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Abstract: Security presents itself as one of the biggest threats to the enabling and the deployment of
the Internet of Things (IoT). Security challenges are evident in light of recent cybersecurity attacks
that targeted major internet service providers and crippled a significant portion of the entire Internet
by taking advantage of faulty and ill-protected embedded devices. Many of these devices reside at
home networks with user-administrators who are not familiar with network security best practices,
making them easy targets for the attackers. Therefore, security solutions are needed to navigate the
insecure and untrusted public networks by automating protections through affordable and accessible
first-hand network information sharing. This paper proposes and implements a proof of concept
(PoC) to secure Internet Service Providers (ISPs), home networks, and home-based IoT devices
using blockchain technologies. The results obtained support the idea of a distributed cyber threat
intelligence data sharing network capable of protecting various stakeholders.
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1. Introduction

The Internet of Things (IoT) is constituted of resource-limited devices connected to the
Internet and interacting with other entities in the network, with or without direct human
intervention. The main objective of IoT is to provide ubiquitous connectivity among different
entities or “things” [1]. While the performance, effectiveness, and efficiency of IoT have
improved significantly over a short period of time, the security aspect of the IoT and the
network it sits remain a very challenging issue. In 2016, a Distributed Denial of Service (DDoS)
attack was enabled by a botnet army of IoT infected devices. It not only overwhelmed Dyn,
a major domain name system (DNS) infrastructure provider, but also paralyzed a significant
portion of the Internet. The incident highlighted the alarming consequence that faulty IoT
protections and poor security standards could incur [2]. Such intrusions and attacks accentuate
the need for additional research in the IoT security domain.

The search for energy efficiency and affordable computing power on embedded
devices is in some way antagonistic to current cryptography applications and security
solutions, which describes a paradox that produces a challenging environment for the
IoT [1]. The newly hyped blockchain technology proposes new ways to securely exchange
digital assets by the use of strong cryptography principles and sound engineering protocols.
Although it was meant to be the building block of cryptocurrency, blockchain has found
its way through other realms. This includes the possibility to address security challenges,
an area that is far from its original conception [3].

The purpose of this work is to introduce an application of the blockchain protocol
to protect end-to-end network functionality, from the service providers to the edge of the
home network, and hence the IoT devices in it. The work greatly extended the primary
idea of our earlier work [4]. In addition, this work proposes a security framework that
supports deeper interactions between service providers and their consumers. And finally,
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it lays out the possibility to create a democratic cyber threat intelligence (CTI) network
capable of enforcing proactive and reactive countermeasures to cyberattacks.

The rest of the paper is organized as follows. Related works are reviewed in Section 2,
followed by the research design and method in Section 3. Section 4 illustrates the results,
and more in-depth discussions of the work can be found in Section 5. Finally, Section 6
summarizes the findings of the study and sheds light on future work.

2. Literature Review

During the last few years, the total number of IoT devices and the data they processed
have increased significantly [1]. IoT devices have found their way to support more applica-
tions and reached more home users. The ubiquitousness of IoT brings both advantages and
challenges to the end-users. The authors of Reference [5] identified the following as the
most common vulnerabilities: Insecure web interfaces, insufficient authentication, insecure
network services, poor privacy controls, insufficient security configurability, insecure soft-
ware, and poor physical security. Since IoT devices are constantly online, the weak security
protections, or no protection at all, made them easy targets of infections and becoming
zombies of botnets [6]. Cui and Stolfo [7] scanned IoT devices on the Internet for basic
security probes. They discovered over 540,000 exposed devices, with many using the
default login credentials created by the vendors. The authors of Reference [8] analyzed
the firmware of 32,000 IoT devices. Over 2000 devices had backdoor access, such as telnet
service with hard-coded passwords. From the perspectives of regular users, the difficulty of
managing home networks, the lack of security policy mandate, and the ever-rising security
risks and attacks place an overwhelming burden on the shoulders of end consumers [9].

