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Abstract: We explore the dependence of vacuum energy on the boundary conditions for massive
scalar fields in (2 + 1)-dimensional spacetimes. We consider the simplest geometrical setup given
by a two-dimensional space bounded by two homogeneous parallel wires in order to compare it
with the non-perturbative behaviour of the Casimir energy for non-Abelian gauge theories in (2 + 1)
dimensions. Our results show the existence of two types of boundary conditions which give rise to
two different asymptotic exponential decay regimes of the Casimir energy at large distances. The two
families are distinguished by the feature that the boundary conditions involve or not interrelations
between the behaviour of the fields at the two boundaries. Non-perturbative numerical simulations
and analytical arguments show such an exponential decay for Dirichlet boundary conditions of
SU(2) gauge theories. The verification that this behaviour is modified for other types of boundary
conditions requires further numerical work. Subdominant corrections in the low-temperature regime
are very relevant for numerical simulations, and they are also analysed in this paper.
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1. Introduction

The role of boundary effects in quantum field theory is fundamental for many quantum
phenomena. One of the earliest applications was the Casimir effect [1]. A quantum field,
when confined between two solid bodies, generates a dependence of the renormalized
vacuum energy on the boundary conditions at the interfaces of the bodies. This dependence
of the vacuum energy generates a force between them which depends on the nature of the
boundary conditions of the quantum fields. Although this effect is very tiny, it has been
experimentally measured in various setups [2–7].

A remarkable effort has been made in understanding and computing the Casimir
effect for different models and setups. Some relevant results were obtained in Ref. [8],
where the Casimir vacuum energy at zero temperature was computed for general boundary
conditions and arbitrary dimensions for massless scalar fields using heat kernel methods.
These results were later extended to finite temperatures in (3 + 1) dimensions [9].

Less known are the characteristics of the effect for interacting theories [10]. Quite re-
cently, the behaviour of the Casimir energy has been investigated in
(2 + 1)-dimensional Yang–Mills theories, where some reparametrization of gauge fields in
terms of scalar fields allows for an analytic approach to the problem [11–13]. Numerical
simulations with Dirichlet boundary conditions on gauge fields confirm the results of this
analytic approach [14].

For SU(2) gauge theories, the analytic approach is based on the description of gauge
fields in terms of a massive scalar field, whose mass depends on the gauge coupling that in
(2 + 1) dimensions is not dimensionless as in (3 + 1) dimensions. In that case, the Casimir
energy of the strongly interacting gauge theories with Dirichlet boundary conditions
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coincides with the Casimir energy of a scalar field with a magnetic mass m = g2/π, where
g is the gauge coupling constant.

Some numerical simulations are in progress with different boundary conditions on
gauge fields [15] to test if the relation between Casimir energy of massive fields and Yang–
Mills theory is robust under the change in boundary conditions. Making comparisons with
what happens for scalar fields requires knowing the behaviour of the Casimir energy of the
massive scalars for different families of boundary conditions.

In this paper, we study the vacuum energy for massive scalar fields with general bound-
ary conditions in a two-dimensional setup bounded by two homogeneous parallel wires by
using a regularization scheme similar to the one used in Refs. [16,17] for massless theories.
To compare our results with the lattice gauge theories’ results, it is necessary to work at a
finite temperature; thus, it is important to understand how the thermal fluctuations affect
the Casimir energy at low temperatures in both (2 + 1)-dimensional SU(2) gauge theories
and massive scalar field theories in order to have some analytical background reference to
compare results to.

Independent of these motivations, some interest has been raised recently on the appli-
cations of the thermal Casimir effect in nano-electronic devices [18,19] or the appearance
of negative self-entropy related to this effect [20–22], which has boosted interest in new
aspects of these thermal effects.

2. Effective Action of a Massive Scalar Field in (2 + 1) Dimensions

We consider a free scalar massive field in (2 + 1) dimensions confined between two
homogeneous infinite wires separated by a distance L. Depending on the structure of
the wires, the quantum fields have to satisfy some conditions on the boundary wires.
Moreover, finite temperature T ̸= 0 effects can be described in the Euclidean formalism by
compactification of the Euclidean time direction into a circle of radius β/(2π) = 1/(2πT).
In this case, the partition function can be written as the following determinant:

Z(β) = det
(
−∂2

0 −∇2 + m2
)−1/2

, (1)

where m is the mass of the fields, ∇2 is the spatial Laplacian and ∂0 is the Euclidean time
derivative. As already mentioned, the boundary conditions are periodic in time
ψ(t + β, x) = ψ(t, x), and because of the homogeneity of the boundary wires, the
spatial boundary conditions can be given in terms of 2×2 unitary matrices
U ∈ U(2) [23]

φ − iδφ̇ = U(φ + iδφ̇), (2)

where δ is an arbitrary scale parameter and

φ =

(
φ(L/2)

φ(−L/2)

)
, φ̇ =

(
φ̇(L/2)

φ̇(−L/2)

)
, (3)

are the boundary values φ(±L/2) = ψ(t, x1,±L/2) of the fields ψ and their outward
normal derivatives φ̇(±L/2) = ±∂2ψ(t, x1,±L/2) on the wires. From now on, we will
assume that δ = 1 for simplicity.

