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Abstract: Smart, pervasive devices have recently experienced accelerated technological development
in the fields of hardware, software, and wireless connections. The promotion of various kinds of
collaborative mobile computing requires an upgrade in network connectivity with wireless technolo-
gies, as well as enhanced peer-to-peer communication. Mobile computing also requires appropriate
scheduling methods to speed up the implementation and processing of various computing appli-
cations by better managing network resources. Scheduling techniques are relevant to the modern
architectural models that support the IoT paradigm, particularly smart collaborative mobile com-
puting architectures at the network periphery. In this regard, load-balancing techniques have also
become necessary to exploit all the available capabilities and thus the speed of implementation. How-
ever, since the problem of scheduling and load-balancing, which we addressed in this study, is known
to be NP-hard, the heuristic approach is well justified. We thus designed and validated a greedy
scheduling and load-balancing algorithm to improve the utilization of resources. We conducted a
comparison study with the longest cloudlet fact processing (LCFP), shortest cloudlet fact processing
(SCFP), and Min-Min heuristic algorithms. The choice of those three algorithms is based on the
efficiency and simplicity of their mechanisms, as reported in the literature, for allocating tasks to
devices. The simulation we conducted showed the superiority of our approach over those algorithms
with respect to the overall completion time criterion.

Keywords: IoT; scheduling; makespan; greedy algorithms; pervasive systems; LCFP; SCFP; Min-Min
algorithms

1. Introduction

Continual and accelerated innovation in communications and information technolo-
gies has led to an expansion of the modern Internet and its applications and extensions,
such as the Internet of things (IoT). The IoT continues to grow rapidly. It has become the
basis for the so-called Fourth Industrial Revolution and the digital transformation of busi-
ness and society [1]. It is an emerging paradigm aimed at providing appropriate and smart
systems of objects [2]. Making objects smart may be interpreted in two ways. The first
interpretation is about entrusting computing power to an object, making it autonomous
by allowing it to make its own choices. The second interpretation, for its part, consists of
allowing objects to communicate with the outside world and, if necessary, to communicate
with machines that can calculate and make decisions. These machines can be located in
cloud centers to limit their economic impact [3]. However, the proliferation of connected
objects generates a huge amount of data that is difficult for resource-limited IoT objects to
manage. In addition, the exchange and security of this data is a challenge when it is loaded
and uploaded between peripheral devices and cloud server centers. In this regard, artificial
intelligence (AI) can make a significant contribution to solving this problem, where it can
become, along with the IoT, an important achievement [4].
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The IoT supports a wide range of distributed systems that are interconnected with
various devices such as servers, database centers, and computers. This is in addition to
more powerful and compact portable devices such as smart cell phones and personal
digital assistants (PDA) [5]. It is obvious to researchers and specialists that the demand for
these devices has increased steadily. Unfortunately, technological progress has not always
followed this tendency. Therefore, scheduling and load balancing techniques [6–9] have
been developed to close this technological gap.

The scheduling process is concerned with the allocation of tasks to devices over time,
whatever the environment may be (deterministic, stochastic, or online), with respect to a
given criterion. For the sake of clarity, let us recall the definitions of these environments [10]:

1. Deterministic scheduling: the data defining the problem are known in advance;
2. Stochastic scheduling: all or most of the parameters that describe the problem are

random variables over known distributions;
3. Online scheduling: all or some of the parameters describing the model are known

only at the time the decision has been made.

Improving the scheduling process requires a better understanding of the environment
under study and depends on whether it is static (fixed and non-modifiable scheduling)
or dynamic (re-evaluated online to respond to changes). Likewise, the environment
treatment criteria on a local or distributed level can be classified into different types:
(1) hard constraints (the constraints must be strictly respected), (2) soft constraints (there
is a flexibility with respect to the constraints), (3) preemptive (tasks may be interrupted
before completion), or (4) non-preemptive (tasks are executed without interruption until
completion) [11–13].

Scheduling problems occur in various real-world applications, such as industrial
production, hoist scheduling, airport control towers, assignment of processes on processors,
and data transfer services. Scheduling problems were originally studied in the industrial
sector, such as the manufacture and assembly of large generators, and this led to the intro-
duction of critical path analysis (CPA) and the critical path method (CPM) [14,15]. Recently,
scheduling problems has emerged as an active field of research in the IoT community [16]
and in mobile collaborative computing models via architectural models of cloud, fog,
and edge computing [6,17]. As these emerging architectural models of computing are
distributed systems, we focused our study on scheduling parallel machine models.

The development of mobile devices and communication technologies has contributed
to their growing utilization in collaborative applications that are complex and resource-
intensive [18–20]. This has led to innovative designs in mobile collaborative computing
and interaction techniques between devices. Among the most important closely related
techniques are those for the scheduling and load balancing of tasks. Indeed, the scheduling
problem consists of organizing the task execution order on ready devices, while load bal-
ancing aims to balance the tasks between devices [11]. As pointed out in Mishra et al. [21],
the load balancing task determines where certain applications should be executed; it is
used for distributing workloads across computing resources.

