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Abstract: The anomalous magnetic moment of the electron, first calculated by Schwinger, lowers
the ground state energy of the electron in a weak magnetic field. It is a function of the field and
changes signs for large fields, ensuring the stability of the ground state. This has been shown in
the past 50 years in numerous papers. The corresponding corrections to the mass of the electron
have also been investigated in strong fields using semiclassical methods. We critically review these
developments and point out that the calculation for low-lying excited states raises questions. Also,
we calculate the contribution from the tadpole diagram, the relevance of which was observed only
quite recently.
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1. Introduction

Quantum electrodynamics (QED) is the fundamental theory for describing the inter-
action of matter and light. On the classical level, these are the Maxwell theory and the
relativistic mechanics, joined by a covariant coupling. QED is the quantum version of these.
It was formulated quite early in the history of quantum mechanics, beginning with the
paper of Paul Dirac. One of the first calculations of QED effects was the effective Lagrangian
of Werner Heisenberg and Hans Euler [1], and the first new effect predicted using QED was
the scattering of light on light. About ten years later, in 1948, Hendrick Casimir found [2]
a vacuum interaction between neutral conducting plates caused by the quantized electro-
magnetic field confined between the plates. These two effects can be interpreted as loop
correction, or radiative correction, to external influences. In the first case, such influence
is provided by a classical electromagnetic field, and in the second case, it is provided by a
conductor boundary condition on the plates (or by the freely movable charges within the
plates), which also constitute a classical object.

It must be mentioned that there is a different interpretation for these effects saying
that the vacuum of QED is filled with a fluctuating electromagnetic field, the interaction
of which with the mentioned influences causes the effects. However, in a more formal
approach, there is no need to speak about fluctuating fields. Namely, the mentioned effects
can be equivalently described as vacuum-to-vacuum transition amplitude in an external
field or as the vacuum expectation value of the energy–momentum tensor in the presence
of external influences. For details, we refer to one of many books on this topic [3].

Beyond the two mentioned effects go the radiative, or loop, corrections like the
anomalous magnetic moment of the electron and the Lamb shift. The former one can
be viewed as a correction to the mass of the electron and to its magnetic moment, µ.
The magnetic moment can be expressed as µ = gµB in terms of the Bohr magneton, µB , and
the gyromagnetic ratio, g. From the Dirac equation, g = 2 follows, whereas the radiative
corrections cause a deviation, ae = (g − 2)/2, called the anomaly of the magnetic moment.
In 1948, Julian Schwinger found [4] ae = α/(2π) in the lowest order in the fine structure
constant, α. This anomaly lowers the energy of the ground state of an electron in a magnetic
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field. Also, it results in a split of the excited energy levels. This split was measured in the
so-called g − 2 experiments with high precision and showed an excellent agreement with
the theory (including higher powersof α).

In a weak magnetic field, the lowering of the ground state energy is proportional to
the magnetic field. However, for an increasing field (as well as for higher excited states), it
becomes a function of the field and it changes sign before the total energy can reach zero,
ensuring the stability of the ground state. It must be mentioned that in theories with higher
spin (s > 1/2), there is no stability. An example is quantum chromodynamics (QCD),
where the so-called Savvidy vacuum is unstable, as shown in Ref. [5]; for a recent review,
see [6].

In line with these examples, the Casimir effect is not only a phenomenon arising from
vacuum fluctuations, but it may also bear instabilities under certain boundary conditions.
In Appendix A, we refer to the Robin boundary conditions as an example. Like in a strong
magnetic field, for certain values of the parameters, the energy of the lowest state may be
below zero and constitute the instability of the system. It must be mentioned that in the
literature on the Casimir effect, a situation with instabilities is rarely considered, although it
well deserves more attention.

The present paper is a critical review on the question of the stability of QED in a
magnetic field. The point is the following. While for the ground state the stability can be
shown using a quite simple calculation and for high excited states and/or strong magnetic
field using asymptotic methods, for lower exited states and medium fields, one is left with
numerical investigation. Such analysis was performed in Ref. [7].

However, as we point out here, there are questions about the methods used in Ref. [7].
In addition, recently, in Ref. [8], it was observed that a class of diagrams (one-particle
irreducible ones) do not vanish in distinction from earlier belief and may give an addi-
tional contribution.

For this reason, in what follows, we are interested only in the one-loop correction to
the mass of the electron in a homogeneous magnetic field. Therefore, we do not consider
the motion of the electron in the direction of the field and use the simplified notation.