Mahmoud et al. [10] provided a more organized view of IoT challenges by classifying
them regarding its architecture. At the perception layer, wireless communications interfer-
ence, interception, or alteration (replay attacks), and physical security must be considered.
The network layer is susceptible to DoS and eavesdropping attacks, mostly due to the weak
authentication of IoT devices. At the application layer, security problems were the result
of the heterogeneous nature of IoT. The lack of governing policies and standards further
complicated the situation and some products may have adopted conflicting authentication
mechanisms. Reference [11] stated that weak passwords, dissimilar storage and data
processing methods, flawed security controls, and insufficient filtering capacity are the
main reasons for IoT devices to miscarry privacy, trust, confidentiality, identity attestation,
and access enforcement. Reference [12] accounted faulty identification integrity, lack of
global authentication schemes, poor privacy strategies (data collection policies and data
anonymization), insufficient lightweight cryptographic solutions, deficient software devel-
opment practices and software analysis constraints, as well as malicious software for the
IoT security panorama. Pacheco et al. [13] added Internet network extension (from mobile,
non-IP, sensor to cloud and fog computing), multiple entry points, and domain diversity
(on ownership, policy, and connectivity) to the list of obstacles. Reference [14] stressed
that inadequate perimeter defenses, host-based detection mechanisms, and patching pro-
cesses designed for the IoT environment are the key dimensions that need to be addressed.
Finally, Reference [15] broke IoT security issues into two main topics: Data security and
privacy protection. In summary, the security breadth has expanded exponentially but the
available resources are not sufficient to cope with the ongoing environment. The challenges
identified are not trivial to define and even harder to solve. From this literature review, it
is evident that IoT security consensus needs to be reached and prioritization needs to be
listed before the research community advocating for action.

The Mirai botnet attack in 2016 was a consequence of the lack of security imple-
mentations of embedded devices. The attack was considered “one of the most potent
Distributed-Denial-of-Service (DDoS) attacks in history” [6]. Over 400,000 devices were
compromised that included webcams, DVRs, home routers, etc. Altogether, the botnet
delivered over 1.1 Tbps of traffic to bring down French provider OVH. Mirai used hard-
coded default credentials to brute force access that were available over port 23 and 223.
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Once compromised, the command and control (C&C) center launched General Routing
Encapsulation (GRE), Transfer Control Protocol (TCP), and Hypertext Transfer Protocol
(HTTP) flooding attacks on the targets to take them out of service. Similar attacks are still
being deployed over the Internet despite the warnings from the security community for
keeping susceptible devices openly accessible [6].

The blockchain, based on its security properties, has attracted more attention from the
IoT research community. IoT researchers cataloged the blockchain as one of the key tech-
nologies capable of enabling smart contracts among embedded devices [16]. This means
smart embedded devices can autonomously interact with each other without human inter-
vention. Smart contracts enable IoT devices to build functionality based on their previous
states and desired outputs.

Even though it is feasible to implement a public blockchain network, the computing
power required for mining may be overwhelming, especially when billions of IoT devices
need to be addressed. Therefore, for many applications, private or consortium blockchain
solve some of the initial trust concerns among members, where alternative consensus
algorithms and other access techniques can be leveraged to reduce the burden of mining
and make blockchains much more desirable in real-world practice. It should be noted
that blockchains offer only pseudo-anonymity: it is possible for adversaries to make
inferences about who owns what public keys. If privacy is a major concern in an IoT system,
an additional mechanism must be designed and implemented to prevent the owners of
the smart devices from being identified. For instance, the authors of Reference [17] have
identified several applications that can be benefited from blockchain solutions, including
identity management and authentication requirements for securing network infrastructure
without a central authority. Azaria et al. [18] and Zyskind et al. [19] further applied the
blockchain and smart contracts to secure sensitive data, which allows users to access it
without being tampered.

Cyber Threat Intelligence (CTI) is evidence-based information that is valuable, relevant,
and actionable for security professionals. It can shorten the time between compromises
and detection and therefore proactively answer the security challenges that need attention
[20]. S. Jasper [21] mentioned sensitive information, classification, trust, interoperability,
and privacy as the main reasons entities are reluctant to share CTI data. Tounsi and Rais
[20] also claimed that quality issues, budgeting, and the lack of legal confidence are the
main problems CTI sharing brings to the table. Wagner et al. Reference [22] stressed the
importance of having reliable sources. The information gathered and utilized must be con-
ducted in a coordinated manner to ensure successful incident responses. To better leverage
IoT CTI, it is best that the secure methods do not assume central trust while offering equal
access and quick propagation and action. A blockchain network is a great candidate for
such secure methods, as shown by Cha et al. [23]. They proposed a blockchain-based CTI
system architecture for sustainable computing and used a blockchain network to provide
sensitive data sharing.