In this paper, we focus on establishing collaborative mobile systems based on modern
technologies such as Pycom’s LOPY4 and direct radio communication by devices to main-
tain wireless connectivity in different environments, even in the harshest ones [22,23]. In
the present study, we develop a new scheduling algorithm based on a greedy approach,
which is well suited to these environments in terms of speed, quality, and ease of decision-
making at every step [24–26]. This approach enables small mobile devices to process tasks
that match their capabilities where they have resource constraints in the IoT paradigm.
Therefore, we adopted a strategy that consists of dividing the task and device groups
into corresponding subgroups in terms of task size and device capacity. This algorithm
aims to ensure load balancing through a technique that chooses among these correspond-
ing subgroups the devices with the longest execution time first to allocate them to the
appropriate tasks.
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We conducted an experimental study (simulation) to compare, with respect to criteria
based on the overall completion times, three existing solutions with our approach to
improve the scheduling and load balancing techniques on the available devices of these
systems. Let us note that the choice of these three algorithms was mainly based on
the simplicity, efficiency, and speed, as well as the mechanism for allocating devices to
tasks [27,28]. We believe that the present study provides a path to further research on the
development and efficient use of mobile and pervasive computing devices in crucial and
urgent situations, such as highly intensive communications that require high bandwidth,
smart healthcare, smart cities, harsh cases, and smart cars.

This paper is organized as follows. Section 2 presents the related works. Section 3
introduces greedy algorithms as a solution in our approach. Section 4 describes our
contribution to scheduling and load balancing in peripheral autonomous mobile systems.
Through an intensive experimental study, Section 5 validates our approach, then analyzes
and undertakes a comparison between our solution and three other algorithms. Finally,
Section 6 presents our concluding remarks and perspectives.

2. Related Works

In this section, we present a review of the literature on scheduling techniques applied
in the IoT field. The algorithms presented in [11] show that the tendencies in this area are
evolving more toward approximate (near-optimal) solutions that are generated within a
reasonable time. The main reason for these trends is that most scheduling problems are
difficult to solve from the computational point of view [29].

Le et al. [30] pointed out that source code optimization is an emerging technique
used to reduce energy consumption in parallel with increasing the storage and power
capacity of mobile devices. This improvement may be achieved by partitioning tasks into
smaller tasks.

The classification of task scheduling algorithms differs depending on the viewpoints
of the authors. The algorithms fall into six categories [31], which are presented in Table 1.

Table 1. Classification of task scheduling algorithms.

Categories of Scheduling Algorithms Description

Immediate scheduling Direct scheduling of new tasks upon their arrival on VMs.

Batch scheduling of tasks The tasks are pregrouped into batches before they are sent.

Static scheduling The strategies of scheduling within this environment are usually based on information
known beforehand about the system’s global state.

Dynamic scheduling Does not require current information about the global state of the system. In dynamic
scheduling, tasks are distributed in terms of the capacity of the available VMs.

Preemptive scheduling Portions of a task executed on a resource are resumed later on the same or
another resource.

Non-preemptive scheduling Requires processing the entire task without interruption until its completion on the
same resource.

In cloud computing, there are three levels suitable for the task scheduling system [31]:

1. The first level is the set of tasks (cloudlets) to be executed;
2. The second level is the process of appropriately allocating resources to tasks to

optimize the use of these resources with respect to the makespan or overall comple-
tion times;

3. The third level is the use of a set of virtual machines (VMs) to perform tasks.

In Sharma et al. [32], it is stated that there are several task scheduling techniques
available for scheduling tasks in a cloud environment under the following categories:

1. Heuristic techniques can be divided into two subcategories. The first one is a tra-
ditional technique for scheduling various tasks, such as FCFS, round robin (RR),
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and SJF. This approach is simple and imperative, but it always approaches the lo-
cal optima [33]. The second category uses a random sample to find the optimal or
near-optimal solution. Some of its techniques are Min-Min, Max-Min, improved
Max-Min [34], and Min-Min based on priorities. These techniques generate better
results than traditional approaches [35];

2. Metaheuristic algorithms generally have functionalities that are like aspects of bio-
logical science. They are classified into three categories: (1) metaheuristics, such as
genetic and transgenic algorithms, based on gene transfer; (2) metaheuristics based
on insect behaviors and their interactions, such as ant colony optimization, the firefly
algorithm, bee marriage optimization algorithm, and bee colony algorithm; and (3)
metaheuristics based on aspects of biological life, such as the tabu search algorithm,
simulated annealing algorithm, optimization algorithm for particle swarms, and
artificial immune system [36].

The main difference between heuristic and metaheuristic is that the former is problem-
specific and generates, step by step, only one solution, while the latter is problem-independent
and generates several solutions [32].

Recently, improvements made to scheduling algorithms in cloud computing were
discussed and investigated extensively in the literature (see, for example, Sharma et al. [32]).
The analysis of scheduling algorithms is summarized in Scheme 1.IoT 2021, 2, FOR PEER REVIEW 5 
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The need for the fair sharing of resources in wireless networks increases with both the
increased demand for their use and the cost of their equipment as it becomes difficult to
install more devices (Sherin et al. [47]). Therefore, the scheduling process becomes the most
important factor for improving wireless resource management. Multiple users of the system
can access their shared resources efficiently by this scheduling process. These resources are
mostly limited when compared with the increasing number of users. Scheduling algorithms
offer equitable user access and are essential for ensuring the provision of quality of service
(QoS). Let us observe that researchers and practitioners are becoming more concerned
with packet scheduling algorithms, which are highly essential for QoS. The design of
scheduling algorithms has become more complex due to several factors, including the
dynamism of mobile ad hoc networks (MANETs) and vehicular ad hoc networks (VANETs)
with frequent topology changes and breakdowns in connectivity. A MANET has many
applications, including disaster management, emergency relief, vehicular ad hoc network
services (VANETs), war field communications, mobile teleconferencing, and electronic
payments. QoS is essential in these real-time applications due to the limited resources and
dynamic topology. QoS indicates the service performance level provided by the network
to the end user. Depending on the application, it can be based on bandwidth, delay, packet
loss, throughput, overhead, jitter, and so on.

