as well as the current storage mode in the present-day
implementation of IoT systems, also increase. This central data aggregation will also result
in data management and data ownership issues. Ultimately, data aggregation in a central
location could become attractive to attack, exploiting the IoT system to cause major damage.
This becomes a security and privacy concern within the IoT ecosystem [9]. IoT systems
need to effectively and safely interact and integrate with their environment; therefore, a
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system that can leverage the existing capabilities of edge computing platforms and resolve
some of these issues is required to enable the scalable connected future [10].

Such IoT solutions generate a vast quantity of data subject to instant processing and
analysis to support decision-making. To optimize responsiveness and reduce bandwidth
requirements, such processing should happen at the edge of the network. Edge computing
can process data at the edge of the network and make autonomous decisions [10]. Conse-
quently, the strength and weaknesses of edge computing concerning IoT must be explored.

1.1. Overview of Edge Computing

IoT systems can generate vast quantities of data from diverse types of IoT devices. The
data can be processed at the edge of the network to improve responsiveness and scalability
before being transferred to the cloud. Edge computing can transfer data from the edge
of a network to the cloud’s network and other resources, such as storage capabilities and
intelligent services. These capabilities can provide the critical services needed by real-time
solutions while meeting IoT systems requirements, such as high bandwidth and low latency
on the edge network [11].

Edge computing has several variations designed for distinct purposes, such as mobile
computing and ad-hoc networks. These variations include multi-access edge computing
(MEC) and vehicular ad-hoc networks (VANETs). Multi-access edge computing (MEC),
formerly known as mobile edge computing, enables information technology (IT) services
environment with cloud capabilities at the edge of the cellular network [10]. Furthermore,
vehicular ad-hoc networks (VANETs) enable groups of cars to maintain communication
across the edge of the network [12].

Despite the numerous advantages of edge computing, there are open challenges, such
as centralized data storage, which can lead to a single point of failure and a point of attack
that can be exploited by adversaries [13], as well as IoT user data ownership.There are also
concerns about who the data generated by IoT devices belongs to, i.e., the user or the edge
computing platform providers. Data or information security and privacy issues [10], and
even data auditability, which can support non-repudiation, among others [9] are also of
great concern.

Several studies have investigated the usage and effectiveness of edge computing. Jiang
et al. [14] explored the energy efficiency of edge computing as it relates to edge devices
and servers. Lan [15] leveraged edge computing capabilities for real-time monitoring of a
complex IoT-based event that involves data communication and processing mechanism. In
an IoT study, edge computing was also used based on a unified platform for heterogeneity
sensing between devices by Lan et al. [16]. These studies did not attempt to address any
edge computing limitations or deficiencies but leverage its features.

Edge computing has some features that make it ideal for different real-time applica-
tions, such as smart home and smart monitoring. These features include location awareness,
proximity to users, mobility support, ultra-low latency, dense geographical distribution,
and interoperability [17]. With edge computing gaining attention, in the review by Liu
et al. [18], some edge computing systems were identified, including CORD, Akraino Edge
Stack, EdgeX Foundry, Apache Edgent, and Azure IoT Edge. These applications are now
being widely used in the IoT domain, for testing, and in production.

Amongst all the identified features of edge computing, its limitations, for example the
centralized data storage, cannot be underestimated and, therefore, need to be examined to
provide adequate solutions and appropriate steps to deal with them. These steps start by
examining the current edge computing architecture within the IoT domain to provide a
robust architecture that will address these limitations.

1.2. Overview of Distributed Ledger Technology

DLT can be described as a decentralized system with multiple nodes, which are usually
peer-to-peer networks. These nodes can save and keep immutable records on a database
called Ledger [19]. In 2009, the first known DLT, called Bitcoin [20], became popular for its
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digital currency value, and it forms the basis for what we now know today as blockchain
technology. Different types of Blockchain can be deployed based on two main strategies:
permissionless and permissioned.

Permissionless ledgers can allow any entity to create and validate blocks in the ledger.
Entities can also update transactions at will without requiring any permission within the
network. This provides an open, transparent, and accessible set of transactions between all
entities, and as a result, privacy within the network becomes questionable.

On the other hand, a permissioned ledger preserves privacy within a network. Mem-
bers within this network are uniquely identified, resulting in all entities being properly
authorized and trusted. These features make this type of blockchain relevant in some use
cases, especially those requiring high security and privacy.

Permissioned blockchain has some inherent features which give it an edge over cen-
tralized systems. These include decentralization, privacy, immutability, security, scalability,
accountability, data auditability, and data providence. Today, there are different types
of blockchain, some of which are developed and designed for specific purposes [21–26].
With these features of blockchain, if it is successfully combined with the edge computing
platform, some of the deficiencies of the current IoT representation will be adequately
addressed. Edge computing will provide the required high processing power and reduced
latency, while blockchain will provide the IoT systems with the features, such as the follow-
ing: security, privacy, data auditability, non-repudiation of action among IoT devices, and,
most especially, decentralized storage.

Hyperledger Fabric [27] (Fabric) has been identified as an enterprise blockchain
network and has been used by many organizations for different use cases [28]. The
uniqueness of Fabric lies in its default design tailored towards privacy and maintaining
multiple copies of consistent ledgers across the peers within its network. These features
make Fabric stand out and, therefore, will be used within our implementation.