Consequently, the authors would like to provide a quick review of their previous
work [4]. The authors presented a blockchain-based security solution for home networks
and home IoT devices. The authors relied on hardware implementations with known IoT
“Smart Home” devices and created a practical testing environment. Statistical analyses were
conducted to examine the numerical data obtained from the experiments and comparisons
were made to understand the performance penalties the blockchain incurred against simple
centralized security solutions.

A private Proof-of-Work Ethereum network was configured on three different ma-
chines. One of them operated at the perimeter of the home network, called “gatekeeper”.
The computer involved was assigned private Ethereum accounts that linked the users,
the gatekeeper, and other components of the Ethereum blockchain and served as the in-
terface of the system. The gatekeeper keeps a whitelist based on layer three information.
The whitelist can be modified and updated by a smart contract that governs the system.
The smart contract provides access to the home network.
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The users interact with the contract through a solidity-based application, where layer
three network information is entered and a hash value is used for integrity. The gatekeeper,
using a Python script, reads blockchain transactions and adds entries to the whitelist based on
information in the data field of the block. Figure 1 shows how the application was structured.

Figure 1. Network and logical diagram from previous work, taken from Reference [4].

The authors collected resource data at the gatekeeper and a client computer (miner)
from two instances of the same implementation. The first instance ran a basic whitelisting
on IPTables hosted by a Raspberry Pi (Gatekeeper) device. In other words, the baseline has
no blockchain interaction. The second instance runs all blockchain operations described
above. The data collected were statistically analyzed to compare both scenarios.

At the client computer, the CPU utilization and RAM usage presented statistically
significant differences that showed a numerical increase during blockchain functioning.
However, the disk usage did not show significant differences, even though over 70,000
blocks were processed during the sampling time frame. At the Gatekeeper, the CPU
utilization and RAM usage showed significant differences. Nevertheless, the overall
CPU usage did not go over 2%, and the RAM usage did not surpass 51%, which means no
resource scarcity was experienced. As occurred with the client computer, no disk utilization
differences were spotted.

The authors concluded that basic whitelisting applications based on blockchain technol-
ogy to secure home-based networks and IoT devices were possible. Moreover, the inherent
security properties of blockchain provided additional protection against malicious tampering
of whitelist entries. The cryptographic features of the Ethereum protocol, such as asymmetric
key encryption and digital signatures, strengthened peer-to-peer communications between
the network nodes. The authors considered that the results could be qualified as the starting
point to a secure home-based network architecture model for IoT devices. Additionally,
the distributed computing properties of the blockchain open the door to future opportunities
for decentralized cyber intelligence information secure sharing.

3. Materials and Methods

Malicious traffic is considered a burden for users and service providers (SP) [24].
Therefore, there exists the need to decrease the existing risks at home networks and ISPs’
networks by stopping verified malicious indicators of compromise (IOC). The proposed
solution aims to offer close to real-time containment for, but not limited to, network-based
IOC. It collects first-hand information from the end-users and distributively shares the
cyber threat intelligence (CTI) information via a consortium blockchain network.
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During recent years, researchers have started to discuss further blockchain capabilities
and applications. Atlam et al. [25] listed the blockchain characteristics that are appeal-
ing for addressing IoT challenges, including information immutability, decentralization,
anonymity (after applying public key principles to the protocol), resiliency, trust, and
increased computing capacity (by distributing computing). Ølnes et al. [26] showed
benefits and promises of the blockchain presented in the academic literature that adds
transparency, auditability, increased control (by consensus), data integrity, error reduction
(by automation), enhanced access to information, reliability, data security (due to decentral-
ization), and decreasing transaction costs (by no human involvement). Hughes et al. [27]
indicated that settlement and reconciliation processes between different organizations
could benefit from the simplicity and efficiency provided by the blockchain that translates
to “significant cost savings” (p. 119) by automation, streamlined processes (by smart
contract enforcing), and increased processing speed (due to disintermediation). However,
the same authors [25–27] also emphasized the limitations of the blockchain technology,
which includes processing power, storage capabilities over time, scalability, computing
costs, and privacy concerns. The applicability of potential benefits also depends on design
decisions and application buildout process [26], which suggests that not all the security
gaps can be bridged by blockchain technology.