In the standard parametrization of U(2) matrices

U(α, γ, n) = eiα(I cos γ + in · σ sin γ); α ∈ [0, 2π], γ ∈ [−π/2, π/2], (4)

in terms of a unit vector n ∈ S2 and Pauli matrices σ = (σ1, σ2, σ3),the space of bound-
ary conditions that preserve the non-negativity of the spectrum of the operator −∇2 is
restricted by the inequalities 0 ≤ α ± γ ≤ π [8]. Moreover, since the scalar field is real, the
second component of the unit vector n has to vanish, i.e., n2 = 0.

The determinant of the second-order differential operator −∂2
0 − ∇2 + m2 in

Equation (1) is ultraviolet (UV) divergent but can be regularized by means of the zeta
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regularization method [24,25]. The effective action is defined by the logarithm of the
partition function, which can be expressed as

Seff = − log Z = −1
2

d
ds

ζ(s)|s=0, (5)

and in terms of the zeta function as

ζ(L, m, β; s) = µ2s
(
−∂2

0 −∇2 + m2
)−s

(6)

where we have introduced the scale parameter µ, which encodes the standard ambiguity of
zeta function renormalization techniques (see, e.g., [26,27] for a detailed discussion and
comparison with other renormalization methods), to make the zeta function dimensionless.
This ambiguity will be fixed by the renormalization scheme prescription. Actually, the scale
parameter µ can be seen as an explicit implementation of the renormalization group.

In our case of a massive scalar field confined between two infinite wires, the eigenval-
ues of operator −∂2

0 −∇2 are given by the sum of the square of the temporal modes 2πl/β
associated with the Matsubara frequencies, the continuous spatial modes k, and the discrete
spatial modes ki that depend on the boundary conditions imposed by the boundary wires

λ =

(
2πl

β

)2
+ k2 + k2

i + m2 l ∈ Z, i ∈ N. (7)

Thus, the zeta function in this case reads as follows:

ζ(L, m, β; s) = µ2s A
2π ∑

l,i

∫ ∞

−∞
dk

((
2πl

β

)2
+ k2 + k2

i + m2

)−s

, (8)

where A is the length of the wires. Now, we can integrate the continuous spatial modes
using the analytic extension of the zeta function

ζ(L, m, β; s) = µ2s AΓ(s − 1/2)
2
√

πΓ(s) ∑
l,i

((
2πl

β

)2
+ k2

i + m2

)−s+1/2

. (9)

It was shown in Ref. [8] that for homogeneous boundary conditions along the wires,
the discrete spatial modes are given by the zeros of the spectral function

hL
U(k) = sin(kL)

(
(k2 − 1) cos γ + (k2 + 1) cos α

)
− 2k sin α cos(kL)− 2kn1 sin γ, (10)

in the following way

ζ(L, m, β; s) = µ2s AΓ(s − 1/2)
4π3/2iΓ(s)

∞

∑
l=−∞

∮
dk

((
2πl

β

)2
+ k2 + m2

)−s+1/2
d
dk

log hL
U(k), (11)

where the integral is defined along the contour of a thin strip enclosing the positive real
axis, where all the zeros of the spectral function hU(k) are located.

All ultraviolet divergences arise in the zero temperature limit of the vacuum energy
and the removal of such divergences requires a consistent prescription method (renor-
malization scheme) with a clear physical meaning. They appear in the leading terms of
the zero-temperature expansion that has the following asymptotic behaviour in the large
L limit [8,16]:

Sl=0
eff = βE0 = C0(m)A βL + C1(m)Aβ +

Aβ

L
Cc(m, L) + . . . . (12)
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where E0 is the vacuum energy, C0(m) the divergent bulk vacuum energy density, C1(m)
the divergent energy density of the boundary wires, and Cc(m, L) is the finite coefficient of
the Casimir energy.

One renormalization prescription which allows us to eliminate all these divergences
consists of the redefinition of the renormalized effective action as follows [16,17]:

Sren
eff = −1

2
d
ds

ζren(L, m, β; s)
∣∣∣
s=0

, (13)

where

ζren(L, m, β; s) = lim
L0→∞

(ζ(L, m, β; s) + ζ(2L0 + L, m, β; s)− 2ζ(L0 + L, m, β; s)), (14)

in terms of an auxiliary length L0. Notice that the physical condition which fixes this
renormalization scheme is the complete removal of the spurious contributions to the bulk
and the boundary vacuum energies, leaving only Casimir energy terms and nonlinear
β-temperature-dependent contributions to the effective action. These are precisely the
physical requirements that fix the renormalization scheme’s prescription.