One of the key features of ad hoc networks is their capability of operating without a
standard infrastructure, and they can be deployed easily for various applications. However,
it is difficult to provide QoS for all packets because of the dynamic nature of nodes [48].
Generally, scheduling algorithms manage changes in queuing dynamics and indicate the
packets to be submitted from the queue. To ensure the QoS parameters, these algorithms
are determined based on network requirements [49]. There are two major problems in
multi-hop wireless networks: the packet (or package of information, as it is known in the
jargon of computer networks [48]) and the channel scheduling. In this area, scheduling
algorithms, generally considered to be non-preemptive, are based on analysis of the QoS
parameters, such as the throughput rate, fairness in the network, bounded delay, and jitter.
The traditional scheduling approach, which takes advantage of the priority lists, is mainly
used in mobile ad hoc networks.

Wireless scheduling algorithms in mobile ad hoc networks are classified according to
their application domains into two general classes: packet scheduling and channel-aware
scheduling [47], as presented in Tables 2 and 3 and Scheme 2.

Table 2. Class of channel-aware scheduling algorithms in mobile ad hoc networks.

Class Algorithm Description

CaSMA

CaSMA concentrates on the awareness and
coordination of the end-to-end channel
condition to reduce the accumulation of
packets in the network and avoid congestion
by increasing the number of completely
served packets.

Channel-aware
scheduling

Channel-aware
AOMDV

It uses a preemptive handoff technique. In
addition, it uses the non-fade duration to
select the path during the route. Each node
contains a table, which gives the information
about the signal strength of the previously
received packet.

PALM

Power-aware link maintenance is based on
an ad hoc on-demand distance vector routing
algorithm and is responsible for power
control with route maintenance. It
establishes the routing mechanism in
MANETs (Mobile ad hoc networks).
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Table 3. Class of techniques for packet scheduling algorithms in mobile ad hoc networks.

Class Subclass Algorithm Description

Packet scheduling Existing techniques

FIFO

In first-in, first-out, all packets are inserted into
a single queue and processed in the order of
their arrival. The delay is directly proportional
to the length of the queue.

Priority queuing

Packets are categorized and then grouped into
queues with different priorities. Whereas
high-priority packets are first processed,
low-priority packets are likely to be dropped.

WFQ

In the weighted fair queuing, packets are
scheduled with bandwidth requirements and
placed in the respective queues. Packets with a
smaller end time are chosen as the next packet
for transmission.

CBWFQ

Class-based weighted fair queuing extends the
WFQ functionality and supports user-defined
traffic classes. CBWFQ services the class queue
fairly based on the weight assigned to the
queued packets.

WHS

Weighted-hop scheduling gives high priority
to data packets with only a few remaining
hops to pass. A weighted round robin
scheduler is used instead of static priority to
give a chance to all service classes.

WDS

The weighted distance scheduling algorithm
considers the physical distance using a GPSR,
where each data packet contains the
destination address.

RR
The round robin scheduling algorithm
preserves the per-flow queues. It provides
equal service opportunity among flows.

Greedy scheduling
Each node redirects its own packet before
forwarding the other nodes’ packets, which are
processed based on FIFO scheduling.

LLQ

Low-latency queuing has a single strict priority
queue for placing separate traffic classes in.
This queue allows traffic-sensitive delay
treatment before processing other queues. All
other queues are regulated by the (percentage
of) bandwidth.
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3. Greedy Approach

Greedy algorithms are a problem-solving paradigm in which local optimal choices are
made at every step, and they are expected to yield an optimal overall solution. However, in
many problems, they only produce near-optimal solutions [50]. Let us recall that the greedy
approach is well justified for NP-hard problems and it is suited as a solving approach for
real problems. However, it is worth noting that for problems with an optimal substructure,
greedy algorithms are able to find globally optimal solutions [51].

For the objective of minimizing an unloading cost function, Mazouzi et al. [52] studied
discharging policies to choose the tasks that must be discharged before selecting the
assigned cloudlet, depending on the network and system resources. The unloading cost
is declared to be a combination of task execution time and energy consumption. This
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problem is represented with mixed binary programming. As this problem is NP-hard, a
distributed linear relaxation-based heuristic approach is proposed. Likewise, a greedy
heuristic algorithm is proposed to solve the subproblems, and it calculates the best cloudlet
selection and bandwidth allocation based on the task unloading costs.