As cyber-threats constantly emerge, the focus of this work to explore the challenges and
requirements that Cyber Threat Intelligence (CTI) information sharing is currently facing.
New attack vectors make it burdensome for individual defenders to protect their digital
assets by themselves. The only viable pathway is to build solutions by sharing reliable
and trustworthy information with the community, an approach that has been taken by
many organizations [28]. Böhm et al. [29] specified that such exchange of information can
significantly improve cyber-defense capabilities, information that needs to be “integrity-
proof” (p. 2). Mtsweni and Mutemwa [30] advocated for relevant and reliable data (with the
appropriate volume) that is generated and shared with velocity and veracity. Even though
the benefits of sharing intelligence information seem to be overwhelming, there exist security,
privacy, and competitiveness concerns that prevent organizations to share valuable first-
hand data at the expense of the community and the quality of the data [28]. Then, it is
also important to sustain data quality without “free-riding” by auditing fair and equal
participation from all actors while keeping privacy and anonymity. It is also important to
consider the entire organization spectrum. Each unit, from small businesses to multi-nationals
and from single users to structured corporations, is capable of providing and receiving
valuable information. But each unit may have a different budget and priorities when it comes
CIT. For instance, in developing countries and some smaller organizations, the main focus is
to increase profits by cutting down expenses. The owners would probably like to take the risk
by not participating CTI due to the lack of funding [31,32]. There are also quality differences
in the CTI reports. Commercial sources often include structured data while open communities
often share information without structure, “such as PDF and Word documents” [33] (p. 375).
It is reasonable, then, to also advocate for the democratization of the threat intelligence
data access.

The blockchain can provide highly-available data sharing between users and their
Internet Service Providers (ISPs), as well as between different ISPs. A transparent and
distributed CTI tamper-proof repository, capable of democratizing the access to the data [34],
can be built and acted locally, at the user level, or at the ISP level. A decentralized and
tamper-proof solution is now introduced with proof-of-concept capabilities for delivering
vetted transparent CTI information. Corresponding actions can be enforced either at the
source or at the destination of malicious activities. Literature shows different approaches to
the existing gaps in CTI sharing. Blockchain technologies were proposed as a sustainable
computing architecture to share computing power for efficiency [23]. Blockchains were also
leveraged to address the trust and quality issue to engage participation in CTI contribution [35].
Büber et al. [36] proposed a voting/consensus system to add entries into a CTI database.
Hajizadeh et al. [37] used the blockchain to control software-defined networking (SND)
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systems to mitigate threats based on intelligence collaboration. In addition, Purohit et al. [38]
proposed the utilization of the blockchain to share intelligence to fight against threats that are
targeted at cloud-based services, such as free-riding and false reporting, by defining quality
metrics. The work presented in this paper proposes the utilization of first-hand data from
the end-users, their network components, such as IoT devices or service providers, and their
detection systems to share intelligence information using the blockchain. The goal of this
decentralized design is to be able to address various issues in the current CIT platforms,
including trust, integrity, reliability, resiliency, and unequal information access.

3.1. Materials

In order to provide a proof-of-concept of the current solution proposal, the authors
have designed a simulation environment that represents network actors and behavior of
real conditions. Microsoft Azure was chosen as the simulation platform based on its nested
virtualization properties and available resources for similar implementations. The virtual
network is composed, first, of an Ubuntu server that serves as the administration gateway
to the rest of the network connected directly to the internet. In the second place, the GNS3
server, a Linux-based virtual machine connected through TCP port 3080 with the local
client, where all GNS3 computations are performed. And last, a series of Ubuntu-based
clones running the same software load are used to implement the Ethereum blockchain
network. The above design provides flexibility and scalability to the simulation structure
as computer resources can be dynamically reallocated and the network nodes can be easily
multiplied with minimum efforts. Figure 2 describes the location and the connection of the
components of in the simulation.

Figure 2. Connectivity scheme of the network simulation environment.

Figure 3 shows the implementation of the blockchain network proposed for the simu-
lation. The backbone of the Ethereum network, and its resources, are simulated over the
Microsoft Azure Ethereum proof-of-authority consortium template. Utilizing the Azure
platform provides scalability and performance upgrades that do not interfere with the IP
network simulation and its resources. The Microsoft Azure Ethereum template provides
the capability to implement transaction and validator nodes under a consortium blockchain
scheme that resembles the original network structure of this framework proposal. The con-
sortium is composed of a leader and secondary members that reach administration and
transaction consensus over the original blockchain principles. The underlying resources
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for the consortium leader and its members are the same. However, the leader oversees
the starting network configurations. It retains administrator privileges until it decides to
distribute it among its peers.