1.3. Goals of the Study

The focus of this study is to develop, design, and implement a solution that addresses
the identified edge computing deficiencies or limitations while leveraging on its capabilities.
Below are our contributions to knowledge:

1. To provide a novel blockchain-based edge computing architecture that leverages edge
computing and blockchain capabilities to offer a scalable, secure, and distributed IoT
System.

2. To provide a distributed IoT System that supports data privacy, data auditability, and
non-repudiation of actions between IoT devices.

3. To provide a custom blockchain network adapter that automatically creates the
blockchain network and facilitates the connection to the edge computing platform
through a designed and implemented middleware.

These goals are achieved by developing and designing our architecture based on edge
computing and blockchain with proof of concept (PoC) implementation. Furthermore, the
results from the communication between the edge and blockchain platforms were also
presented, and performance testing of our implementation (PoC) was carried out.

The rest of this paper is organized as follows. Section 2 focuses on the background
and related work, starting by discussing the need for decentralized storage in IoT sys-
tems, followed by a review of existing architectures. Section 3 focuses on our proposed
blockchain-based edge computing architecture alongside a discussion that focuses on the
detailed components of our architecture. Section 4 discusses our implementation setup
and results, while performance testing is presented in Section 5. We present our conclusion
and future work in Section 6.

2. Background and Related Work

A major challenge in the current representation of IoT systems is the centralized nature
of the platforms currently being used in different use cases, leading to a single point of
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failure [29]. Any availability issue related to such a system can lead to extreme damage and
consequently downtime to the entire network and ecosystem. Other identified challenges
include data privacy, security, data ownership, data auditability, and non-repudiation of
actions between IoT devices. These challenges may be addressed by exploring a distributed
IoT systems representation [13]. Data can be stored and processed on different entities
in a distributed system, and IoT devices can securely communicate to exchange data
without centralized entities [30]. Creating a distributed representation of IoT systems
requires a distributed ledger with the following inherent properties: transparency, privacy,
immutability, auditability, and security [31].

Interoperability plays an important role within IoT systems as it enables and supports
communication between heterogeneous IoT devices. To this end, interoperability issues
need to be considered while exploring the efficiency of distributed approaches in resolving
the identified challenges of edge computing. At the device interaction level, edge comput-
ing platforms can provide interoperability, which is essential in IoT systems by enabling
the design and implementation of different communication protocols [14]. For example,
a provision of protocols such as Bluetooth Low Energy (BLE), message queuing teleme-
try transport (MQTT), Modbus, and simple network management protocol (SNMP) on a
single Edge Computing platform. In addition, there are enterprise-grade edge computing
platforms in existence today that support interoperability; an example of this is EdgeX
Foundry [32]. EdgeX Foundry enables devices of different communication protocols to
communicate on the edge network.

2.1. Edge Computing IoT Architecture

Currently, no global standards for IoT architecture can easily be referenced, and
researchers have suggested different architectures for IoT systems [33]. Some of these
architectures may align with a specific use case or application. For instance, Martin
et al. [34] proposed and designed an architecture based on edge computing and edge
smart gateways. Their architecture was designed to filter and aggregate data within their
application and was tailored towards a structural health monitoring of IoT applications
to reduce latency. In addition, their architecture provided a centralized location for data
aggregation, which can disrupt the availability of the IoT solution if exploited.

In another study by Alanezi and Mishra [35], an architecture based on edge computing
and an IoT framework was used to devise and execute an ambient intelligent task such
as the automated discovery of new sensors and services at the network’s edge. In their
approach, mobile devices use Bluetooth Low Energy (BLE) to discover services offered
by the edge server. These services are then shared with available sensors within the
environment for planning purposes. They achieved an IoT-based architecture using edge
computing, but data privacy was impossible because all the devices store data and share
resources and services at the network’s edge.

Cicirelli et al. [36] designed a cognitive-enabled edge-based IoT (CEIoT) architec-
ture for smart environments, which exhibit cognitive behaviors. This architecture was
designed to support cognitive computing in a distributed context, usually for edge-based
computational nodes. In addition, their architecture was designed to address issues of
data computation, which was achieved at the edge of the network; however, data are still
centrally stored, with no privacy maintained within the represented smart environments.

Gheisari et al. [37] presented a simulation of an edge computing-based architecture
designed for privacy-preserving of an IoT-based smart city. They used ontology within the
architecture of the network’s edge to support the conversion of a highly dynamic mode
to privacy behavior aspect entities. As a result, they could achieve privacy with their
approach, but data were still centrally stored, and devices could not be held accountable
for the data they shared or transmitted. These are major issues because this architecture
was proposed within the smart city context, with many IoT devices.

Other studies leverage the capabilities of edge computing to design their architecture
for different purposes. These include a study by Marjanovic et al. [38], which presented
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a reference architecture for mobile crowdsensing (MCS) deployments. They used their
approach to decentralize MCS services to improve performance in terms of scalability.
However, privacy issues, alongside data ownership and security, were not adequately
addressed within their solution. An edge-based architecture proposed by Pace et al. [39]
supports healthcare applications within Industry 4.0. The literature noted that edge com-
puting capabilities were adopted for one use case or the other with no adequate attempt to
address its challenges. Some of the challenges that were not addressed were centralized
data storage, data security, and privacy [40].