It worth noting that the motion of an electron in a magnetic field is a field of vital
interest, not so much in connection with the stability of QED as in connection with the
synchrotron radiation which appears on the tree level as well as from the imaginary part
of the radiative correction to the electron mass, see [9] and the book [10], for example.
An essential tool is the semiclassical approximation, i.e., mass correction for high excited
levels, see [11–13].

The paper is organized as follows. In Section 2, we reproduce and discuss the formulas
known in the literature with a focus on the proper time representation. In Sections 2.1 and 2.2,
we discuss the problems which appear. In Section 3, we consider the one-particle irreducible
(1PI) contribution. Section 4 gives conclusions of the study.

Throughout the paper, we use notations with h̄ = c = 1 for the reduced Planck’s
constant, h̄, and the speed of light, c.

2. The Mass and the Magnetic Moment of the Electron in a Magnetic Field

We consider the effective Dirac equation, i.e., the Dirac equation with loop corrections,

(i /D − m)ψ(x) +
∫

dx′ Σ(x, x′)ψ(x′) = 0, (1)

in one loop approximation. Here, x represents a four-dimensional coordinate, ψ is the wave
function, m denotes the mass of a particle. The covariant derivative is /D = γµDµ, with
γµ the Dirac matrices, Dµ = ∂µ − ieAµ, where e is the elementary charge, Aµ denotes the
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electromagnetic potential, the Greek indices take the values 0 (for the time coordinate), 1, 2,
and 3 (space), and the self-energy operator, Σ(x, x′), reads

Σ(x, x′) =
x´x

= −ie2Dµν(x, x′)γµS(x, x′)γν, (2)

where the wavy line represents the photon propagator, Dµν(x, x′), the doubled line repre-
sents dressed electron propagator and the dots represent interaction vertices. The spinor
propagator S(x, x′), which is ‘exact’ in the field Aµ, obeys

(i /D − m)S(x, x′) = δ(x − x′), (3)

where δ(x − a) is the Dirac delta function.
From Equation (1), for the electron, a mass,

M = m + ∆M, (4)

follows with a mass correction ∆M. In the given order of approximation, ∆M is the expecta-
tion value of the self-energy operator in the unperturbed states.

From here on, we consider a homogeneous magnetic field, H. Then, the mass correc-
tion is the average

∆M(N, ζ) = ⟨N, ζ | Σ(x, x′) | N, ζ⟩, (5)

=
∫

d3x
∫

d3x′ ψM,ζ(x⃗)Σ(x, x′)ψM,ζ(x⃗)

and it depends on the state of the electron. The eigenfunctions, taken in coordinate repre-
sentation, read ⟨x | N, σ⟩ = e−iEN tψN,ζ(x⃗), and they obey the Dirac equation

(i /D − m) | N, ζ⟩ = 0. (6)

The ψN,ζ(x⃗) are the known eigenspinors, and the one-particle energy is

EN =
√

m2 + p2
3 + 2eHN, N = 0, 1, . . . , (7)

where p3 is the momentum third space-component.
The states are numbered by N, and the spin projection is ζ = ±1. The number N

consists of two parts,

N = n +
1
2
(1 − ζ) (8)

where n = 0, 1, . . . numbers the Landau levels in the magnetic field. The ground state
has n = 0 and ζ = 1 (spin projection parallel to the field). The excited states are doublets,
which are degenerated on the tree level and split by the radiative correction.

As soon as ζ2 = 1, the mass correction (5) can be written in the form

∆M(N, ζ) = ∆M0(N) + ζ ∆Mζ(N), N = 1, 2, . . . , (9)

for the excited states. For the ground state, one has only

∆M(N, ζ) = ∆M0(0). (10)

A split like in the excited states is formally possible, but physically meaningless.
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Making a non-relativistic approximation in (7), one comes to

EN = m +
p2

3
2m

+ µBH
(

2n + 1 − g
ζ

2

)
+ . . . . (11)

For the free Dirac equation, g = 2 follows, and from the loop correction, one has

g = 2(1 + ae), (12)

where ae is the anomaly factor and µBae is the so-called anomalous magnetic moment.
Comparing Equation (11) with Equation (7), one identifies

∆M(N, ζ) = µBHae. (13)

This way, the anomaly factor becomes a function of both the field and the state.
For the calculation of the mass correction, there are two known methods. The first

starts from the representation of the electron propagator in terms of the eigenspinors
ψN,ζ(x) and the one-particle energies EN , which is an eigenfunction representation. This
way was used in Refs. [14,15]. The representation of the mass correction is in terms of an
integral over the photon loop momentum (in polar coordinates |k| and cos θ) and a sum
over the intermediate states of the electron. It is convenient for strong fields since in that
case only the lowest intermediate state contributes.