Figure 3. Ethereum consortium leader network scheme.

A unique permissioned blockchain network is needed, governed by two different
types of smart contracts that would separate the network into two tiers. The first tier is
composed of only the system end-users and their respective service provider. This is to
maintain privacy and remove direct threats from the external actors. The second tier is
constituted of all participating service providers that are used to exchange CTI information
without including the direct participation from the end-users. The network blockchain
validators employ the Proof-of-Authority consensus algorithm as it provides efficiency in
terms of computing power over resource-intensive Proof-of-Work deployments.

3.2. Methods

A Distributed Denial of Service (DDoS) attack is simulated using the open-source
tool Bonesi. The simulation tool is capable of generating ICMP, UDP, and TCP traffic
replicating random IP addresses (spoofing). Under the current network configuration,
up to 40,000 simulated bots can recreate over 150,000 packets per second, targeting a
predetermined host located within “user” network boundaries. The tool can be used to
recreate botnet behaviors, such as Mirai, by performing GRE IP and GRE ETH floods, SYN
and ACK floods, STOMP floods, DNS floods, and UDP flood attacks [39]. The purpose
of the simulation is to demonstrate that the proposed security framework can stop local
bot traffic (after infection) and mitigate ISP network resource consumption, and target
resource alleviation under a DDos attack. The simulation can also provide evidence of the
framework’s effectiveness under other types of cyberattacks from different infection stages,
such as port and vulnerability scanning, and malware network propagation.

The framework simulation can be analyzed from three different categories: network
performance, Ethereum network performance, and network security capabilities. In order
to understand the impact of the implementation of a blockchain application sustained
among the existing ISP resources, the experiment monitors memory, CPU, and link usage
of the different network equipment that interacts with the framework. In addition, the sim-
ulation helps to better understand how the Ethereum network behaves under the proposed
circumstances. Performance evaluated includes the load the Ethereum pushes over the
infrastructure, the response time under the security threats, and the computing resources
utilized by the blockchain. Finally, the recreation of a real-world network attack could
help to determine the limitations, weaknesses, and strengths of the proposed framework.
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Besides the metrics proposed for the previous sections, availability on the target is also
collected. The performance data from both implementations undergo statistical analyses
to determine whether statistically significant differences exist in terms of network and
computer resource utilization.

Therefore, the following testing scenarios are proposed. The first scenario is to test
network performance. The baseline is laid out by the collection of data under “normal” cir-
cumstances where network attacks are not deployed. The usually internet and operational
traffic is generated with a random traffic generator script, with no blockchain interactions
involved. The second scenario is to test Etehreum network performance. It includes the
same characteristics described in the first scenario. In addition, all blockchain exchange
that includes the CTI information available is added to the same random traffic generator
by using the same random seed value. The last scenario simulates distributed attacks to
a specific target by gradually injecting network bursts to the target. The same metrics
and instruments are used as in the previous scenario to test the security capabilities of
the framework and the benefits of a decentralized CTI network. In the end, the first two
scenarios are compared based on the criteria listed previously to determine whether the
proposal is sustainable. The data collected in the last portion of the experiment should
provide the evidence to sustain the security capabilities that in theory, the framework could
contribute to different networks and service levels. The security capabilities could also
be examined to lay out limitations and determine grounded expectations for real-world
implementations. Figure 4 shows the GNS3 network simulation hosted at the Azure cloud,
which is used for all the testing scenarios.

Figure 4. GNS3 network simulation.
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Lastly, network performance of video streaming services on the endpoints are also com-
pared between the blockchain-enabled and the conventional network scenarios. Results can
be used to examine the differences of user experience, and to determine the viability of the
approach at the user level. Both scenarios are set up when the same random network traffic
is generated. The data, for this last implementation, are taken directly from the endpoints
to compare against the data gathered at the last mile at the ISP level Of the first part of the
experiment.

3.2.1. Assumptions

During the experiments, the authors assume all the devices work as expected; the net-
work is designed and implemented correctly; and the network devices encountered no
issues other than the problems specifically designed for each testing scenario. Additionally,
it is assumed that all blockchain parties behave correctly under the rules and algorithms
determined by the Ethereum protocol. Put differently, this work assumes that more than
half of the users are legitimate.