2.2. Blockchain-Based Edge Computing IoT Architecture

To address some of the challenges of edge computing identified in previous sections,
some researchers have explored blockchain technology. For example, Akkaoui et al. [41]
designed an edge computing and blockchain system called “EdgeMediChain”. Their
architecture implemented using Ethereum—is a form of permissionless blockchain used to
facilitate scalability and security within the healthcare ecosystem. However, their approach
used a permissionless blockchain that does not support privacy and does not uniquely
identify the entity within its network.

In another study by Bonnah and Shiguang [42], edge computing and blockchain were
used to achieve decentralized security by eliminating a public trusted entity. In their
approach, notable principles of permissioned blockchain were used within the network.
They also achieved authentication of users within the solution that intends to access a
service or resources. In addition, their approach addressed issues of a single point of failure
by providing distributed data storage, but privacy was not adequately considered and
dealt with.

Chuang et al. [43] introduced “TIDES”, a trust-aware IoT data system that relies on
blockchain and multi-access edge Ccmputing. Their solution, which is economic in nature,
allows IoT devices to trade data and reduce trading latency. However, this study was
not focused on privacy among IoT devices. Furthermore, data storage is still partially
central on the multi-access edge computing platform. A study by Cui et al. [44] proposed
and designed a trusted edge computing IoT platform based on blockchain. Their work
emphasized solving task allocation problems within IoT environments through a heuristic
algorithm. Some studies by Guo et al. [45,46] also adopted the combination of edge
computing and blockchain to design a selected construct collaborative mining network
(CMN) within IoT mobile devices and also created a distributed and trusted authentication
system. This was achieved by applying edge computing to the blockchain node to provide
name resolution, authentication service, and collaborative sharing.

Other concepts are based on the integration of blockchain and edge computing. These
include concepts based on deep reinforcement learning [47], artificial intelligence [48,49],
and video surveillance systems [50]. Most of these studies used permissionless blockchain,
which does not provide adequate privacy. This calls for the design, development, and
implementation of an architecture that uniquely leverages enterprise-grade edge computing
and permissioned blockchain platforms to achieve security, privacy, data auditability, and
distributed storage.

It was established here that an architecture based on edge computing and blockchain is
necessary, but most importantly, the studies examined do not address the major challenges
identified. Therefore, this study will explore and use Hyperledger Fabric identified in
Section 1.2 to provide a solution that will remove the identified challenges.

3. Proposed Architecture

The purpose of architecture is to achieve an efficient representation of a system. In
the IoT context, architecture is required to represent, organize, and present the functional
structure of the IoT systems for efficient functionalities. These functionalities include sup-
porting the hardware, software, workflow, network, protocols, services, and applications.
IoT architectures can have three, four, five, or six layers [40]. This study adopts a three-layer
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architecture, as shown in Figure 1, which was also conceptualized to include the major
components of IoT representation.
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Figure 1. A three-layer annotated architecture.

The first layer (layer 1 at the bottom) replicates the full stack of an edge computing
system. The IoT devices represent any device connected to the Internet and can acquire or
transmit data. The network or communication protocols are essential for communication
among IoT devices. This enhances and provides interoperability between heterogeneous
devices or elements of the IoT System. This layer’s application or presentation segment
provides a user interface (UI) to enhance visualization within the IoT systems.

The middleware layer (layer 2) provides a connection between layers 1 and 3. Typically,
this layer may consist of technologies that connect these two layers to facilitate data
transport. With this layer in place, a connection can automatically be achieved between
layers 1 and 3.

The blockchain layer (layer 3) provides a decentralized storage capability. Depend-
ing on the design approach and implementation steps taken, it can also provide security,
privacy, immutability, and data auditability. To conceptualize the annotated architecture
presented in Figures 1 and 2, details of the internal components in each of the three layers
of the proposed architecture with technologies adopted at each layer are proposed. Gener-
ally, to actualize the proposed architecture’s design, development, and implementation,
enterprise-grade edge computing and blockchain were adapted for layers 1 and 3, respec-
tively. In addition, for layer 2, custom microservices and a message bus were designed
and implemented to establish and facilitate the connection between layers 1 and 3. The
technologies adopted in our proposed overall architecture in Figure 2 are briefly described.
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Figure 2. Proposed overall architecture.

1. Layer 1—EdgeX Foundry

In layer 1, EdgeX Foundry [32] (EdgeX), an open source IoT Edge computing platform,
which supports interoperability within heterogeneous devices, was used. The EdgeX
platform is modular in nature and is microservice-based, with several services within it
connected by an application programming interface (API). The microservices can be altered,
adjusted, or plugged together with a similar proprietary component from another vendor
based on a user-defined application. This property makes EdgeX a vendor-neutral edge
computing IoT system.

As shown in Figure 2, components of EdgeX were harnessed with the distributed nature
and features of blockchain to remove identified challenges in current representations of IoT,
such as centralized data storage, amongst others. The components of EdgeX used were
device virtual, device service, data storage, notification service, core data, and communication
protocols. These are sets of microservices that were selected to achieve layer 1.