The second method uses the proper time representation of the propagators. In Ref. [16],
the spinor propagator in the magnetic field was represented this way by performing the
sum over the intermediate states. In Ref. [17], this representation was used to obtain an
integral representation of the self-energy operator, Σ(x, x′).

In Ref. [18], a similar result was obtained using the algebraic procedure of Schwinger [19].
This method allows us to obtain the result through bypassing the summation of the eigen-
functions. The method was refined in a subsequent paper [20], and we follow the represen-
tation given there.

We use the following notations instead of the ones used in Ref. [20]. We change the
integration variable y → x. For the energy E, we insert EN (7), and set p3 = 0. In addition,
we set m = 1 (except in the factor in front) and also e = 1 so that one has: E/m → EN ,
(E2 − m2)/m2 → 2NH and (E2 − m2)/(eH) → 2N. Finally, the prime is dropped: ζ ′ → ζ.
With this notation, Equation (32) from Ref. [20] reads

∆M(N, ζ) =
αm
2π

∫ ∞

0

dx
x

∫ 1

0
du e−iux/H (F − Fsub) , (14)

where

Fsub = 1 + u (15)

is the ultraviolet subtraction and

F = e−i(β−(1−u)x)2N W, (16)

W =
1√
∆
{cos(β − x)− iζEN sin(β − x) + u[cos(β + x)− iζEN sin(β + x)]

+ (1 − u)2NH W0},

W0 =
1 − u

∆
cos(β − x) +

u
∆

sin(x)
x

cos(β)− cos(β + x).

Equation (25) from Ref. [20] defines β as

tan(β) =
(1 − u) sin(x)

(1 − u) cos(x) + usin(x)/x
(17)
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and Equation (29) of Ref. [20] defines

∆ = (1 − u)2 + 2u(1 − u)
sin(x) cos(x)

x
+ u2

(
sin(x)

x

)2

, (18)

which appears in the denominator.
Actually, these notations are not convenient enough. For that reason, we rewrite the

notations. We start with the definition

h = 1 − u + u
sin(x)

x
e−ix . (19)

Multiplying h by its complex conjugate, one can see see that ∆ factorizes,

∆ = h h∗. (20)

Further, let us consider

1 + i tan(β) =
heix

(1 − u) cos(x) + usin(x)/x
, (21)

which allows one to write

e2i(β−x) =
h
h∗

. (22)

Next, let us consider W0 in Equation (16). We write the trigonometric functions as
sum/difference of the corresponding exponentials, and with Equation (22) one arrives at

W0 =
1 − h e2ix

2
√

h h∗
+ c.c. , (23)

where ‘c.c.’ denotes the complex conjugate. Using these formulas, we rewrite F in Equa-
tion (16) in the form

F =

(
h∗

h

)N
e−2iuxN W, (24)

W =
1

2h
(1 + ζEN)

(
1 + u e−2ix

)
+

1
2h∗

(1 − ζEN)
(

1 + u e2ix
)

+ (1 − u)
[

1 − h e2ix

2h h∗
+ c.c.

]
2NH.

In this representation, the first two terms are interrelated by the complex conjugation
and spin reversal: ζ → −ζ. The third term is of a real value.

The expression (24) can be simplified by keeping in the third term only the contribu-
tions from the ‘1’ in the numerator,

W =
1

2h

[(
1 + ue−2ix

)
(1 + ζEN)− (1 − u)e−2ix2NH

]
(25)

+
1

2h∗
[(

1 + ue2ix
)
(1 − ζEN)− (1 − u)e2ix2NH

]
+

1 − u
h h∗

2NH.
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Finally, one arrives at

W =
e−ix

h

[
cos(x)(1 + ζEN)−

1 − u
2

e−ix EN(EN + ζ)

]
(26)

+
eix

h∗

[
cos(x)(1 − ζEN)−

1 − u
2

eix EN(EN − ζ)

]
+

1 − u
h h∗

2NH.

The expression (26) coincides with that in Refs. [17] with σ = −ζ, up to an overall
factor EN , of which Ref. [17] has more in the denominator (probably a typo).

In Ref. [7], the expression for ∆M was taken over from Ref. [17] (using different no-
tations). Also using the operator method, in Ref. [21], a representation—Equation (3.18)
in Ref. [21]—was derived which coincides with the above one. This representation was
also taken over in Ref. [22], Equation (1), where, however, new notations were intro-
duced, s(x) = 1 − sin(x)/x, for instance. Regrettably, the last term in the second line
in Equation (1) [22] has a misprint and coincides with Equation (1) if one substitutes
−us(x) → 1 + usin(x)/x.