3.2.2. Limitations

As the Proof-of-Concept (PoC) is implemented on a consortium Ethereum network,
its security relies on a limited number of transaction nodes and validators. In this study,
only the authors have access to the Ethereum private network. For the sake of simplic-
ity, the implementation of these smart contracts has not been hardened to the extreme.
Only basic secure operations, such as access control, permission controlled were realized
during the experiments. And the implementation of the gatekeeper only examined Open
System Interconnection (OSI) layer three information, which can be bypassed by attacks
that are not included in the threat model of this work.

4. Results

The cloud-based simulation, network diagram shown in Figure 4, ran for fourteen
days. The first seven days were used as a “Control” group, where no blockchain instances
were included. All blockchain and security implementations were put in place for the rest
seven days, which is referenced as the ’Experimental’ group in this manuscript. The data
was collected via the Simple Network Management Protocol (SNMP), configured at the
ISPs’ and the customers’ premises routers. In total, over 66,000 equally distributed samples
entries were collected and the parameters to be analyzed, including Bandwidth (Table 1),
CPU utilization (Table 2), and Response Time (Table 3). To recreate network traffic at the
user level, a random web traffic generator was used with the same random seed value for
the Control and Experimental setups.

The statistics shown in Tables 1–3 show comparisons between the “Control”
(no blockchain instances included) and the “Experimental” group (blockchain instances in-
cluded). The mean, standard deviation (σn), and the p-value of the t-test are calculated and
listed in the tables for the devices in Figure 4 during the course of experiments. The values
presented under the columns labeled Control (C) and Experimental (E) show the mean
values of each device. Table 4 shows also a statistical comparison for YouTube streaming
performance between the Experimental and the Control groups. Finally, Table 5 pertains to
the Experimental group only because blockchain data was only available during this part
of the experiment.

Table 1. Mean and standard deviation for utilized bandwidth on routers (Kbps).

Device Control (C) σ1 Experimental (E) σ2 p-Value (H0:C = E)

ISP A 93,911.1 561,846 41,443.9 125,030 0.0001
ISP B 148,817 427,260 77,338.0 236,503 0.0001
ISP C 141,282 525,158 84,225.6 381,451 0.0001
ISP D 138,587 326,974 86,659.6 395,937 0.0001
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Table 2. Mean and standard deviation for CPU utilization on routers (%).

Device Control (C) σ1 Experimental (E) σ2 p-Value (H0:C = E)

ISP A 7.1170 0.5006 5.9493 0.8178 0.0001
ISP B 10.0074 0.6429 8.8812 1.0412 0.0001
ISP C 9.3924 0.6639 8.3844 0.9352 0.0001
ISP D 8.9934 0.6809 8.4193 0.9244 0.0001
CPE A 0.7047 0.7238 1.4948 0.7455 0.0001
CPE B 2.1427 0.3847 2.0402 0.2254 0.0001
CPE C 2.1498 0.3972 2.0497 0.2758 0.0001
CPE D 1.1416 0.4732 1.6144 0.6150 0.0001

Table 3. Mean and standard deviation for response time on routers (ms).

Device Control (C) σ1 Experimental (E) σ2 p-Value (H0:C = E)

ISP A 6.5536 3.0634 6.5534 3.1351 0.9965
ISP B 6.4850 3.1223 6.6552 3.1151 0.0005
ISP C 6.6789 3.1686 6.7461 3.1357 0.1720
ISP D 6.6051 3.1133 6.7355 3.1440 0.0077
CPE A 18.0294 5.3292 18.3166 5.3124 0.0006
CPE B 18.1483 5.2870 18.3320 5.3395 0.0270
CPE C 18.5355 5.3244 18.5856 5.3603 0.5491
CPE D 18.4437 5.3562 18.5881 5.2901 0.2094

Because the two testing scenarios are independent, a two-sample t-test was performed
to make a comparison with a 95% confidence level [40]. The parameters used for statistical
comparison are bandwidth, CPU utilization, and response time.

Table 4. YouTube streaming performance comparison.