Ayanzadeh et al. [51] proposed a novel hybrid approach, the quantum-assisted greedy
algorithm (QAGA), to improve the performance of physical quantum annealers in the
process of finding the global minimum in an Ising Hamiltonian model. Ising models are
widely used in many areas of science.They routinely apply a Hamiltonian equation to,
among other subjects, alloy thermodynamics and the thermal properties of solids [53]. The
QAGA algorithm leverages the quantum annealers to better select candidates at each stage
of the greedy algorithm. In fact, it consists of using a quantum annealer at each step to
give rise to samples of the ground state of the problem. These samples are used to estimate
the probability distribution of the problem variables. Then, it fixes these variables with
insignificant uncertainties to move to the next step, where quantum annealing will solve a
smaller problem using scattered couplings [51]. In their experimental study, the authors
used a D-Wave 2000Q quantum computer with 2000 qubits and new control features to
solve larger problems. The results showed that the QAGA approach could find samples
with remarkably lower energy values compared to the better-known improvements in the
field of quantum annealing.

In their study, Durmus et al. [54] aimed to support the assumption that the classic
algorithms generate optimal solutions while the greedy heuristic algorithms generate
proximate solutions. They argued that not only do the dimensions of problems increase,
but the dimensions and number of constraints in packet programs are also limited, so it is
difficult for the classic algorithms to provide the appropriate results. However, regardless
of the dimensions or the number of constraints, the greedy approach generates appropriate
results. As shown in the literature, both the former and the newer versions, such as the
ones proposed by Akçay et al. [55] and Zhou et al. [56], work efficiently. Indeed, greedy
algorithms are more efficient in comparison with other complex algorithms; they produce
solutions to everyday problems within a reasonable time. Durmus et al. [54] applied greedy
and some classical algorithms to the problems of integer linear programming and then
compared the differences and similarities of the obtained results. Throughout this work,
they classified the most-used algorithms in the literature, as displayed in Table 4, to which
we added other greedy approaches and algorithms [51,57].

Table 4. Algorithm classifications and descriptions.

Algorithm Category Algorithm Name Category Description

Classical algorithms (exact solution
algorithms)

Rounding and graphical method, cutting
plane, branch-bound, Balas, Lagrange,
branch and cut, Benders decomposition
method, and all-integer integer
programming.

These algorithms are known in the
literature as exact solution algorithms.
Their drawback is often their high
computational cost. However, they are
effective for small and medium instances.
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Table 4. Cont.

Algorithm Category Algorithm Name Category Description

Metaheuristic algorithms

Steepest descent, Dantzig and Ramser’s
method, and tabu search, genetic,
simulated annealing, ant colony, artificial
bee colony, particle swarm optimization,
and artificial neural networks.

These methods provide solutions close to
the optimal one. They can solve a large
variety of problems. They are
conceptually simple. They can be flexed
and adapted according to the problem
under study. For example, in genetic
algorithms, an analogy is developed
between an individual in a population
and a solution of a problem in the global
solution space. In addition, the simulated
annealing method is inspired by the
process used in metallurgy to cool down
steel. Likewise, particle swarm
optimization is a cooperative,
population-based global search swarm
intelligent metaheuristic and
population-based stochastic optimization
technique, which is used in solving
multimodal continuous optimization
problems. Moreover, the tabu search
algorithm selects a new search movement
in such a way that temporally forbids the
evaluation of previous solutions [11].

Greedy algorithms

Greedy algorithms are approaches or
techniques in which we consider only
one choice at each stage. Their strategy is
to seek the best for the current state. It is
known in the literature that they may
produce optimal global solutions. We
may cite the Dijkstra, Kruskal, Prim and
Huffman algorithms [58].

They are the most-used algorithms in
everyday life. They tackle problems with
a given objective function; their strategy
is to select each stage variable that has the
most benefit. They are quite easy to apply
and implement, the computational costs
are quite low, and they can be applied to
all kinds of problems.

4. Scheduling Algorithms in Peripheral Autonomous Mobile and Pervasive Systems

The scheduling problems we discuss in this paper generally occur in the context of
collaborative pervasive architectures within mobile and intelligent distributed systems. We
focus our study particularly on the emerging architectures and technologies introduced in
recent years, especially at the periphery of autonomous mobile systems.

4.1. Autonomous Mobile and Pervasive Architecture at the Periphery

The problem with these architectures is how to make autonomous smart mobile
systems more efficient in terms of completing tasks quickly while respecting their limita-
tions (energy consumption, data storage, computing, connection preservation, and mutual
charging between terminals, cloud centers, or other structures). The present study aims
to efficiently address these issues in terms of partitioning, scheduling, and load balanc-
ing. This requires relying solely on these devices to accomplish the required tasks. This
should consider their modest capabilities for innovation, on the one hand, in the system
architecture in terms of equipment and maintaining connectivity and, on the other hand,
in improving the scheduling and load balancing processes [59]. The scheduling problem
we are addressing in this study consists in transferring as many tasks as possible to be
managed on the appropriate devices of a peripheral autonomous mobile system. This
problem is described as follows.

Assume there are m available devices di, i = 1, . . . , m and n tasks tj, j = 1, . . . , n.
With no priority, the n tasks are processed by the m devices according to their due dates
ddtj, j = 1, . . . , n. The devices are also assigned to the tasks based on the device’s ability to
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accomplish the task. This is done when the device free execution time is greater than the
task execution time, as illustrated by Table 5.

Table 5. Parameters of devices and tasks.