The sum over Matsubara modes can be explicitly computed in the low-temperature regime.

3. Low-Temperature Regime

In the low-temperature limit βm ≫ 1, we cannot express the result as an infinite series
of 1/β. This means that we have to first deal with the Matsubara modes and later with the
boundary modes. We start by rewriting (9) as follows:

ζ(L, m, β; s) =
(

µβ

2π

)2s A
√

πΓ(s − 1/2)
βΓ(s) ∑

i

∞

∑
l=−∞

(
l2 +

(
kiβ

2π

)2
+

(
mβ

2π

)2
)−s+1/2

. (15)

Now, we use the Mellin transform

ζ(L, m, β; s) =
(

µβ

2π

)2s A
√

π

βΓ(s) ∑
i

∞

∑
l=−∞

∫ ∞

0
dt ts−3/2 e

−
(

l2+
(

ki β
2π

)2
+
(

mβ
2π

)2
)

t
(16)

and apply the Poisson formula for the sum over l modes

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s) ∑
i

∞

∑
l=−∞

∫ ∞

0
dt ts−2 e

−
((

ki β
2π

)2
+
(

mβ
2π

)2
)

t− (πl)2
t . (17)

We can compute the integral

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s)

Γ(s − 1)∑
i

((
kiβ

2π

)2
+

(
mβ

2π

)2
)1−s

+ 4 ∑
i

∞

∑
l=1

(πl)−1+s

((
kiβ

2π

)2
+

(
mβ

2π

)2
)1/2−s/2

K1−s

(
βl
√

k2
i + m2

), (18)

where we have obtained a term (l = 0) that has a linear dependence on β, and the rest of
the terms can be expressed in terms of the modified Bessel function of the second type Kν.
Let us focus on the first term, which is the zero-temperature one, by replacing the sum of
boundary modes with an integral modulated by the spectral function (10). We have

ζ l=0(L, m, β; s) = µ2s AβΓ(s − 1)
8π2iΓ(s)

∮
dk
(

k2 + m2
)1−s d

dk
log hL

U(k). (19)



Physics 2024, 6 617

Thus, the zero-temperature term of the renormalized zeta (14) is

ζ l=0
ren (L, m, β; s) = µ2s AβΓ(s − 1)

8π2iΓ(s)
lim

L0→∞

∮
dk
(

k2 + m2
)1−s d

dk
log

hL
U(k)h

2L0+L
U (k)(

hL0+L
U (k)

)2 . (20)

As it was explained previously, this combination cancels the UV divergences on the
integral; thus, the only divergent terms left are the ratio of two Gamma functions whose
asymptotic behaviour in the small s expansion is

Γ(s − 1)
Γ(s)

= −1 − s +O(s2) (21)

which allows us to calculate the derivative

d
ds

(
−(1 + s)

(
k2 + m2

)1−s
µ2s
)∣∣∣∣

s=0
= (k2 + m2)

(
log
(

k2 + m2
)
− 2 log µ − 1

)
. (22)

Thus, we have(
ζ l=0

ren

)′
(L, m, β; 0) =

Aβ

8π2i
lim

L0→∞

∮
dk
(

k2 + m2
)(

log
(

k2 + m2
)
− 2 log µ − 1

)

×

 d
dk

log
hL

U(k)h
2L0+L
U (k)(

hL0+L
U (k)

)2

. (23)

Since the integrand is holomorphic, we can extend the integration contour to an infinite
semicircle limited by the imaginary axis on its left. Also, because the integration over the
semicircle is zero, we can reduce the integral to the imaginary axis(

ζ l=0
ren

)′
(L, m, β; 0) =

Aβ

8π2i
lim

L0→∞

∫ ∞

−∞
dk
(

k2 − m2
)(

log
(

m2 − k2
)
− 2 log µ − 1

)

×

 d
dk

log
hL

U(ik)h
2L0+L
U (ik)(

hL0+L
U (ik)

)2

. (24)

Taking into account that the integrand is parity odd, the integral would vanish if it
were not for the contribution of the branching point k = m of the logarithm log(m2 − k2),
which gives a factor 2πi for the interval (m, ∞), which is absent in the interval (−∞,−m).
Thus, the expression reduces to

(
ζ l=0

ren

)′
(L, m, β; 0) =

Aβ

4π
lim

L0→∞

∫ ∞

m
dk
(

k2 − m2
) d

dk
log

hL
U(ik)h

2L0+L
U (ik)(

hL0+L
U (ik)

)2 . (25)

Since the integral domain begins at m, we can take the limit L0 → ∞ on the spectral
functions by noticing that

lim
L∗→∞

hL∗
U (ik) = lim

L∗→∞
ek(L∗)

(
(k2 + 1) cos γ + (k2 − 1) cos α + 2k sin α

)
. (26)

If we define the result in terms of the limit for the spectral function

h∞
U (ik) ≡

(
(k2 + 1) cos γ + (k2 − 1) cos α + 2k sin α

)
, (27)
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we obtain a simplified formula:

(
ζ l=0

ren

)′
(L, m, β; 0) = − Aβ

4π

∫ ∞

m
dk
(

k2 − m2
)(

L − d
dk

log
hL

U(ik)
h∞

U (ik)

)
. (28)

Temperature-Dependent Terms

Let us now compute the terms with l ̸= 0 of the zeta function

ζ l ̸=0(L, m, β; s) =
(

µβ

2π

)2s 4Aπ

βΓ(s) ∑
i,l=1

(πl)−1+s

((
kiβ

2π

)2
+

(
mβ

2π

)2
)1/2−s/2

×
(

K1−s

(
βl
√

k2
i + m2

))
. (29)

Since the Bessel special function K1 decreases exponentially as the argument grows,
both sums are finite; thus, the only divergent contribution is the Gamma function, which
after derivation gives

(
ζ l ̸=0

)′
(L, m, β; 0) =

2A
π ∑

i

∞

∑
l=1

√
k2

i + m2

l
K1

(
βl
√

k2
i + m2

)
(30)

and we can we rewrite the sum of the discrete eigenvalues by means of the spectral
formula (10)

(
ζ l ̸=0

)′
(L, m, β; 0) =

A
π2i

∞

∑
l=1

∮
dk

√
k2 + m2

l
K1

(
βl
√

k2 + m2
) d

dk
log
(

hL
U(k)

)
. (31)

Thus, the temperature-dependent terms of the renormalized zeta function (14) have
the following form:

(
ζ l ̸=0

ren

)′
(L, m, β; 0) =

A
π2i

lim
L0→∞

∞

∑
l=1

∮
dk

√
k2 + m2

l
K1

(
βl
√

k2 + m2
) d

dk
log

hL
U(k)h

2L0+L
U (k)(

hL0+L
U (k)

)2 .

In a similar manner as was carried out for the l = 0 term, since the integrand is also
holomorphic we can extend the contour to an infinite semi-circle limited by the imaginary
axis. Because the integral is zero on the semi-circle, we can reduce the integral to just the
imaginary axis

(
ζ l ̸=0

ren

)′
(L, m, β; 0) = − A

π2i
lim

L0→∞

∞

∑
l=1

∫ ∞

−∞
dk

√
−k2 + m2

l
K1

(
βl
√
−k2 + m2

)

×

 d
dk

log
hL

U(ik)h
2L0+L
U (ik)(

hL0+L
U (ik)

)2

. (32)

Because the integrand is odd, the contribution of (−m, m) is zero, whereas the branch-
ing point of

√
m2 − k2 introduces a change of sign on the integrand on (−∞,−m) and

also in the argument of the Bessel function. Given that K1(z̄) = K1(z), the real part of
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the integrals between (−∞,−m) and (m, ∞) is twice one of the integrals, whereas the
imaginary part cancels out. In summary, the integral can be reduced to

(
ζ l ̸=0

ren

)′
(L, m, β; 0) = −2A

π2 lim
L0→∞

∞

∑
l=1

∫ ∞

m
dk

√
k2 − m2

l
ℜ
(

K1

(
iβl
√

k2 − m2
))

×

 d
dk

log
hL

U(ik)h
2L0+L
U (ik)(

hL0+L
U (ik)

)2

. (33)

We can take the limit L0 → ∞ using Equation (26) as we did for the l = 0 term, and
the integral is simplified to

(
ζ l ̸=0

ren

)′
(L, m, β; 0) =

2A
π2

∞

∑
l=1

∫ ∞

m
dk

√
k2 − m2

l
ℜ
(

K1

(
iβl
√

k2 − m2
))(

L − d
dk

log
hL

U(ik)
h∞

U (ik)

)
.

4. Casimir Energy

The Casimir energy can be derived from the terms we have just computed in the
previous sections. We can easily compute the free energy with the effective action simply
using the expression F = Seff/β. This free energy has two different contributions [22],
the non-temperature-dependent part (l = 0) which corresponds to the Casimir energy of
the system

Fl=0
U (L, m, β) = Ec

U(L, m) =
A

8π

∫ ∞

m
dk
(

k2 − m2
)(

L − d
dk

log
hL

U(ik)
h∞

U (ik)

)
, (34)

and the temperature-dependent part

Fl ̸=0
U (L, m, β) = − A

βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 − m2

l
ℜ
(

K1

(
iβl
√

k2 − m2
))(

L − d
dk

log
hL

U(ik)
h∞

U (ik)

)
.

Both terms of the free energy decrease to zero as the distance between the wires L
grows to infinite, which is the expected behaviour. The temperature-dependent term also
vanishes Fl ̸=0

U → 0 when the temperature does (β → ∞).