In Ref. [7], a further set of notations was introduced. In Equation (8), the energy
correction is split into real and imaginary parts. This is the expression which in Ref. [7]
was used for the numerical evaluation. It can be obtained from Equation (26) with the
application of Equation (7), which here takes the form E2

N = 1 + 2NH. Equation (26)
then reads:

W =
1

h h∗
(A + 2NH B + iζEN C) (27)

with

A = (1 − u)(1 + u cos(2x)) + u(1 + u)
sin(2x)

2x
, (28)

B = (1 − u)
(

1 − (1 − u) cos(2x)− u
sin(2x)

2x

)
,

C = 2u(1 − u) sin(x)
(
− cos(x) +

sin(x)
2x

)
.

Actually, Equation (28) is Equations (25) or (26), taken on a common denominator.
In order to investigate the structure of the expression F in Equation (14), it is necessary

to look for the singularities in the complex plane. Denoting x = ξ + iη, let us first look for
the zeros of the expression h (19),

h =
1

2ix

(
2i(ξ + iη)(1 − u) + u − ue2η(cos(2ξ)− i sin(2ξ)

)
. (29)

For h = 0, one obtains two equations:

e2η cos(2ξ) = 1 − 2
1 − u

u
η, (30)

e2η sin(2ξ) = −2
1 − u

u
ξ. (31)

Equation (31) can be resolved for η, and from the quotient of Equations (30) and (31),
one obtains:

η =
1
2

ln
(

1 − u
u

−2ξ

sin(2ξ)

)
, (32)
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tan(2ξ) =
−2(1 − u)ξ

u − 2(1 − u)η
. (33)

Inserting η (32) into Equation (33), it can be seen that there are solutions for

π(k + 1/2) < ξ < π(k + 1), k = 0, 1, . . . . (34)

For solutions (34), from Equation (32), follows that η > 0.
This way, the zeros of h are in the upper half-plane. Straightforwardly, h∗ has its zeros

in the lower half-plane. For u = 1, these zeros reach the real axis in ξ = πk. For u → 0,
the zeros go to infinity, x = π

(
k − 1

2

)(
1 + 1

ln(1/u)

)
, η ∼ 1

2 ln 1
u . The zeros are shown in

Figure 1.

π

2
π

3π

2
2π

ξ

-6

-4

-2

2

4

6

η

Figure 1. In the complex plane, x = ξ + iη, the locations of the zeros of h (19) (upper half-plane,
dashed) and of h∗ (lower half-plane). In these curves, the parameter u takes values from u = 1 at
η = 0 to u → 0 at η → ±∞.

For the ground state, N = 0, ζ = 1, the expressions simplify, and using Equations (24)
and (25), one comes to

Fground state =
1
h

(
1 + ue−2ix

)
. (35)

Since h has zeros only in the upper half-plane, according to the exponential factor
in Equation (14), one may rotate the integration path towards the negative imaginary
axis, x → −iy. The result is a well-converging expression which allows for an immediate
numerical evaluation. We repeat here in Figure 2 the representation given in Ref. [23].

For the excited states, the numerical evaluation is considerably more complicated. So
far, only one attempt has been undertaken [7], which we consider in Section 2.1 just below.
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0.2 0.4 0.6 0.8 1.0
H

-0.04

-0.02

0.02

0.04

0.06

ΔM0(0)/
αm

2π

Figure 2. The mass correction ∆M0(0), see Equation (10), for the ground state, divided by αm/(2π),
as a function of the magnetic field. In the minimum, this function takes small values and must be
additionally multiplied by α to compare with the rest mass.

2.1. On the Numerical Evaluation in Ref. [7] for the Excited States

In Section III of Ref. [7], it is mentioned that a numerical integration over the real x-axis
is complicated because of the singularities in x = πn. A rotation of the integration path
downwards in the complex plane, x → −iy, would cross the singularities (see Figure 1). In
Ref. [7], the authors use the following method. The u-integration is divided into two parts at
some u0. For 0 ≤ u ≤ u0, there are no problems on the real axis and a numerical integration
is possible. For u0 ≤ u ≤ 1, they turn the integration path towards the imaginary axis, see
Equation (11) in Ref. [7]. However, this is not possible. As one can see in Figure 1, there
are zeros in the denominator for all values of u. From this, we conclude that the numerical
results in Ref. [7] are questionable.