Task t1 t2 t3. t4 t5 - - - tn

ddtj 4 2 6 8 10 - - - 5

f dtj. 5 8 3 11 9 - - - 13

Device d1 d2 d3 d4 d5 - - - dm

f tdi 3 5 14 12 15 - - - 9

As usual, we assume that no device may process more than one task at a time, and no
task is processed by more than one machine at a time. We seek an assignment of these tasks
to these devices mainly to minimize the overall completion time. This kind of problem is
known in scheduling theory as the parallel machine problem. This problem is known to
be NP-hard with respect to most of the scheduling criteria, including the criterion we are
addressing [29].

4.2. Scheduling Algorithms Based on a Greedy Approach

By comparing different classes of scheduling algorithms, we concluded that greedy
algorithms are appropriate for performing tasks on mobile systems within the autonomous
mobile architecture at the network’s periphery or edges. The reason is that these systems
are compatible with greedy algorithms, which are suited for use as a selection algorithm
to prioritize options in a search in simple problems. They are generally used in situations
where the number of possibilities for improvement is too large to be considered in a
meaningful way within a reasonable time [10]. Consequently, to remedy the problems of
these networks, it is necessary to design an appropriate algorithm inspired by these greedy
algorithms, which require reasonable processing time. For this purpose, we designed a
scheduling algorithm based on the greedy approach, composed of one choice at each stage.
This approach seems to be appropriate for avoiding complex calculations. Our algorithm
was inspired by those like FCFS [46], the expected time to compute (ETC) matrix, minimum
execution time (MET), minimum completion time (MCT) [60], Min-Min algorithm for task
scheduling [33], longest cloudlet fastest processing (LCFP), and shortest cloudlet fastest
processing (SCFP), proposed by Sindhu et al. [37].

To evaluate the performance of our algorithm, we selected three algorithms for com-
parison in an experimental study with our own, with respect to the quality of the generated
solutions, simplicity of calculation, and speed of execution. These algorithms were chosen
to cover the different mechanisms for allocating devices to tasks. They are described
as follows:

1. The Min-Min algorithm selects the smaller tasks, with respect to processing time, to
be executed first on the appropriate devices [61];

2. The LCFP algorithm chooses the longest cloudlet or task to be executed on the fastest
processing element;

3. The SCFP algorithm directs the shortest cloudlet or tasks to the fastest processing ele-
ment.

The approach we developed to solve the problem described above consists of the
following steps: (1) problem modeling, (2) describing the greedy algorithm, and (3) the
operating mechanism for solving the problem.

Before closing this subsection, let us say a word on the time complexity of the three
algorithms. Each of these algorithms is dominated by the sorting procedure with respect
to either the set of tasks or speed of the devices. However, the assignment of the tasks
to the devices can be implemented in O(nm). Therefore, the time complexity of a sorting
procedure is O(nm + max(m log m, n log n).
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4.2.1. Problem Modeling

Our approach consists of several steps. The first step begins with breaking down large
tasks into tasks based on the device’s capabilities. Likewise, based on a criterion for the
number of instructions, in the case of applications, and a criterion for size in the case of
data. Then, the second step groups and classifies them as well as the network devices
into three categories: large, medium, and small. In the third step, the tasks are classified
into three categories—large, medium, and small—in such a way that the sizes of the tasks
in a category are proportional to the capacities of the devices of the analogous category
(Figure 1). These capacities are estimated based on a device score calculation. The most
important aspect of a device’s capacity is that it has sufficient execution time to accomplish
the task assigned to it.
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Figure 1. Grouping of devices with tasks based on the device’s capabilities.

The score for each device d is determined as a function of the battery energy (ValBat-
tery), storage (ValStok), bandwidth (ValBandwidth), RAM (ValRam), and CPU (ValCPU).
To each of these factors is assigned a constant as a percentage value, depending on its
importance for device effectiveness. The score is calculated as follows:

ValScore = ValBattery ∗ PrcBattery + ValStok ∗ PrcStoke
+ValBandwidth ∗ PrcBandwidth + ValRam ∗ PrcRam
+ValCPU ∗ PrcCPU

This formula is implemented as in Algorithm 1: CalculatingScores, which is called
within Algorithm 4: SchedulingThroughAnalogousSubgroups. It takes a device d as a
parameter and obtains the capacity values of its factors previously mentioned to return its
score value (ValScore).

The variables (criteria) used in our algorithms (Algorithms 1–4) are described in
Table 6.
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Algorithm 1 CalculatingScores (d)

Begin
get factor capacity values of d;
ValScore = ValBattery ∗ PrcBattery + ValStok ∗ PrcStoke + ValBandwidth ∗ PrcBandwidth +
ValRam ∗ PrcRam + ValCPU ∗ PrcCPU;
return ValScore;
End

Table 6. The variables and their description.

Variable Explanation

ValBattery Battery energy

ValStok Storage capacity

ValBandwidth Bandwidth

ValRam RAM capacity

ValCPU CPU capacity

ValScore Score Value

TaskTime Task execution time

DeviceTime Available device execution time

Ejaz et al. [62] formally defined the component execution time in terms of the processor
speed, average number of instructions in the component, file size, number of processes
running simultaneously on the mobile device, propagation delay, and transmission delay.