Asymptotic Behaviour

Let us now analyse the behaviour of the Casimir energy when mL → ∞. First, we
rewrite the hyperbolic functions of the spectral function as

hL
U(ik) = ekL

(
(k2 + 1) cos γ + (k2 − 1) sin α + 2k sin α

)(
1 + n1 sin(γ)A e−kL + B e−2kL

)
,

where A and B are

A(k, α, γ) =
4k

(k2 + 1) cos γ + (k2 − 1) sin α + 2k sin α
, (35)

B(k, α, γ) =
−(k2 + 1) cos γ − (k2 − 1) sin α + 2k sin α

(k2 + 1) cos γ + (k2 − 1) sin α + 2k sin α
. (36)

We can use this expression to approximate the logarithm of the quotient of spectral
functions as

log
hL

U(ik)
h∞

U (ik)
= kL + n1 sin γA e−kL + (B − A′

2
)e−2kL + O(e−3kL), (37)
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where A′ = (n1 sin(γ)A)2, and we expand the logarithm in powers of e−kL. Now, we
introduce this expression on the integral of the Casimir energy formula

Ec
U = − A

8π

∫ ∞

m
dk(k2 − m2)

d
dk

(
n1 sin γA e−kL + (B − A′

2
)e−2kL + O(e−3kL)

)
=

A
4π

∫ ∞

m
dk k

(
n1 sin γA e−kL + (B − A′

2
)e−2kL + O(e−3kL)

)
. (38)

We can expand this integral as a power series of 1/L for each exponential order by
integrating by parts as follows:

∫ ∞

m
dkg(α, γ, n1, k)e−jkL = − g(α, γ, n1, k)

jL
e−jkL

∣∣∣∣∞
m
+
∫ ∞

m
dk

g(α, γ, n1, k)′

jL
e−jkL, (39)

and iterate this process since all derivatives of g(α, γ, n1, k) are regular in [m, ∞]. Thus, the
Casimir energy is given by

Ec
U =

∞

∑
j=1

∞

∑
ν=1

cj,ν(α, γ, n1, m)

(jL)ν
e−jmL, (40)

where the coefficients corresponding to the leading order in the exponential expansion are
of the form

c1,ν = −n1 sin γ

4π

dν(kA(α, γ, k))
dkν

∣∣∣∣∞
m

. (41)

This means that when n1 sin γ = 0, all the terms that behave as e−mL vanish and the
leading contribution will be of the order of e−2mL. Thus, we have two different families of
boundary conditions with different asymptotic behaviours

LEc
U ∼

{
e−mL if tr(Uσ1) ̸= 0,
e−2mL if tr(Uσ1) = 0,

(42)

depending on whether the matrix U that defines the boundary conditions depends or not
on σ1.

This is the most important result of this paper because it classifies the boundary
conditions into two families. The difference between the two families is the rate of the
exponential decay of the Casimir energy (42).

The physical characterization of the two families of boundary conditions with different
exponential decays is the vanishing or not of tr(Uσ1). The non-vanishing case corresponds
to boundary conditions which connect the values of the fields or its normal derivatives at
the two boundary wires, whereas the vanishing case corresponds to families of boundary
conditions which only constrains the values of the fields or its normal derivatives at each
boundary separately.

The result is obtained for a massive free-field bosonic theory. If the observed rate of
decay in gauge theories has the same behaviour, it will provide strong evidence of the
scenario that describes the dynamics of gauge theories in (2 + 1) dimensions in terms of a
bosonic massive scalar field.

5. Special Cases of Boundary Conditions

Let us analyse some particular cases where the integral of the Casimir energy can be
analytically computed and which are of special interest for their potential implementation
for gauge fields. An alternative derivation based on the explicit calculation of the spectrum
of spatial Laplacian for these cases is postponed to Appendix A.
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5.1. Dirichlet and Neumann Boundary Conditions

Dirichlet boundary conditions correspond to the physical case of fields vanishing at
both boundary wires φ(L/2) = φ(−L/2) = 0; in our parametrization (4), they are given
by UD = −I. Notice that these boundary conditions do not relate the boundary values of
the fields of one boundary with the boundary values at the other one.

The derivative of the logarithm of the quotient of spectral functions is

d
dk

log
(

hL
UD

(ik)/h∞
UD

(ik)
)
= L coth(kL). (43)

We can integrate the Casimir energy formula (34)

Ec
D(L, m) = − A

16πL2

(
2mL Li2

(
e−2mL

)
+ Li3

(
e−2mL

))
, (44)

which, in the massless limit, gives

Ec
D(L, 0) = − Aζ(3)

16πL2 . (45)

But in the very large mL ≫ 1 asymptotic limit, the Casimir energy has a fast exponen-
tial decay e−2mL, as predicted by the feature that −Tr I σ1 = 0.

The temperature-dependent terms of the free energy

Fl ̸=0
D (L, m, β) = − AL

βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 − m2

l
ℜ
(

K1

(
iβl
√

k2 − m2
))

(1 − coth(kL)) (46)

cannot be analytically computed, but from the asymptotic expansion of the term

1 − coth(kL) ≈ −e−2kL

of the integrand, it can be shown that they have the same exponential decay, with mL as
the Casimir energy (44).