2.2. On the Strong Field Limit

The limit of the strong magnetic field, H → ∞, was calculated for the ground state in
Refs. [18,24]. Recently, using an expression similar to Equation (35) from Ref. [23], the limit
was recalculated, including the constant term,

∆M0(0) =
αm
2π

5
2

(
ln(2H)− γE − 3

2

)2
+ a +O

(
1
H

)
, (36)

a ≃ 4.028717,

where γE is the Euler’s constant.
For the low exited states (N = 1, 2, . . . ), there is only one calculation of the strong field

limit [24]. It is in terms of the eigenfunction method and it is only for the spin-dependent
part. It delivered

∆Mζ(N) ≃ αm
2π

ln(2H)

N
. (37)

This way, for a strong field, the mass correction is also positive.

2.3. The Mass Correction for Low-Lying Excited States

An attempt to calculate this mass correction from the formulas which were reproduced
in Section 2.2 above hits the following problem. When turning the integration path in (14)
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into the complex plane, x → −iy, besides the contributions from the poles which one
crosses, the following integral shows up:

∆M(N, ζ) =
αm
2π

∫ ∞

0

dy
y

∫ 1

0
du e−uy/H(F − Fsub) + pole terms. (38)

However, for y → ∞, one observes an asymptotic behavior, using Equations (19) and
(30) with x → −iy,

F =

(
u e2(1−u)y

u + 2(1 − u)y
+O(1)

)N[
y
u
(1 − ENζ) +

y
u + 2(1 − u)y

(1 + ENζ) +O
(

e−2y
)]

, (39)

where

h = 1 − u +
u
2y

+O
(

e−2y
)

, h∗ =
u
2y

e2y +O(1) (40)

was used. In addition, there is the factor e−uy/H in the integrand. This way, one observes
an exponential growth in the integrand for y → ∞ for H < uy

2(1−u)N , i.e., for all finite H.
Let us mention that this divergence is absent in the ground state, i.e., for N = 0. Also, this
divergence cannot be related to the infrared divergence of the mass operator Σ(x, x′) in
Equation (2), since ∆M in Equation (5) is taken in states. Now, one could speculate on a
cancellation from the pole contributions. But this is quite unlikely.

One may wonder how under such circumstances the weak-field expansion derived in
Refs. [18,25,26] may be possible. The point is that for real x an expansion in the powers of
u and x brings the power N down to factors N, and the resulting, oscillating integrals well
may give finite answers. And they do, as follows from the mentioned papers. However, it
is clear that the low-field expansion must be an asymptotic one.

3. The Contribution from the Tadpole Diagram

As observed quite recently in Ref. [8], 1PI diagrams can contribute to the effective
Lagrangian in a homogeneous background field. The feature is that a tadpole diagram does
not vanish. It contributes to the electron self-energy,

Σ1PI(x, x) = x x´

z

= ieγνDµν(x, z)jµ(z)δ(x − x′). (41)

The tadpole diagram can be derived from the one-loop Heisenberg–Euler (HE) La-
grangian (see, e.g., [27]) that

L1−loop
HE =

1
8π2

∫ dT
T3 e−mT2

[ √
2F T

tanh(
√

2F T)
− 2

3
T2F − 1

]
, (42)
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with F = 1
4 (FµνFµν). To mention is the possibility of deriving it from the worldline

methods as performed, for example, in Ref. [28] for the spinor propagator. Such a diagram
contributes a current (in Ref. [8] called a photon current),

jν(k) = ieBεµν3 kµδ(4)(k)
∂L1−loop

HE
∂F , (43)

where, for a constant purely magnetic field, B, directed along the z-axis, Fµν = −εµν3B,
F = B2/2, kµ is the 4-momentum, εµν3 is the antisymmetric Levi-Civita symbol, δ(4)(k) is
the four-dimensional Dirac delta, with [8]

∂L1−loop
HE
∂F =

e2

8π

[
4ζ ′(−1, χ)− χ (ζ ′(0, χ)− ln χ + χ)− 1

3
ln χ − 1

2

]
, χ =

m2

2eB
, (44)

following. In Equation (43), the indices µ and ν take only values 1 and 2. In Equation (44),
ζ(s, χ) stands for the Hurwitz zeta function.

As it stands, the expression (44) is zero due to the factor k in front of the delta function
and the general theory of distributions, and from symmetry reasons as well. However,
a more detailed investigation [8] made a regularization of the delta function by considering
a non-constant background field. The reason for the vanishing of Equation (43) is that a
constant background field cannot support momentum transfer and therefore the momen-
tum k must be zero. However, in a non-constant field, this argument cannot be applied and,
in the limit of removing the regularization, one comes to an undefined expression of the
type zero times infinity, to be considered in more details. The calculation realization rests
on the ‘local constant field approximation’ [29], which allows us to use the expression of
the one-loop effective Lagrangian for constant fields. This way, Ref. [8] calculated the 1PI
contribution to the two-loop HE Lagrangian.