Based on [62], we supposed that the available device execution time would be propor-
tional to its score as it depends on the same factors: the bandwidth and the capacities of the
battery, storage or warehousing, and computing (RAM and CPU speed). This enabled us
to estimate the execution time of a task as well as the available execution time of a device.
Thus, we propose Algorithm: DeviceHasExecutionTime for the function that checks if this
device has enough time to perform this task for use in our greedy Algorithm 4: Schedul-
ingThroughAnalogousSubgroups. Algorithm 2 uses the following parameters: TaskTime
(task rpocessing time), DeviceTime (available device execution time), and a constant β
(0.85 ≤ β ≤ 0.90), used to ensure that the device’s ready execution time is sufficiently larger
than the task processing time. It then returns a Boolean value B that indicates whether the
machine has sufficient time to process the task in a non-preemptive mode.

Algorithm 2 DeviceHasExecutionTime (TaskTime, DeviceTime)

Begin
Boolean B = False;
Double β such that 0.85 ≤ β ≤ 0.92;
If TaskTime ≤ β*DeviceTime
B = True;
End if
Return B;

End

4.2.2. Proposed Greedy Algorithm

We propose a new approach to map tasks to devices such as laptops, smartphones,
tablets, and similar machines, based on their categories and execution times. The approach
we propose consists of partitioning each of the groups of tasks and devices into three
subgroups and then sorting them in descending order, according to the processing times
and device available execution time: LT (longest tasks), MT (medium tasks), ST (shortest
tasks), LD (large devices), MD (medium devices), and SD (small devices). The next
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phase maps tasks from their subgroup to the appropriate devices in the subgroup of the
same category and, if necessary, to other subgroups of devices having greater capabilities.
Therefore, the tasks of the LT subgroup are mapped to the devices of the LD device
subgroup. The MT subgroup tasks are then assigned to MD subgroup devices and, if
required, to LD subgroup devices. The ST subgroup tasks are also mapped to the SD
subgroup of devices and, if necessary, to MD and then LD device subgroups, as illustrated
in (Figure 2).
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Figure 2. Mapping tasks to appropriate devices.

Using these group patterns, we aimed to initiate and direct parallel processes of
assigned devices to tasks in order to reduce the task completion times. We proceeded by
restricting the search to the subgroup of devices that was similar to the subgroup of tasks
or to larger subgroups of devices. Due to our prior classification, smaller sets of devices
did not contain the appropriate devices. As previously mentioned, three parallel processes
could be launched. The first was from the LT subgroup to the LD subgroup, but only if
the devices in the MD and SD subgroups had no available execution time to perform LT
tasks in a non-preemptive mode. Likewise, a second process could be started from the MT
subgroup to the MD and LD subgroups. In parallel, a third process could go from the ST
subgroup to the SD, MD, and LD subgroups.

The next phase, after the partitioning and the generation of these subgroups, was to
proceed through the assignment of the devices to the tasks via Algorithm 4: Scheduling
ThroughAnalogousSubgroups.

We structured this algorithm in three parts, which could be executed in parallel with
the aim of reducing the overall completion time of the tasks and thus save the device’s
energy. Many techniques, such as multithread, message passing interface (MPI), or ExaMPI,
were used in parallel [63–65]. All the three parts were involved in allocating devices to
subtasks from their similar groups at the same time viz. Part I from the large group of
subtasks LT to the large group of devices LD, Part II from the medium group of subtasks
MT to the medium group MD, and if necessary, to the large group of the devices LD, and
Part III from the small group of subtasks ST to the small group SD, and then, as needed,
to the MD and LD groups of devices. In addition, we performed load balancing on the
devices by updating their information and sorting them again in descending order by the
available execution time of the devices.
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We also facilitated the understanding and effective use of this algorithm, as mentioned
above, through the following algorithms, which will be called by the main algorithm:

• Algorithm 1: CalculatingScores;
• Algorithm 2: DeviceHasExecutionTime;
• Algorithm 3: AllocatingDeviceToTask.

They act as follows. Algorithm 1 calculates the score of a device that would be
proportional to its available runtime. This time will be compared to the time of Algorithm 2
to complete a subtask and check whether it is sufficient to execute it. If so, Algorithm 3 will
allocate this device to this task.

Algorithm 3 takes a subset of devices and a task as parameters, and it calls Algorithm 2
to check whether the device in this subset has enough time to perform the corresponding
task. When such a device is found, it is assigned to the task.

Therefore, the ready execution time of the device is reduced by the execution time of
the task. Next, the SubGroupDevice device subgroup is sorted to perform load balancing.

Algorithm 3 AllocatingDeviceToTask (task, SubGroupDevice)

Boolean B = false;
Double Dim, DeviceTime, TaskExecutionTime;
Begin
Dim←length (SubGroupDevice);

For i←0 to Dim-1 Do
Get DeviceTime of devicei;
Get TaskExecutionTime of task;
If DeviceHasExecutionTime (task, devicei) == True
Assign devicei to task;
B = True;
DeviceTime = DeviceTime – TaskExecutionTime;
Set DeviceTime to devicei;
Sort SubGroupDevice;
End If
End For
Return B;

End

Algorithm 4 works, as is explained above, on the six sorted subgroups already gener-
ated (LT, MT, and ST and LD, MD, and SD) to produce a plan for allocating the devices of
those subgroups to their tasks while ensuring true load balancing.