2. Layer 2—Microservices, and Apache Kafka

The middleware consists of four microservices and Apache Kafka. The four microser-
vices developed include the config server, the registry service (discovery service), the API
gateway (Zuul), and the IoT PoC. Our microservices were developed using the Spring
Framework based on Java and using Maven as the build tool. Spring Framework is used to
develop a Spring Boot application. Each microservice exposed a port for communicating
with each other. Since Spring application requires a database path to facilitate communica-
tion, we used MySQL as our Java Database Connectivity (JDBC) and runs on port 3306.
Table 1 summarises the features of the four microservices.

Table 1. Microservices and their overall properties.

Microservice Name Spring Application
Name

Server
Servlet.Context Path Server Port

Config Server Iotconfigerver - 9003
API Gateway Zuul /api-gateway 9000

Registry Service Discoveryservice - 8010
IoT PoC Service Iotpocservice /api-poc 9001
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Apache Kafka is the message bus used within the proposed architecture. The need
for a robust, distributed messaging, fault-tolerant, and scalable system gives rise to the
development of Apache Kafka [51] by Linkedln before it was moved to the Apache Software
Foundation. Kafka can be used as a message bus or message center that provides data
fields between different applications. It leverages its topics, group, and cluster resources to
provide a publish-subscribe service within participating applications. There are typically
data provider(s) and data consumer(s) in such a system.

Kafka uses Zookeeper, which provides synchronization and flexibility within a dis-
tributed system to manage its cluster node, topics, partitions, and other delegation activities.
In addition, for the design and implementation of our architecture, Apache Kafka and
Zookeeper serve as a message bus between Hyperledger Fabric and EdgeX through our
microservices.

3. Layer 3—Hyperledger Blockchain Network

Fabric offers a range of advantages over other nlockchain systems. Some of these
include maintaining multiple ledgers across its peers and its modular nature as some of its
components can be replaced. For instance, the certificate authority (CA) can be replaced by
any third-party X.509 compliant CA. In addition, the consensus mechanism that ensures the
correctness and consistency of the internal state of the ledger is fully pluggable. Another
unique feature is the smart contract called chaincode, which can automatically execute
specific instructions tailored towards a particular use case or scenario.

Figure 3 depicts a sample of the Hyperledger Fabric Network used, supporting the
one depicted as layer 3 in Figure 2.
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Fabric Software Development Kit (SDK): Currently, Fabric supports NodeJS, Java,
and Golang. The user application can interact with the SDK through Restful API with
transaction proposals submitted through the peers of each organization within the network.
Organizations within the network are units representing an entity. For example, an entity
can be a company or IoT device associated with a Fabric certificate authority (Fabric CA).
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Membership Service Provider (MSP): To maintain security and identity management,
each organization has an MSP that uniquely identifies its users; thus, the MSP of an
organization is unique from the other. The MSP, through the Fabric CA, generates identities
for the users. For example, an admin user is generated by default once a network is
instantiated. However, the number of other users depends on the parameters specified
while setting up the network.

Channel: This is used by Fabric to maintain privacy within the network. Two or more
organizations can have a channel created between them while having another channel
for interacting with each other. This ensures data privacy and integrity by making data
available to the intended users within the organization.

Peers: Peers within organizations are responsible for proposing transactions detailed
in the chaincode. Each organization has multiple peers (Endorsing/Anchor, Commuting,
and normal). The peers communicate with each other using gossip protocols while keeping
the content of the ledger consistent.

Orderer: This is responsible for creating, committing, and maintaining blocks in
the ledger. The ledger which is connected to each peer is a persistent storage within the
network. This persistent storage across the ledger of the peers gives Fabric the decentralized
storage feature.

In a general context, Figure 3 depicts the following: through the MSP and Fabric CA,
all entities within an organization are registered. Channel(s) are instantiated to maintain
privacy between two or more organizations. Fabric also supports creating an endorsement
policy that further maintains security and privacy. A chaincode is instantiated on the Peers.
Ideally, a peer that is visible to other organizations is called the Anchor or Endorsing peer.
The Fabric uses a database (CouchDB) to persist the ledger. The contents of the ledger on
each peer are consistently maintained.

Overall, the functionalities of Fabric include identity management, which is achieved
through its MSP and CA. Furthermore, privacy, security, and confidentiality are maintained
by creating channel(s) and endorsement policy. The orderer ensures that there is efficient
processing which provides scalability and consistency within Fabric. Finally, modularity
is achieved by supporting pluggable CA and consensus algorithm that determines how
the orderer commits blocks to the ledger through the peers. All these features match the
criteria for what we intend to achieve, which justifies why we use Fabric within this study.

Similarly, some studies have leveraged the modular nature and capabilities of EdgeX
to achieve their aim. For example, Kim et al. [52] leveraged EdgeX UI and analytical
features and used it as a monitor platform in their work based on Deep Q-Network.
Sobecki et al. [53] also leveraged the EdgeX platform for visualization in their work based
on deep learning. Others [54,55] also used this platform in one way or the other. However,
none of these studies proposed an architecture based on EdgeX and Fabric platforms, which
is one of the major steps taken in this study.

4. Implementation and Results

This section describes the steps taken in the design, development, and implementation
of the proposed architecture. First, the identified components within the architecture were
presented to align with how they were used within the implementation, followed by our
implementation approach. Finally, this section closes with the presentation of the results
from the implementation.

4.1. Implementation Components—Specifics

The major components of our implementation are presented here to show the specific
steps taken. We started from layer 1, which is the EdgeX platform, through to layer 3.