A similar effect appears also for the mass correction of the electron. From the Feynman
rules and from Equation (41), a mass correction,

∆M1PI(N, ζ) = ⟨N, ζ | Σ1PI(x, x′) | N, ζ⟩, (45)

follows, which adds to ∆M(N, ζ) in Equation (5).
In the sense of some regularization, we take for the delta function in Equation (43)

the expression

δ
(4)
ϵ (k) =

e−k2/4ϵ

(4πϵ)2 , (46)

which is most convenient in the given case. Then, the mass correction ∆M1PI(n, ζ) in
Equation (45) can be calculated using the states | n, ζ⟩; these states are known, see, e.g., [30].
In order to be close to the notations of Ref. [30], we change the notation from N from
Section 2 to n, and note

| n, s, ζ⟩ = eip3z
√

L
eilφ

√
2π

√
γ√

Kn(Kn + m)

(
ξ+δζ,1 + ξ−δζ,−1

)
. (47)

where the following notations, also close to those in Ref. [30], are used: γ = B/2, Kn =√
m2 + p2

3 + 4γn and

ξ+ =


(Kn + m)In−1,s(ρ)e−iφ/2

0
p3 In−1,s(ρ)e−iφ/2

i
√

4γnIn,s(ρ)eiφ/2

, ξ− =


0

i(Kn + m)In,s(ρ)eiφ/2
√

4γn In−1,s(ρ)e−iφ/2

−p3 In,s(ρ)eiφ/2

, (48)
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where ρ = Br2/2 is the radial variable, ξ± are the spinor factors for spin projection ζ = ±1
and n = 0, 1, . . . enumerates the energy levels (7). These levels are degenerated with respect
to the orbital quantum number l, which is related by

l = n + s (49)

to the principal quantum number s = 0, 1, . . . and takes values −∞ < l < n. The radial
wave functions In,s(ρ) are given by

In,s(ρ) = (−1)l
√

n!
s!

ρ−l/2e−ρ/2L−l
n (ρ) (50)

in terms of Laguerre polynomials. Below, we set the electron mass m = 1.
Using Equations (47)–(50), the calculation of the matrix elements becomes just a

computing task. Since the dependence on the momentum p3 in the direction of the magnetic
field can be restored by a Lorentz transform, we restrict ourselves to p3 = 0. The mass
correction reads

⟨n, s, ζ|Σ1PI(x, x′)|n′, s′, ζ ′⟩ =
∫

d4x ψ̄n,s
ξ (x)ieγνψn′ ,s′

ξ ′ (x)
∫

d4z jµ(z)Dµν(z, x) . (51)

Using momentum representation for the current jµ and the Euclidean propagator,
one obtains: ∫

d4zjµ(z)Dµν(z, x) =
1

(2π)4

∫
d4k

e−ikx

k2 jν(k) (52)

=
2eBενµ3

(4πϵ)2

∫ ∞

0
dt

∂

∂xµ

∫
d4k e−

k2
4ϵ −ikx−tk2

=
ieB
32

∂L1−loop
HE
∂F ενµ3 xµ. (53)

We represent the vector x in Equation (53) as x = r
(

cos φ
sin φ

)
. It is to be multiplied by

the gamma matrices. Then,

x2γ1 − x1γ2 =
r
2i

(
(γ1 − iγ2)eiφ − (γ1 + iγ2)e−iφ

)
. (54)

With Equation (48), the spinor diagonal matrix elements turn into

ξ†
±(x2γ1 − x1γ2)ξ± = −2i

√
n(Kn + m)In,s(ρ)In−1,s(ρ). (55)

These matrix elements (55) are independent of the spin projection and, thanks to this,
cannot contribute to the anomalous magnetic moment. Further, there is no contribution to
the ground state (n = 0) and no contribution to a spin flip. As well, one can observe that
the dependence on the azimuthal angle, φ, dropped out so that, from Equation (47), the
conservation of angular momentum for non-diagonal matrix elements follows. Finally, one
has to insert Equations (47) and Equation (55) into Equation (45) and are left with a radial
integration, ∫ ∞

0
dρ

√
ρ In,n−l(ρ)In−1,n−l(ρ) =

√
n. (56)

so that one arrives at

∆M1PI(n, s) =
eB
16

∂L1−loop
HE
∂F

√
n

Kn

∫ ∞

0
dρ

√
ρ In,n−l(ρ)In−1,n−l(ρ). (57)

=
eB
16

∂L1−loop
HE
∂F

n√
1 + 2eB n

.
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Here, ∂L1−loop
HE /∂F is defined in Equation (44). As it turns out, this contribution to

the mass corrections does not depend on the orbital momentum, l, similar to Equation (5).
Examples for the dependence on the magnetic field are shown in Figure 3.