Neumann boundary conditions correspond to the case where the normal derivative of
the fields vanish at the boundary wires φ̇(L/2) = φ̇(−L/2) = 0. They are parameterized
by the unitary matrix UN = I. The derivative of the logarithm of the quotient of spectral
functions is the same as for Dirichlet boundary conditions (43), which tell us that the free
energy has the same value, Ec

N = Ec
D and Fl ̸=0

UD
= Fl ̸=0

UD
.

5.2. Periodic Boundary Conditions

The periodicity of the fields and the anti-periodicity of their normal derivatives at the
boundaries φ(L/2) = φ(−L/2),φ̇(L/2) = −φ̇(−L/2) correspond to periodic boundary
conditions associated with the unitary matrix UP = σ1. Notice that, by definition, periodic
boundary conditions relate the boundary values of the fields at one boundary to the values
of the fields at the other one.

In this case, the derivative of the logarithm of the quotient of spectral functions is

d
dk

log
(

hL
UP

(ik)/h∞
UP

(ik)
)
= L coth(kL/2). (47)

Thus, the Casimir energy is

Ec
P(L, m) = − A

2πL2

(
mL Li2

(
e−mL

)
+ Li3

(
e−mL

))
(48)
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and the massless limit becomes

Ec
P(L, 0) = − Aζ(3)

2πL2 . (49)

Notice that, in this case, the exponential decay of the Casimir energy e−mL in the
asymptotic limit mL → ∞ is slower than that observed in Dirichlet or Neumann boundary
conditions, which corresponds to the feature that Tr σ1 σ1 = 2 ̸= 0. The rest of terms of the
free energy

Fl ̸=0
P (L, m, β) = − AL

βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 − m2

l
ℜ
(

K1

(
iβl
√

k2 − m2
))

(1 − coth(kL/2)). (50)

share the same behaviour.

5.3. Anti-Periodic Boundary Conditions

Anti-periodic boundary conditions correspond to the values and normal derivatives
of the field at the boundary wires satisfying φ(L/2) = −φ(−L/2), φ̇(L/2) = φ̇(−L/2),
and the associated unitary matrix is UA = −σ1. Again in this case, the boundary conditions
relate the boundary values of the fields at one boundary with the boundary values at the
other one. In this case, the derivative of the logarithm of the quotient of spectral functions is

d
dk

log
(

hL
UA

(ik)/h∞
UA

(ik)
)
= L tanh(kL/2). (51)

Thus, the Casimir energy is

Ec
UA

(L, m) = − A
2πL2

(
mL Li2

(
−e−mL

)
+ Li3

(
−e−mL

))
(52)

which, in the massless limit, agrees with the well-known results

Ec
A(L, 0) =

3Aζ(3)
8πL2 . (53)

Notice that in this case the exponential decay of the Casimir energy e−mL is similar
to the case of periodic boundary conditions, corresponding to the feature that −Tr σ1 σ1 =
−2 ̸= 0. The rest of the terms of the free energy

Fl ̸=0
UA

(L, m, β) = − AL
βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 − m2

l
ℜ
(

K1

(
iβl
√

k2 − m2
))

(1 − tanh(kL/2)) (54)

have the same exponential decay because 1 − tanh(kL/2) ≈ e−kL.

5.4. Zaremba Boundary Conditions

Zaremba boundary conditions correspond to the case where one wire has Dirich-
let boundary conditions whereas the other has Neumann boundary conditions. In our
parametrization, UZ = ±σ3, and the derivative of the spectral function is

d
dk

log
(

hL
UZ

(ik)/h∞
UZ

(ik)
)
= L tanh(kL). (55)

The Casimir energy is

Ec
UZ

(L, m) = − A
16πL2

(
2mL Li2

(
−e−2mL

)
+ Li3

(
−e−2mL

))
, (56)
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which, in the massless limit, reduces to

Ec
Z(L, 0) =

3Aζ(3)
64πL2 . (57)

The temperature-dependent part of the free energy is

Fl ̸=0
Z (L, m, β) = − AL

βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 − m2

l
ℜ
(

K1

(
iβl
√

k2 − m2
))

(1 − tanh(kL)). (58)

In both cases, the exponential suppression e−2mL coincides with that of Dirichlet or
Neumann boundary conditions, and again in this case, the boundary conditions do not
relate the boundary values of the fields at one boundary with the values at the other one.

5.5. Asymptotic Behaviour

The asymptotic behaviour of the Casimir energy for these boundary conditions follow
the rule (42) in which Dirichlet, Neumann (44), and Zaremba (56) conditions decay as
follows:

LEc
U ∼ e−2mL (59)

since for these cases tr(Uσ1) = 0, whereas the periodic (48) and anti-periodic (52)
behave as follows:

LEc
U ∼ e−mL (60)

because these boundary conditions satisfy the inequality tr(Uσ1) ̸= 0. We can also appreci-
ate the difference in the factor of the exponential decaying behaviour plotting the Casimir
energy for these boundary conditions (Figure 1).
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Figure 1. Dependence of the Casimir energy in logarithmic scale as a function of the effective distance
mL between the two boundary wires for different boundary conditions.