Layer 1: EdgeX
EdgeX Foundry, implemented in the Go programming language and as a set of

microservices, is also containerized and runs as Docker containers. As with every Docker-
related application, EdgeX has a YAML file, and an instance of this can be run as required.
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We selectively enabled some major components that are required for our study. Two virtual
IoT devices were enabled through the edgex-device-virtual services running on port 49990
with a dedicated API. Other enabled components are coredata on port 48080, metadata
on port 48081, and command on port 48082. This selection makes our version of EdgeX
lightweight and runs faster. The UI, which runs on port 4000, was used for logging and
virtualization. MongoDB was also used for storage and data persistence. EdgeX assigns
unique objectID to devices for standard and proper identification. This formed layer 1 of
the proposed architecture (edge computing), which provides high processing power, low
latency, and interoperability among IoT devices. Table 2 gives a description and details of
the selected EdgeX microservices used within our implementation.

Table 2. Selected EdgeX microservices description and their respective port number.

S/N Microservice Description Port

1 edgex-device-virtual

This microservice
simulates different
types of devices to

generate events and
provide readings to

the coredata
microservice.

49990

2 coredata

It provides
centralized

persistence of all the
data collected by the

devices.

48080

3 metadata
The metadata stores
information relating

to a device.
48081

4 command

This microservice
enables the issuance
of commands and
action to devices,

usually through the
GET and PUT

commands.

48082

5 edgex UI

EdgeX UI provides
the interface to

manage and monitor
an instance of EdgeX.

4000

6 MongoDB

EdgeX uses
MongoDB to persist

both the data and the
metadata of

(connected) devices

27017

Layer 2: Microservices
Briefly described here are the four microservices within Layer 2 that are used in the

implementation.
1. Config Server Microservice: In a distributed system such as this, Spring Cloud

Config supports and provides externalization of configurations common to all the microsys-
tems within the solution. It provides a collective place where all application’s external
properties can be managed. This also helps to secure the application as these common files
are usually located outside the main application directory, and the path is also encrypted.
All microservices will not run until these files are ‘called’ within each microservice. For
our implementation, we used the ‘Desktop/dev’ path and the ‘genkey’ command of the
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‘keytool’ utility tool to generate a Keystore that supports the Secure Shell layer (SSL). This
provides a secure design approach for our implementation by ensuring that a proper
connection is established at runtime.

2. API Gateway Microservice: In Spring applications, the API gateway selected
was developed by Netflix, called Zuul. In our implementation, Zuul is used to achieve
authentication by identifying various resource requirements and declining requests that
do not meet these requirements. It also provides dynamic routing to other microservices
hosting the requested services. Zuul was integrated with Eureka (on port 8010) and
hosted on our registry service, which helps to identify microservice network locations
by dynamically discovering them within the network. During bootstrap, it calls the
Config Server microservice to enforce its profiles and to enable access. It also provides
authentication and authorization to external users before devices are registered, and data
persisted to MongoDB of EdgeX.

3. Registry Service Microservice: This microservice is based on Eureka, which is
a discovery service. Each microservice registers itself on this while specifying its host,
port, and node name, as well as other specific metadata. Other microservices can use this
metadata in making important decisions. Multiple instances of other microservices can be
created here to provide fault tolerance to the solution.

4. IoT PoC Microservice: This deals with the major functionalities of the implemen-
tation. It was used for communication from EdgeX, through Kafka, to Hyperledger, and
vice versa. It facilitates the registration of devices on our local database (MongoDB) pro-
vided by EdgeX. After the registration, the devices automatically get registered on Fabric
using the APIs designed as a ‘Hyperledger network adapter. Its ‘application. properties’
specified the JDBC database host, port, name (MySQL, in this case), and the Kafka details
(group_id, admin, producer, and consumer bootstrap-server port which runs on port 9092).
This microservice was also used to implement data transfer objects (DTOs) that maps to
the functionalities of EdgeX, Kafka configuration, Swagger configuration (which helps
to interact with the API gateway), and other resources. Finally, its bootstrap properties
referenced the Config Server microservice for security enforcement.

Table 3 provides a brief description of the four microservices used within Layer 2.
Layer 2: Kafka
The following topics were created on Kafka and used for communication between the

consumer and the producer. ‘Userregistraton’—which is where the automatically regis-
tered Fabric organizations, users, and invoked Fabric CA details are published; ‘Channel
creation’—an established channel between the peers of the two organizations, with the
payload also pushed on Kafka from Fabric, which is automatically invoked using the API
created on Fabric; ‘Channel join’—which aids the joining of the peers of the two organi-
zation created on Fabric. This ensures privacy between the two organizations, and also
enforces that between the IoT devices; ‘Transaction’—which deals with the exchange of
information within the organizations and works in conjunction with the activities of the
channel; ‘Chaincode’—which facilitates the initiation of chaincode, although this was not
actively used in this study; and ‘Instantiate’—which instantiates the chaincode on the
peers, and, with the help of the orderer, a consensus is reached by the peers of the two
organizations on committing the transactions to the ledger.