2 4 6 8 10 12 14
B

-0.005

0.005

ΔM

n=1

n=2

n=3

Figure 3. The mass correction ∆M1PI in Equation (57), as a function of the magnetic field, B, for a few
n values as indicated.

For the mass correction in a strong field, using the asymptotics of ∂L1−loop
HE /∂F derived

in Equation B.6 of Ref. [8] one obtains

∆M1PI(n, s) =
αe

48
√

2π

√
eBn ln

(
eB√

2

)
+O(

√
B). (58)

This way, the contribution from the tadpole graph follows the general expectation,
a negative contribution for small fields and a positive contribution for strong fields.

4. Conclusions

We reconsidered the calculation of the one-loop mass correction of the electron in a
homogeneous magnetic field. There are two kind of representations known in the literature.
One is in terms of eigenfunctions, and the other one uses the proper time representation
and the operator method. We focused on the second case and compared the corresponding
results obtained by different authors. In convenient notations, the result can be best written
in the form ∆M(N, ζ) in Equation (14), with W (26) (or (27)). Quite obvious misprints in
the various papers are identified.

For studying the structure of the integrand F, Equation (26) is the most convenient
since it has the simplest form of the denominators. On the real x-axis, one observes for
u = 1, simple poles in x = π

(
n + 1

2

)
, n = 0, 1, . . . . The ratio h/h∗ in front is regular, and

the last term in Equation (26) also has a simple pole if accounting for the integration over u
and the factor (1 − u) in the nominator. In the complex plane, one observes simple poles,
the locations of which are shown in Figure 1.

As for the ground state, there are coinciding results from all the studies referred to
here. The mass correction is shown in Figure 2 and its asymptotics for H → ∞ are given
in Equation (36). The finding demonstrates the stability of the ground state for arbitrary
strength of the magnetic field.

For the low excited states, a similar result was obtained numerically in Ref. [7]. How-
ever, the method used for the calculation, as laid out in Section III in Ref. [7], raises questions
as discussed in Section 2.1 here. More questions arise from the attempt to use the formulas
shown in Section 2 for N > 0. As shown in Section 2.3, the rotation into the complex plane,
x → −iy, results in an exponential growth for y → ∞, which should not have been there.

In addition, we calculated the so-far-overlooked contribution to the mass correction
from the tadpole. The findings show no addition to the anomalous magnetic moment
as well as no addition to the ground state energy. The tadpole contribution to the low
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excited states is shown in Figure 3. However, in order to compare this contribution with
the contribution from Equation (2), more studies are necessary.

It worth mentioning that for high excited states, N ≫ 1, which is of interest primarily
for synchrotron radiation, a semiclassical approach delivers quite simple formulas which
all demonstrate a growth in the mass correction in a magnetic field. We did not consider
those calculations in the present paper.

In summary, the existing calculation for the mass correction of the electron in a
magnetic field suggests no instability in QED. However, there are doubts in the correctness
of the mentioned calculations, and a recalculation is advised.
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Appendix A. Robin Boundary Condition

In this Appendix, we refer to the basic formulas with the Robin boundary conditions,
which are of interest in context with the Casimir effect and instabilities. The simplest case
is a scalar field in four dimensions, obeying the wave equation and the boundary condition

(∂2
t − ∂2

|| − ∂2
z)ϕ(x) = 0, (1 + β∂z)ϕ(x)|z=0 = 0 , (A1)

where ∂t = ∂/∂t, ∂|| = (∂/∂x, ∂/∂y) the underlining in x denotes a four-vector, β is some
parameter and we consider z ≥ 0. After a Fourier transform in time and with the directions
parallel to the plate,

ϕ(x) = e−iωt+ik||x|| φ(z), (A2)

the equation (−ω2 + k2
|| − ∂2

z)φ(z) = 0 follows. With the ansatz φ(z) = e−κz, from the
boundary condition (A1), κ = 1/β follows. One must assume β > 0 to obtain a normaliz-
able solution and to arrive at

ω2 = k2
|| − κ2 (A3)

for the frequency. For k2
|| > κ2, the frequency is real. This solution describes a surface

mode (known, for example, on the surface of metals). However, for k2
|| < κ2, the frequency

becomes imaginary and there will be a solution exponentially increasing in time. This is
the mentioned instability, which is typically excluded from investigating the Casimir effect.
It is interesting to note the similarities between Equations (A3) and (11).
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21. Baǐer, V.N.; Katkov, V.M.; Strakhovenko, V.M. Operator approach to quantum electrodynamics in an external field: The mass

operator. Sov. Phys. JETP 1975, 40, 225–232. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/40/2/p225?a=list (accessed
on 24 January 2024).