By plotting the temperature-dependent part of the free energy Fl ̸=0
U (see Figure 2), it

can also be seen how these terms exponentially decay to zero as mL grows.
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Figure 2. Free energy behaviour of the temperature-dependent part in logarithmic scale as a function
of the effective distance mL between the two boundary wires for different boundary conditions, with
mβ = 1.

The physical difference between the two families gives rise to different asymptotic
behaviours: the families with faster decays (Dirichlet, Neumann, Zaremba) are conditions
imposed on each boundary wire separately, whereas in the second family (periodic, anti-
periodic, pseudo-periodic) with slower decay rates, the boundary conditions involve a
relationship between the values of the fields in both wires, establishing a interconnection
between them.

6. Conclusions

We have shown the existence of two types of boundary conditions which give rise to
different regimes of exponential decay of the Casimir energy at large distances for scalar
field theories. The two types are distinguished by the feature that the boundary conditions
involve or not interconnections between the behaviour of the fields at the two boundaries.

The fast exponential decays of the Casimir energy associated with all massive fields
make Casimir energy negligible when compared with the contribution of massless fields
coming from electrodynamics. This means that there is no hope of measuring its effects
experimentally. However, from a conceptual point of view, it can become of crucial impor-
tance to understand the confining infrared behaviour of non-Abelian gauge theories if this
regime can be effectively driven by a massive scalar field.

Indeed, analytic arguments [11,12] and non-perturbative numerical simulations [14]
show that there is a similar exponential decay in gauge theories with Dirichlet boundary
conditions. The verification that such a behaviour is modified for other types of boundary
conditions would provide further evidence to the claim that the low-energy behaviours of
non-Abelian SU(2) gauge theories are governed by an effective scalar field with a fixed non-
vanishing mass. A remarkable feature is that the mass of this scalar field is considerably
smaller than the lowest mass of the glueball spectrum [11,12].

In particular, the confirmation of the existence of the two regimes for different bound-
ary conditions will be crucial for the verification of this conjecture. Numerical simulations
are in progress to clarify this issue.
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Appendix A. Alternative Calculation of the Free Energy

As an additional check of previous calculations derived by using the spectral function
of the spatial Laplacian, let us calculate the free energy directly in some cases where the
spectrum of the spatial Laplacian is explicitly known.

Appendix A.1. Dirichlet Boundary Conditions

In this case, the discrete eigenvalues of the spatial Laplacian are given by k j = π j/L
with j = 1, . . . , ∞.

Let us consider the low-temperature limit of the effective action. The corresponding
zeta function (9) is

ζ(L, m, β; s) =
(

µβ

2π

)2s A
√

πΓ(s − 1/2)
βΓ(s)

∞

∑
j=1

∞

∑
l=−∞

(
l2 +

(
jβ
2L

)2
+

(
mβ

2π

)2
)−s+1/2

, (A1)

with which, using the Mellin transform (16) and the Poisson formula (17) on the Matsubara
modes, we arrive at

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s)

∞

∑
j=1

∞

∑
l=−∞

∫ ∞

0
dt ts−2 e

−
((

jβ
2L

)2
+
(

mβ
2π

)2
)

t− (πl)2
t . (A2)

After integration, the expression (A2) reduces to

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s)

Γ(s − 1)
∞

∑
j=1

((
jβ
2L

)2
+

(
mβ

2π

)2
)1−s

+ 4
∞

∑
j,l=1

(πl)s−1

((
jβ
2L

)2
+

(
mβ

2π

)2
)1/2−s/2

K1−s

βl

√(
π j
L

)2
+ m2

. (A3)

To obtain the contribution of the second term to the effective action, we just have to
derive the gamma function Γ(s) on the denominator. We obtain

(
ζ l ̸=0

)′
(L, m, β; 0) =

2A
L

∞

∑
j,l=1

1
l

√
j2 +

(
mL
π

)2
K1

πβl
L

√
j2 +

(
mL
π

)2
 (A4)

Now, we rewrite the first term of (A3) as

ζ l=0(L, m, β; s) =
(

µL
π

)2s AπβΓ(s − 1)
4L2Γ(s)

∞

∑
j=1

(
j2 +

(
mL
π

)2
)1−s

, (A5)
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and by applying the Mellin transform (16) and the Poisson formula (17), which in this
case reads

∞

∑
n=1

e−2παn2
=

1√
2α

∞

∑
n=1

e−
πn2
2α +

1
2

(
1√
2α

− 1
)

, (A6)

for the sum in the modes j, we have

ζ l=0(L, m, β; s) =
(

µL
π

)2s Aπ
√

πβ

4L2Γ(s)