A group was also created in Zookeeper to form the cluster. This is essential to create
fault tolerance within our implementation as Zookeeper ensures topics are divided into
several partitions, and manages the delegation of leaders and followers, and automatically
assigns a new leader should the active partition fail for any reason. The Kafka producer
bootstrap-server, Kafka admin properties bootstrap services, Kafka consumer bootstrap-
servers, and Kafka consumer group id on our Spring boot application and run on port 9092
are also configured.
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Table 3. Selected EdgeX microservices description and their respective port number.

S/N Microservice Description

1 Config Server

It was developed to provide
security within the
implementation while
providing an encrypted path
where common files used
within the application are
located or stored, usually
outside the application’s main
directory.

2 API Gateway

It was developed to achieve
authentication by identifying
various resource requirements
and declining requests that do
not meet these requirements.
Some of these requirements
might be to authenticate and
authorize the identity of the
entity requesting access to the
application. It also provides
dynamic routing to other
microservices hosting the
requested services

3 Registry Service

It was developed to facilitate
the registration of other
microservices as they specify
their host, port, node name,
and other specific metadata.

4 IoT PoC

It was designed to provide the
much-needed communication
between layer 1 (edge
platform) and layer 3
(blockchain) through the
messaging system. It was also
designed and developed to
facilitate the functional
requirements and interaction
within the architecture.

Layer 3: Hyperledger Fabric Component
Hyperledger Fabric 1.4.4 artifacts [56], i.e., the first long-time support version of Fabric

at the time of this implementation, was used for the implementation. This research had
already begun before the release of version 2.0. As earlier pointed out, in Section 3, several
components form the foundation of the Fabric Network. NodeJS SDK of Fabric was used to
interact with its modules. APIs were created, and a simple app was created on a dedicated
port—4003 which also serves as the Hyperledger network adapter.

All APIs have an endpoint pointing to this port. It is important to state that Fabric
is a containerized application, and Docker was used for its deployment. As such, using
the YAML files, the network requirements were specified, with its artifacts to generate
the network of two organizations. With this, a private network was created with each
organization having its CA in the form of the Fabric CA, which the MSP of each organization
uses to create identities.

Two organizations and two users per organization were specified (since we are using
two virtual devices from EdgeX) alongside the admin for each of them. A bash script that
starts the private network was created, and with the APIs designed, the private network
starts automatically and generates each organization’s artifacts. The Hyperledger Fabric
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network adapter facilitated this within the implementation. These artifacts include the
users, enabled by Fabric CA and MSP, the peers, ledgers, and channel.

A NodeJS application was created where all the dependencies of our network were
‘called’ and referenced accordingly. For example, the kafka-node, and its dependencies,
and all the REST endpoints. Node version 8.17.0 and npm version 6.14.5 are required for
this Fabric network to run. Ultimately, the Fabric network created can serve as a testbed for
any application to use while just making little modification where necessary, but the APIs
created will work in any scenario. Figure 4 shows the interaction between Fabric, Kafka,
and IoT POC microservices within this implementation.
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4.2. Implementation Approach

As earlier discussed in Section 3, by leveraging on the functionalities provided by
EdgeX, such as device-virtual-service, two virtual devices were utilized: KMC.BAC-
121036CE01, and JC-RR5.NAE9.ConfRoom.Padre.Island01. These devices were enabled
through EdgeX with IoT PoC microservice facilitated through data transfer objects (DTOs).
For these devices to be registered, the EdgeX Docker containers and their UI compo-
nents were started. Figure 5 shows our implementation approach between components
of our architecture.

In Figure 5, a load balancer, Ribbon [57], which gives the application control over the
collections of HTTP requests and TCP clients, was introduced. For simplicity, an overall
flowchart of all steps taken within the application is shown in Figure 6.

Figure 6 presents a detailed flowchart of what happened within the implementation
approach. From Figures 5 and 6, the API gateway microservice facilitates the login process.
At this stage, authentication and authorization are achieved by initiating the instance of
the application through the Swagger implemented with it. A username and password are
required to initiate this process, which provides authentication and authorization for the
solution. After this is achieved, the devices are registered on EdgeX, but before this, EdgeX
provides a UI that runs on port 4000 and requires registration by providing an email and
password. This provided a second level of security.
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Once devices are registered on EdgeX, through the topics on Kafka previously dis-
cussed, and with the Fabric endpoints (Hyperledger network adapter), the IoT PoC mi-
croservice made the device details from EdgeX available, and the APIs automatically
created an identity for the devices on Fabric users within each organization. Since this is a
test network developed for this implementation, it can be replaced at any time by changing
it in the orderer.yaml file.
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The IoT devices are uniquely identified on EdgeX as well as on Fabric. This is because
EdgeX used ObjectID while Fabric, through its CA, and MSP gave identities in the form
of certificates and secret keys. In addition, the devices are registered on users of each
organization as facilitated by the Fabric network adapter. This provides security across our
architecture and improves on the one provided by EdgeX and the one achieved through
the microservices.

The devices which are uniquely identified in these organizations create interactions
between their peers through the Fabric channel. This channel creates a data communication
path between the devices, which enforces privacy, as only the devices on this channel
can share data and be held accountable for this. Additionally, if a device shares data that
resulted in any action being taken by another device (actuation), this activity can be traced
back to the originating device. This accountability property enhanced by the immutability
feature of Hyperledger Fabric will offer non-repudiation of actions between the devices, as
the origin of data can be traced to each device.