4.2.3. Operating Mechanism

Our greedy scheduling algorithm is designed to build the subgroups, as described in
Algorithm 4. The operating mechanism is carried out by launching a search from a task
subgroup in a similar subgroup of devices and the larger one, if needed, to allocate the
appropriate devices to the tasks. It is based on the technique of parallelism, considering
the number of processors and kernels of the devices in addition to their load-balancing
factor (as illustrated in Figure 3). The score of a device is used as a factor to determine
the availability of execution time, which is needed to accomplish specific tasks, as shown
in Algorithm 2. This score represents the sum of the percentage of battery usage and
the capacity of storage, computing, and connectivity (or bandwidth), as illustrated in
Algorithm 1. The mechanism we used to map tasks into the appropriate devices in similar
subgroups reduced the completion times. This improves the system performance of mobile
devices as it reduces the limited energy consumption of this system’s resources.
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Algorithm 4 SchedulingThroughAnalogousSubgroups

Integer isdone = 0, lg, j;
String task;
CalculatingScores (LD), CalculatingScores (MD), CalculatingScores (SD);
while isdone < 3

Part I while LT 6= Ø Go
lg←length (LT);
For j == 0, j < lg Do

If AllocatingDeviceToTask
(

taskj, LD
)
== True

Remove taskj from LT;
End If

End For
If LT == Ø

isdone++;
End If

End While
Part II while MT 6= Ø Go

lg←length (MT);
For j == 0, j < lg Do

If AllocatingDeviceToTask
(

taskj, MD
)
== True

Remove taskj from MT;
Else

If AllocatingDeviceToTask
(

taskj, LD
)
== True

Remove taskj from MT;
End If

End For
If MT == Ø

isdone++;
End If

End While
Part III while ST 6= Ø Go

lg←length (ST);
For j == 0, j < lg Do

If AllocatingDeviceToTask
(

taskj. , SD
)
== True

Remove taskj from ST;
Else

If AllocatingDeviceToTask
(

taskj, MD
)
== True

Remove taskj from ST;
Else

If AllocatingDeviceToTask
(

taskj, LD
)
== True

Remove taskj from ST;
End If

End If
End For
If ST == Ø

isdone++;
End If

End While
End While
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We close this section by mentioning the time complexity of our algorithm. To divide
the tasks into the three classes, we needed to sort the tasks. This step could be done in O(n
log n). The same argument goes for the three groups of devices with respect to their capacity
scores. This step could be done in O(m). The rest of the algorithm (i.e., the assignment
of those groups of tasks to the corresponding group of devices) could be implemented in
O(nm). Therefore, the overall time complexity of our algorithm was O(nm + n log n).

5. Simulation

We present in this section the results of a simulation study we conducted to compare
the performance of Algorithm 4, as described above, with LCFP, SCFP, and Min-Min. In
these algorithms, a variety of factors and their proper values are considered, such as the
processing time, bandwidth, number of tasks, number of devices, sending and receiving
tasks, waiting times in the queues of the devices, and capacity of each device.

Note that the simulation did not consider some factors in mobile systems such as
device communication, bandwidth, the sending and receiving of tasks through networks,
and their waiting time in the queues of the devices.

Even though we used a single computer in this experimental study instead of several
devices to process all the tasks, we accurately calculated the values of the estimated factors
of algorithm performance. We compared and analyzed the four algorithms based on the
following criteria:

1. The overall completion time, known as the makespan M (M = max(Ci : i = 1, . . . , m),
where Ci denotes the completion time of device i;

2. The standard deviation SD (SD =

√
1
m

m
∑

i=1
(Ci −M)2);
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3. The absolute difference AD between the maximum completion time M
(M = max(Ci : i = 1, . . . , m)) and the minimum completion time
L (L = min(Ci : i = 1, . . . , m)) (i.e., AD = |M-L|).

We then computed the percentage for the number of times that each algorithm pro-
duced the minimum values of these factors (makespan, SD, and AD). The value of the
makespan indicates the time at which the entire set of tasks is completed, thus representing
how efficiently the devices are used. The value AD represents the range of the completion
times of the devices, thus representing how well-balanced the generated solution is. The
standard deviation expresses the dispersion of the completion times of the devices around
the makespan. A low value of standard deviation indicates that the completion times tend
to be close to the value of the makespan, which is to say that the schedule is well-balanced.

The experimental study we conducted used the WampServer web platform, an SQL
server, and the PHP programming language to implement and validate the proposed
algorithms. It was implemented on a laptop with the following characteristics: Intel®

Core™ i7 processor, x64-based processor, Windows 10 Pro 64-bit OS, 2.3 GHz CPU, and
16 GB of RAM. Figure 4 presents the graphical interface for the simulation.
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To ensure the reliability of our method, it is necessary to mention the external factors
that might have affected the tested algorithms. Among those factors, we may mention the
computer self-configuration resources in execution times. Thus, they influenced the operat-
ing system in terms of scheduling their execution in conjunction with these algorithms. As
these factors operate automatically while the algorithms are executed, they affect the length
of the processing time. Therefore, considering these factors, in terms of the impacts they
may have had on the implementation of the algorithms, enabled us to verify and confirm
the credence of the results.

For each group of m devices (m = 60, 40, 30, 20, 10, 5), we randomly generated
from [11,24] the estimated available time values for each device. Then, for each group of
tasks (n = 200, 100, 80, 60, 40, 20, 10), we generated 100 instances, for which the processing
times were randomly drawn from [11,53] and on which the four algorithms were executed.