Parameter Control (C) σ1 Experimental (E) σ2 p-Value (H0:C = E)

Frames Dropped 136.1 61.9451 300.6 128.3 0.0001
Resolution 640 × 360@25 - 640 × 360@25 - N/A

Connection Speed 12,831.2 Kbps 2962.7 9827.4 Kbps 3711.5 0.0027
Buffer Health 120.9 s 6.7602 121.3 s 9.7353 0.8375

The samples taken from the Microsoft Azure portal for the Ethereum consortium
blockchain service include much relevant information of the blockchains. Some key metrics
are Block propagation through the network of validators, block creation time, Remote
Procedure Call (RPC) traffic, and the usage of CPU, RAM, and disk at the same validator
level (Table 5). The data include over 10,000 block metadata collected over seven days.
In addition, Netflow data was gathered at the workstations to validate RPC requests and
actual traffic generated at the blockchain-enabled CTI enforcement equipment.

Table 5. Blockchain data taken from consortium validators hosted in Microsoft Azure cloud platform.

Parameter Mean σ Unit

Block Propagation 327.0002 96.2419 ms
Block Creation Time 4.4586 1.9444 s

Daily RPC Traffic 0.9638 0.7663 MB
Validator CPU Usage 36.9991 1.1185 %

Validator Available RAM 44.3309 3.0810 %
Validator Disk Usage 13.3417 0.3203 %
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Regarding the security features of the PoC, Figure 5 shows the snort alert that signals
the presence of multiple ICMP packets trying to reach the target in a short period of time.
The snort-enabled device triggered a blockchain transaction, which is recorded by the gov-
erning smart contract. The transaction is then broadcast to the rest of the network on the
possibility of an ongoing DDoS attack. After a vetting process, the CTI data reached all the
subscribed nodes. Actionable events are then triggered. In this case, the firewall of the system,
which is IPTables in our experiments, is revised by adding rules to prevent the incoming
malicious traffic from transmitting to its destination. The end results were that the automated
action slowed or stopped the ongoing DDoS attacks from populating to the downstream
networks. Figure 6 shows how the network behaved after blockchain-enabled controls were
placed. It visualizes how transmitted and received packets differ in their behaviors. To avoid
service outage, the authors limited the number of ICMP packets per second during the attack
simulation such that all the necessary data could be properly collected.

Figure 5. (left) Snort security event alert. (right) Blockchain transactions triggered by the alert.

Figure 6. Router interface of target host, received and transmitted packets.

5. Discussion

Data collected at the ISP and the costumer premises equipment (CPE) routers showed
a statistically significant difference on bandwidth and CPU utilization. Counter-intuitively,
the Control group had greater mean values than the Experimental group, despite the
fact that the Experimental group carried an additional load of blockchain information.
Further analyses showed that the Control group had a much greater standard deviation,
indicating the differences between the samples were much greater than that of the Ex-
perimental group. The traffic carried by the Control group was normal traffic and attack
traffic, whereas the traffic carried by the Experimental group was normal traffic, blockchain
transactions, and reduced attack traffic due to automated deny entries in the IPTables.
Results proved that blockchain-based CTI services enabled easier identification of DDoS
attacks and faster responses of those attacks. It not only saved network bandwidth but
also reduced unnecessary CPU clock cycles for the ISPs to process the DDoS traffic. On the
other hand, the CPU utilization of the Experimental group was higher at the edge of
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the home network because the additional burden of processing blockchain transactions
outweighed the benefits of reduced traffic for each individual home routers. However,
the increases in CPU utilization were manageable: none of the Experimental group con-
sumed more than 10% of the CPU resources than the Control group. Regarding response
time, only two routers showed statistically significant differences. The Experimental group
had a fraction of longer delay than the control group. This suggested that the introduction
of the blockchain networks did slow down the network response time for some home
networks. The good news was the delay in responses was marginal: merely 2% higher was
found in our study.

To understand how the blockchain-enabled security methods impact the end-users
on streaming services, YouTube video experiments were implemented. Results showed
a slight degradation for the Experimental group. The number of frames dropped and
connection speed showed statistically significant differences, favoring the Control setup.
However, the buffer health results did not show any statistical differences between the
two groups, suggesting that no real visual differences were spotted from the perspective
of user experience. This can be further confirmed by the results of video resolutions:
both groups automatically played back the video at 640 pixels by 360 pixels, with frame
rates of 25 frames/s.

From the blockchain side, the amount of additional traffic originated from daily
Ethereum transactions (RPC traffic) is trivial, which did not interfere with normal ISP or
user-related operations. Results from these experiments also showed that off-the-shelf hard-
ware was more than sufficient to power the computing needs of the validators. The CPU,
RAM, and disk utilization showed no signs of resource starvation. Even if the computing
resource becomes a concern to support permissioned blockchains, the consortium scheme
will allow additional resources to be dynamically and automatically allocated in the cloud
without human intervention.