Fabric internally used CouchDB for ledger storage (transactions and blocks), with
instances stored across each peer of the organizations. This storage on the ledger of each
peer provides consistent records across both organizations. As such, the content of each
ledger of the peers is the same. With this, decentralized data storage is provided within
the solution. For example, suppose a peer of an organization is attacked; in this case, the
other peers will still have a valid ledger. As a result of this, the whole network will be
safe from compromise because, before the content of a ledger on a peer can change, there
has to be an initiation of transaction with a consensus reached by all the peers within the
network. Furthermore, this decentralized data storage and data consistency provide data
auditability because the data stored, which is immutable, can be queried.

4.3. Results

In the previous section, the implementation approach was presented alongside the
details on how the connection was established across our architecture to address the chal-
lenges identified. Presented in this subsection are some results from our implementation.
Figure 7 shows the output of the device registered on EdgeX. After devices are registered
on EdgeX, a unique objectID is assigned. Fabric published the details of the device au-
tomatically registered on it to Kafka, and IoT PoC microservice consumes this and saves
it on MongoDB, which updates the device details on EdgeX. This step keeps the details
of the device’s operations updated on MongoDB. Figure 8 shows the output of devices
registration on both organizations of Fabric and presented in JSON format.
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Figure 8 shows a sample of device registration on Fabric. JC.RR5.NAE9.ConfRoom.Padre.Island
was registered on user btcii2 and btiic3 on Fabric organization 1 and 2, respectively, while device
KMC.BAC121036CE was also registered on user btcii4, and btcii5, respectively. In addition, Fauxton,
a web UI for CouchDB usually used in development to visualize the content of the database
on the ledger of the peers, was also enabled to access the secret key and certificate of users in
each organization.

Figure 9 shows a sample of the secret key and the certificates for admin and user of
organization 1 and that of the device associated with it. This provided adequate security to
the devices within the architecture since each device within the organization is uniquely
identified. Therefore, communication is only established upon verification of the credentials
of each user to which the devices are associated.
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5. Performance Testing

It is important to conduct performance testing to check the viability of the imple-
mented architecture. The application used microservices and Docker containers. First, the
microservices designed can be replicated on the registry service (discovery service) to give
our solution a fault tolerance feature. This also supports scalability. Kafka is also known to
scale within an application with a fault tolerance feature. Fabric is also trusted to provide
scalability within an application; this can be achieved by simply specifying the network
details while setting up its network artifacts.

From the implementation, some metrics were gathered based on the underlisted:

(1) The latency of our solution based on service calls through API gateway using Zipkin.
These metrics are necessary because all ‘http’ requests are routed through these
microservices.

(2) A graphical representation of the resource utilization of some samples of Docker
containers using cAdvisor. Considered here are few Docker containers that are used
to process the core data generated within the architecture.

(3) The Hyperledger Fabric’s transaction latency metrics which ultimately measures its
performance according to the Linux Foundation white paper on Hyperlerger Fabric
performance metrics [58].

Zipkin is used for monitoring Spring boot applications and for distributed tracing of
‘http’ requests while recording the timing or duration of when the request was granted. It
also helps with data required for monitoring latency within a modular solution. These data
are tied together into what is known as spans. It helps to trace both internal and external
API calls for service. A unique trace ID is used to correlate this request. Zipkin runs in the
background before the microservices are instantiated to measure the metrics adequately. It
provides a user interface that assisted with the capturing of the ‘http’ request. Table 4 shows
eight trace IDs, with two spans each, and their respective timing in milliseconds (ms).

Table 4. Resource call latency using Zipkin.

S/N Trace ID Total Spans Duration (ms)

1 660782e3d5eb0967 2 368.167, 256.161
2 3d57f8d327ce6727 2 13.266, 7.340
3 6870d10dc9ae9a2d 2 9.235, 5.634
4 3ff7e2c1066649b3 2 8.998, 4.662
5 12b91717e27a71b1 2 8.967, 5.259
6 17cc84d3936a7437 2 8.686, 4.665
7 53c9e24c6e457101 2 7.517, 3.593
8 d4a04fa94c34ba7c 2 6.920, 3.792

It is important to note that there is no record of data to form a basis for comparison
with our result, but we emphasize that the result presented is viable considering this
application as a cross-domain application.

Examined next is the performance of the Docker containers used within the application.
For instance, Hyperledger Fabric and EdgeX Foundry components are set up as Docker
containers. This implementation was implemented using a system with the following
configuration: Intel Core i7-3770 CPU @3.40 GHz, 16 GB RAM, and 64-bit Ubuntu 18.04.4
LTS operating system. Samples selected were a peer from one of the two organizations and
the edgeX-core-metadata, where most of the transactions occur in EdgeX. The metrics for
this performance evaluation is based on the undelisted:

(1) memory consumption;
(2) network throughput (Transfer—Tx, and Received—Rx (in bytes per second);
(3) transaction errors.
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To achieve this, ‘cAdvisor’ (Container Advisor), a tool by Google that examines a
container’s resources usage and performance, was used. The samples of metrics taken
using ‘cAdvisor’ are presented in histograms as seen in Figures 10 and 11.
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Figure 11. Resource usage of edgex-core-metadata.