For each instance, we compared the makespan values of the four algorithms. We
increased by one the score of the algorithm with the minimum makespan. If two algorithms
had the same minimum makespan, we compared their standard deviations and increased
by one the score of the algorithm with the minimum standard deviation. If they again
produced the same minimum standard deviations, we compared their absolute difference
and increased by one the score of the algorithm with the minimum value. If they still
had the same absolute difference, we increased by one the score of the algorithm with
the minimum score. The best algorithm was the one that had the highest score over the
100 instances.

In the following, we first present a comparison of the minimum makespan, the
standard deviation, and the absolute difference with respect to the completion times of the
four algorithms (LCFP, SCFP, Min-Min, and Algorithm 4). Next, we also present, for the
same instances, the results with respect to the running times of these algorithms.

Displayed in Figure 5 are the different tables that summarize the results of the experi-
mental study which satisfied the criteria (completion time M, standard deviation SD, and
absolute difference AD).
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Figure 5 illustrates the performance of the four algorithms for various number of
devices and tasks. Whereas, Figure 6 summarizes the average running times of these
four algorithms.
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Regarding the scheduling solution, our algorithm succeeded in reducing the comple-
tion time of the tasks. At the same time, it improved the device load balancing by preparing
devices with larger execution times to be chosen first by the algorithm and accomplish the
appropriate tasks. Figure 7 shows our algorithm performance compared with the other
algorithms for load balancing in the experimental results, with respect to 10 devices and
20, 70, 100, and 200 tasks. For the correct interpretation of these graphic lines in Figure 7,
we proceeded from the fact that the ideal line representing the best performance is the
horizontal line crossing them in the middle. Therefore, the best algorithm is the one with
the closest graphic line to that ideal line, illustrated by our algorithm for most of the cases.
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The results in these above tables clearly show the superiority of our algorithm. Indeed,
our algorithm became more advantageous whenever the difference between the number of
tasks and the number of devices became larger (i.e., in cases where the number of tasks
is greater than the number of devices). This advantage is directly proportional to the
increase in this difference in favor of tasks. Whenever this difference is large, the results
generated by our algorithm are the best. The main reason for this is that the device and task
groups were partitioned into three similar and relatively small subgroups. This reduced
the time it took to navigate through them and find the appropriate devices to execute the
tasks. The performance of the remaining algorithms, in decreasing order, is as follows:
LCFP, Min-Min, and SCFP. From the above tables, it is easy to observe that our algorithm
outperformed the other three algorithms with respect to three criteria: makespan, standard
deviation, and the maximum of the absolute difference in completion times, whatever the
number of devices or the number of tasks.

To summarize the results, our contribution is made through a dedicated approach
adapted to the ubiquitous devices widely used in the IoT paradigm, particularly at the
periphery of their communication networks. The goal was to build a new heuristic algo-
rithm and compare it with the other scheduling heuristic algorithmsmostly used in the
literature. The main advantages of this approach are brought up through the reduction of
the size of the tasks to be performed and breaking them into smaller subtasks. In addition,
the process of dividing the groups of subtasks and devices into smaller sub-groups makes
it possible for a parallel search to get the desired solution. Proceeding as such makes our
algorithm faster and the quality of the generated solutions much better. Consequently, our
approach saves a lot of energy, in addition to improving the efficiency of these devices.
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6. Conclusions and Future Works

The effectiveness of any scheduling algorithm depends, among other things, upon the
overall completion time. Partitioning large tasks into smaller tasks plays an important role
in getting these tasks done with shorter completion times. Greedy scheduling algorithms
are a popular and widely used approach that produces a balanced, near-optimal solution
for scheduling problems. Based on this idea, we proposed a new greedy scheduling
algorithm for autonomous smart mobile systems, especially those found at the network’s
periphery. It takes advantage of the ability of these devices to maintain connectivity through
a D2D radio connection. This feature allows devices to continue to communicate and
therefore to work with each other, even in the event of wireless failures or communication
flooding on the network. Thus, they can always perform the necessary tasks at any
time and in any situation. This algorithm is based on the idea of dividing large tasks
into smaller tasks to facilitate and speed up the scheduling process and thus their rapid
completion. It creates similar subgroups in terms of the size of the tasks and devices.
Then, it allocates tasks to devices between similar subgroups and, if necessary, to the larger
device subgroups. We have shown through a preliminary study that this algorithm is
compatible with mobile systems having resource constraints. Due to the limited capacity
of devices, they do not tolerate the long process of computing. Therefore, they are not able
to adopt a complex scheduling method. Instead, they require a series of simple scheduling
strategies. The preliminary study we conducted showed that our algorithm had a clear
advantage over the LCFP, SCFP, and Min-Min algorithms. On the one hand, our algorithm
generated small average times for allocating devices to tasks. On the other hand, our
algorithm outperformed the three comparison algorithms we presented with respect to the
makespan, standard deviation, and range of completion times criteria. Likewise, significant
improvements in load balancing could also be added to these advantages.

Current research provides reliability in reducing the completion time for urgent
requests and thus in speeding up their completion, especially in harsh environments. For
future work, we aim to apply our algorithm to more scenarios and situations. In particular,
we aim to use it with more autonomous intelligent mobile systems having a large number
of tasks to be performed on multiple devices. These advantages of the proposed method
could be added to other functionalities, such as maintaining connectivity and processing
via parallelism.
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