(
∞

∑
j=1

∫ ∞

0
dt ts− 5

2 e−(
mL
π )

2
t− (π j)2

t

+
1
2

∫ ∞

0
dt ts− 5

2 e−(
mL
π )

2
t

(
1 −

√
t√
π

))
. (A7)

After integrating out the t variable, we obtain

ζ l=0(L, m, β; s) =
(

µL
π

)2s Aπ
√

πβ

8L2Γ(s)

(
Γ
(

s − 3
2

)(
mL
π

)3−2s
− Γ(s − 1)√

π

(
mL
π

)2−2s

+4
∞

∑
j=1

(π j)s−3/2
(

mL
π

)3/2−s
K3/2−s(2jmL)

)
. (A8)

Upon derivation, the only non-vanishing contribution of this term comes from the
derivative of Γ(s) in the first and third terms, whereas we have to use the asymptotic
expansion (21) for the second. The result is

(
ζ l=0

)′
(L, m, β; 0) =

ALβm3

6π
+

Am2β

4π

(
log(µ/m) +

1
2

)
+

Aβ

8L2π

(
2mL Li2

(
e−2mL

)
+ Li3

(
e−2mL

))
. (A9)

From the renormalized effective action (13), we can compute the Casimir energy

Ec
D(L, m) = − A

16L2π

(
2mL Li2

(
e−2mL

)
+ Li3

(
e−2mL

))
(A10)

which is the same as what we obtained in Equation (44) with the spectral function. The
temperature-dependent component of the free energy

Fl ̸=0
D (L, m, β) =− A

βL

∞

∑
j,l=1

1
l

√
j2 +

(
mL
π

)2
K1

πβl
L

√
j2 +

(
mL
π

)2
 (A11)

− 1
2β lim

L0→∞

((
ζ l ̸=0

)′
(2L0 + L, m, β; 0)− 2

(
ζ l ̸=0

)′
(L0 + L, m, β; 0)

)
.

can be shown to be equivalent to Equation (46).

Appendix A.2. Periodic Boundary Conditions

The discrete eigenvalues of the spatial Laplacian in this case are k j = 2π j/L with j ∈ Z.
We can derive the effective action directly from the spectrum by rewriting (8)

ζ(L, m, β; s) =
(

µβ

2π

)2s A
√

πΓ(s − 1/2)
Γ(s)

∞

∑
l,j=−∞

(
l2 +

(
jβ
L

)2
+

(
mβ

2π

))−s+1/2

, (A12)
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and by using the Mellin transform and the Poisson formula on the Matsubara modes,
we have

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

Γ(s)

∞

∑
l,j=−∞

∫ ∞

0
dt ts−2e

−
((

jβ
L

)2
+
(

mβ
2π

))
t− (πl)2

t , (A13)

which, after integration, becomes

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s)

∞

∑
j=−∞

Γ(s − 1)

((
jβ
L

)2
+

(
mβ

2π

)2
)1−s

(A14)

+ 4
∞

∑
l=−∞

(πl)s−1

((
jβ
L

)2
+

(
mβ

2π

)2
)1/2−s/2

K1−s

βl

√(
2π j

L

)2
+ m2

.

The derivative of the second term gives

(
ζ l ̸=0

)′
(L, m, β; 0) =

4A
L

∞

∑
j=−∞

∞

∑
l=1

1
l

√
j2 +

(
mL
2π

)2
K1

2πβl
L

√
j2 +

(
mL
2π

)2
. (A15)

We rewrite Equation (A14) as

ζ l=0(L, m, β; s) =
(

µL
2π

)2s AβΓ(s − 1)π
L2Γ(s)

∞

∑
j=−∞

(
j +
(

mL
2π

)2
)1−s

(A16)

and follow the same strategy as for Dirichlet boundary conditions from Equation (A5) to
Equation (A9) with these particular spatial modes. We thus arrive at

(
ζ l=0

)′
(L, m, β; 0) =

ALβm3

6π
+

Aβ

L2π

(
mL Li2

(
e−mL

)
+ Li3

(
e−mL

))
(A17)

and the Casimir energy is

Ec
P(L, m) = − A

2πL2

(
mL Li2

(
e−mL

)
+ Li3

(
e−mL

))
(A18)

which coincides with result obtained by the general spectral function method (48). Mean-
while, the temperature-dependent component of the free energy is

Fl ̸=0
P (L, m, β) =− 2A

βL

∞

∑
j=−∞

∞

∑
l=1

1
l

√
j2 +

(
mL
2π

)2
K1

2πβl
L

√
j2 +

(
mL
2π

)2


− 1
2β

lim
L0→∞

((
ζ l ̸=0

)′
(2L0 + L, m, β; 0)− 2

(
ζ l ̸=0

)′
(L0 + L, m, β; 0)

)
(A19)

which also agrees with Equation (50).
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