Figure 10 show the metrics for peer0 of organization 2 of Fabric. This container
used 63.78 megabytes of memory (RAM). In terms of network throughput, 3000 bytes are
transmitted and received per second at peak, with no error rate recorded in the transaction.
The metrics obtained for peer1 of organization 1 at peak are as follows: 63.85 megabytes of
memory consumed, 3200 bytes per second of data were transmitted and received with no
data loss during transmission, which gives an error rate of zero.

The edge-core-metadata container from EdgeX (Figure 11) used as the edge computing
platform was also examined. At peak, 20.72 megabytes of memory was consumed, 80,000
and 120,000 bytes of data were transmitted and received, respectively, with no error in
transaction. For each of these containers, 0% of memory was consumed, and the CPU
usage obtained was also very low despite an adequate amount of transmission in bytes per
second taking place on the containers. No error was also recorded in the transmission of
these data. These show that our application can effectively run on systems with minimal
specifications.

Furthermore, to present Hyperlegder Fabric’s performance based on transaction la-
tency, we used the Hyperledger Caliper [59]. Hyperledger Caliper as a performance
benchmark framework allows users to test different blockchain solutions for performance
within a use case. At layer 3 of our architecture, the Fabric network adapter was developed
to enhance the functionality of Hyperledger Fabric by automatically creating its network
artifacts. For this implementation, two peers were created in each of the Fabric’s organiza-
tion that facilitates the automatic registration of devices registered on the Edge platform
(Layer 1). We captured the transaction latency, a network-wide view of the amount of time
taken for a transaction’s effect to be usable across the network using Hyperlerger Caliper.
This measurement includes when the device is registered on the edge to the point it is
automatically associated with the users created on each organization and established data
synchronization back to the edge, as facilitated by Layer 2 of the architecture.

Table 5 presents the summary of Fabric’s organizations, peers, users, and associated
devices used within our implementation, while Table 6 shows the longest commit time in
seconds across each of the peers of both Fabric’s organization for device registration and
data communication read latency.

Table 5. Summary of fabric’s artefact and associated devices.

Organizations Peers Users Associated Devices

Organization 1 Peer 0, Peer 1 Admin, btcii2, btcii4 JC.RR5.NAE9.ConfRoom.Padre.Island,
KMC.BAC121036CE

Organization 2 Peer 0, Peer 1 Admin, btcii3, btcii5 JC.RR5.NAE9.ConfRoom.Padre.Island,
KMC.BAC121036CE
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Table 6. Hyperledger Fabric Transaction Latency.

Organizations Peers
Device Registration

Commit Time
(Seconds)

Data
Communication

Read Latency
(Seconds)

Organization 1 Peer 0 7 18
Peer 1 7 18

Organization 2 Peer 0 7 18
Peer 1 7 18

In Table 6, the longest time taken for device registration and data communication/read
latency, as initiated by the peers (0,1) of both organizations and committed to the ledger,
are presented. It takes a total of 7 s for the devices to be issued with identities within
the Fabric organization and committed to the Peer’s ledger following the instantiation of
the application. This comes after the provision of the IoT devices on the Edge platform,
through the middleware (layer 2) and the Fabric network adapter.

In addition, it takes 18 s for data retrieval and communication back to the Edge
platform from the ledgers through the messaging system of layer 2. This latency is essential
to keep the Edge’s database updated on the IoT devices’ identities and aid synchronization
and data consistency. A value of 7 and 18 s, respectively, for device registration and
data communication read latencies for a multi-domain application indicate no blockchain
overhead. This is due to the adequate steps and approaches taken to implement this novel
architecture.

6. Conclusions and Future Work

Presented in this work is a three-layer architecture with unique features. A robust
edge computing platform, called EdgeX and Hyperledger Ledger Fabric, were adapted
and used within the architecture’s design, development, and implementation. In addition,
a Hyperledger Fabric network adapter was created that automatically produced the Fabric
network and facilitated the connection established through microservices and Kafka.

IoT device data communication was established across this multi-domain application
that addressed the challenges of edge computing in IoT platforms. This implementation
addresses issues of central data storage by providing multiple device data storage on Fabric
peers ledgers. Privacy was also achieved by creating a channel among Fabric organizations’
peers that keeps the data shared among the devices private. Since the data in the ledgers
are immutable, data auditability becomes possible with this application as it is easy to
know which device initiates a transaction committed to the ledger. Therefore, our approach
helps us to achieve non-repudiation of action among the devices because the origin of the
data can be traced.

For security, the API gateway and Config Server microservices provide a first-level
authentication and authorization, while second-level security is provided by EdgeX as
users must be created before devices are registered. Finally, the third level of security was
provided by Fabric CA and MSP, which assigned an enrolment, secret, public, and private
key to admin of the organizations, while certificates and secret keys are also assigned to
devices registered on Fabric users.

The registry microservice hosted on Eureka can replicate more microservices instances,
thereby providing fault tolerance and scalability for our application. In addition, this
work implemented a multi-domain platform as EdgeX Foundry and Hyperledger Fabric,
which is used in architecture for IoT solutions for the first time. With this architecture
implemented and tested in terms of its performance, we will further explore its potential in
our subsequent studies. Areas that will be explored include how the capabilities of the IoT
devices are maintained across the architecture, and the effectiveness of the security put in
place within the implementation of the architecture will be further evaluated.
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