During the DDoS attack simulation, alerts were immediately triggered by the IDS
when the ICMP packets were trying to flood the entire network. Real-time alerts generated
real-time blockchain transactions, which activated quick block preparation and subsequent
propagation. In fact, the average block creation time was 4.4586 s in our experiment.
This means once a DDoS attack was identified by a participating node through Snort
signature matching, it took less than five seconds to submit the report to the blockchain
by writing the attack information into the data portion of the block. After the block was
created, the local node replicated the validated result to the rest of the blockchain network
in 0.327 s. This indicates that the CTI report could reach all the participating nodes in the
Ethereum network in five seconds from the time the attack was spotted. Such a speedy
information creation and propagation would allow users and service providers to enforce
security policies in a timely manner when a threat was manifested by the attackers. In a
nutshell, the proposed framework demonstrated that integrity-proof, reliable, and relevant
data can be shared over a network that does not have centralized trust. The design of the
framework met the CTI requirements stated in References [28–30].

By leveraging blockchain, this work can securely share critical information immutably
without the need of centralized trust entity. In addition, the proposed approach is designed
to interact with the Ethereum network to automatically trigger the defense when known
attacks are recognized. The automation process eliminated the need for human intervention
and hence reduced the human errors during the incident handling. The automation also
helped to streamline the incident response process by providing flexible governing smart
contracts. Because the underlying blockchain allows equal access from all the participants,
it removed the risk of a single point of failure and improved the overall resilience of
the CTI sharing network. Besides these great features, the proposed model also offers
fast and lightweight first-hand information sharing. The result is that any participating
nodes can augment the threat intelligence in real-time without taking too much toll on
the computing resources. During a botnet outbreak, known bad IP addresses and port
numbers would not be allowed to transmit during the botnet propagation phase. In other
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words, an attack with known characteristics would not succeed in the proposed framework.
An unknown attack could still temporarily succeed until the signature of such malicious
traffic is identified. During the communication and activity stages, assuming the initial
infection has succeeded, the malicious traffic is expected to flow from internal to external
sources. If timely information is shared in the CTI, then the malicious traffic can be stopped
at the source. This will prevent the external nodes from resource exhaustion and maintain
normal network operations. Figure 7 depicts a typical botnet infection stages when an
enforcement device is part of the proposed solution.

Figure 7. Cyber threat intelligence (CTI) enforcing diagram during three stages of a botnet attack.

6. Conclusions

To safeguard IoT devices for the consumer market, this work investigated a blockchain-
enabled CTI sharing network using a distributed data collection method. Simulation results
show the proposed framework is viable for normal network load, including randomly
generated traffic, as well as typical YouTube streaming services. This suggests when con-
necting a democratic, immutable, resilient, and secure blockchain network to an actionable
cyber threat intelligence system, it can provide a realistic solution to protect ISP infras-
tructure, home network devices, and home-based IoT devices without a centralized trust
entity. The proposed framework is sustainable and scalable because the underlying PoA
consortium blockchain service can be executed in the cloud. The tamper-proof property
of the blockchain offers an additional layer of protection and prevents nefarious actors
from manipulating the CTI data. Because the first-hand CTI information can be augmented
and accessed by all the stakeholders, our decentralized CTI system is capable of address-
ing many CTI challenges observed by large organizations, small businesses, and home
consumers. The implementation of permissioned blockchains requires minimal network
architectural changes for both the ISPs and the home networks. It can be easily deployed
as an added-on service to benefit both parties. In short, the presented approach is a good
starting point to a decentralized and actionable CTI system. It can be served as a secure
architecture model to protect home networks and IoT devices, as well as critical network
infrastructures.

Further study is needed to understand how the ’intelligence’ of a single node can
be leveraged to improve the overall ’intelligence’ of the entire CTI system. In particular,
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how a novel attack can be quickly recognized and reliably populated to the rest of the CTI
system remains a very challenging task. Additional studies are also needed to understand
how the performance degrades when the size of the blockchain gets much bigger and
the network traffic gets much heavier. Finally, CTI systems can be more effective when
multiple blockchain networks are sharing information with each other. Cross-chain real-
time validation can be an intriguing work to greatly improve the impact of the proposed
framework.
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