22. Baı̌er, V.N.; Katkov, V.M.; Strakhovenko, V.M. Structure of the electron mass operator in a homogeneous magnetic field close to
the critical strength. Sov. Phys. JETP 1990, 71, 657–666. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/71/4/p657?a=list
(accessed on 24 January 2024).

23. Bordag, M. On instabilities caused by magnetic background fields. Symmetry 2023, 15, 1137. https://doi.org/10.3390/sym15061137.
24. Ternov, I.M.; Bagrov, V.G.; Bordovitsyn, V.A.; Dorofeev, O.F. Concerning the anomalous magnetic moment of the electron. Sov.

Phys. JETP 1969, 28, 1206–1209. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1206?a=list (accessed on 24
January 2024).

25. Newton, R.G. Radiative effects in a constant field. Phys. Rev. 1954, 96, 523–528. https://doi.org/10.1103/PhysRev.96.523.
26. Consoli, M.; Preparata, G. On the stability of the perturbative ground state in non-abelian Yang-Mills theories. Phys. Lett. B 1985,

154, 411–417. https://doi.org/10.1016/0370-2693(85)90420-4.
27. Dunne, G.V. Heisenberg-Euler effective lagrangians: Basics and extensions. In From Fields to Strings: Circumnavigating Theoretical

Physics; Shifman, M., Vainstein, A., Wheater, J., Eds.; World Scientific: Singapore, 2005; pp. 445–522. https://doi.org/10.1142/97
89812775344_0014.

28. Ahmadiniaz, N.; Bastianelli, F.; Corradini, O.; Edwards, J.P.; Schubert, C. One-particle reducible contribution to the one-loop
spinor propagator in a constant field. Nucl. Phys. B 2017, 924, 377–386. https://doi.org/10.1016/j.nuclphysb.2017.09.012.

29. Karbstein, F.; Shaisultanov, R. Stimulated photon emission from the vacuum. Phys. Rev. D 2015, 91, 113002. https://doi.org/10.1
103/PhysRevD.91.113002.

30. Sokolov, A.A.; Ternov, I.M. Radiation from Relativistic Electrons; American Institute of Physics Translation Series; American Institute
of Physics: New Tork, NY, USA, 1986. Available online: https://archive.org/details/radiationfromrel0000soko/ (accessed on
24 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0550-3213(78)90377-2
https://doi.org/10.1016/0550-3213(78)90377-2
https://doi.org/10.1140/epjc/s10052-020-7711-6
https://doi.org/10.1103/PhysRevD.49.5582
https://doi.org/10.1007/JHEP03(2017)108
https://doi.org/10.1103/RevModPhys.38.626
https://archive.org/details/isbn_080129455
https://doi.org/10.1070/PU1970v013n02ABEH004234
https://doi.org/10.1143/PTP.70.1375
https://doi.org/10.1143/PTP.70.1375
https://doi.org/10.1016/0031-8914(51)90038-9
https://doi.org/10.1016/0550-3213(72)90285-4
https://doi.org/10.1016/0550-3213(72)90285-4
https://doi.org/10.1103/PhysRevD.8.3446
https://doi.org/10.1103/PhysRevD.10.1342
https://doi.org/10.1103/PhysRevD.10.1342
http://jetp.ras.ru/cgi-bin/e/index/e/40/2/p225?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/71/4/p657?a=list
https://doi.org/10.3390/sym15061137
http://jetp.ras.ru/cgi-bin/e/index/e/28/6/p1206?a=list
https://doi.org/10.1103/PhysRev.96.523
https://doi.org/10.1016/0370-2693(85)90420-4
https://doi.org/10.1142/9789812775344_0014
https://doi.org/10.1142/9789812775344_0014
https://doi.org/10.1016/j.nuclphysb.2017.09.012
https://doi.org/10.1103/PhysRevD.91.113002
https://doi.org/10.1103/PhysRevD.91.113002

	Introduction
	The Mass and the Magnetic Moment of the Electron in a Magnetic Field
	On the Numerical Evaluation in Ref. gepr94-49-5582 for the Excited States
	On the Strong Field Limit
	The Mass Correction for Low-Lying Excited States

	The Contribution from the Tadpole Diagram
	Conclusions
	Appendix A. Robin Boundary Condition
	References

