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Abstract: The focus of this paper is on analyzing the role and the choice of parameters in sociophysics
diffusion models by leveraging the potentialities of sociophysics from a mathematical programming
perspective. We first present a generalised version of Galam’s opinion diffusion model. For a given
selection of the coefficients in our model, this proposal yields the original Galam’s model. The
generalised model suggests guidelines for possible alternative selection of its parameters that allow it
to foster diffusion. Examples of the parameters selection process as steered by numerical optimisation,
taking into account various objectives, are provided.
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1. Introduction

Opinion diffusion is a fundamental aspect of human interaction, playing a pivotal role
in the spread of innovations, and the emergence of consensus. Understanding how opinions
spread and evolve within social networks is crucial for comprehending the emergence of
collective behavior, the formation of public opinion, and the polarisation of societies.

Social sciences provide plenty of applications, where the importance of diffusion dy-
namics is studied and witnessed, such as marketing (see, e.g., [1–3]), agent-based modelling
(see, e.g., [4]), and sociophysics, where the papers of Serge Galam serve as a guide for
researchers (see, e.g., [5]).

Galam’s opinion diffusion model (see [6]) provides a framework for investigating
and understanding the dynamics of opinion formation in social systems. Galam’s model
sheds light on the mechanisms that drive opinion dynamics. In particular, Galam’s model
describes the formation of collective opinion convergence processes using concepts from
statistical physics. To analyse them, along with several generalisations of the model,
the authors of the current paper have proposed the alternatives in Ref. [7] (showing some
drawbacks when applying Galam’s model with a relatively small number of agents), and in
Ref. [8] (where a novel subset of agents, namely the opinion leaders, are introduced, to duly
represent a possible communication bias). Furthermore, additional literature covering a
number of keynote issues can be found in Refs. [5,9,10] and the references therein.

The standard Galam’s model in Ref. [6] assumes that individuals in a group influence
and are influenced by their peers. After several iterations within repeated group discussions,
each agent may consequently influence the opinion diffusion. Galam’s stylised model
simplifies the complexity of opinions by considering a binary state, where individuals
can adopt either of two possible opinions, thus allowing a straightforward mathematical
analysis of the diffusion process.

We suggest a generalisation of Galam’s model and then offer evidence in an optimi-
sation framework that some of the diffusion parameters can be successfully adjusted in
order to steer the diffusion process. Combining Galam’s model with specific Linear Pro-
gramming (LP) formulations, we take into account both theoretical and numerical results
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concerning the role of the model’s parameters in order to better control the dynamics of
the diffusion. Namely, we aim at maximising the probability that an opinion can spread
among agents.

This paper is organised as follows. The essential characteristics of Galam’s model [6]
are recapped in Section 2. Then, in Section 3, we present and discuss a generalisation
of Galam’s model. The optimisation of the parameters of the new model via linear pro-
gramming allows one to speed up opinion diffusion at a fixed step of the process: the
optimisation problem is discussed in Section 4, while Section 5 provides numerical ex-
amples of its resolution. Section 6 discusses a dynamic programming extension of the
optimisation problem that optimises the values of the parameters along the whole diffusion
process, till convergence. Section 7 contains final remarks and concludes the paper.

2. Recap of Galam’s Model

This section reviews the foundational elements of Galam’s model [6]. Think of a
group of N people (agents), each of whom may hold one of two opposing views (let
us say, ‘+’ or ‘−’), regarding a specific issue. These agents meet, for several repeated
rounds within subgroups of smaller cardinality, to converse and possibly change one
anothers’ minds.

Each agent at round (time) t has a probability ak of being a member of a subgroup of
size k, and L is the maximum allowed size of groups. In the original formulation of Galam’s
model, the values a1, . . . , aL are exogenous parameters such that

L

∑
k=1

ak = 1, ak ≥ 0, k = 1, . . . , L.

Joining a group discussion at time t, any agent may, at the beginning of the subsequent
time t + 1, modify their position (e.g., ‘+’ becomes ‘−’ or vice versa) in accordance with
a unique law: the majority rule. Indeed, all agents in a subgroup take the position of the
majority in that group in the end of time t. The rule for reversing opinion is slightly biased
in favour of the negative opinion ‘−’, since tie breaks are in favour of ‘−’. This may lead to
a substantial bias in the case where the subgroup has an even number of members.

Calling P+(t) the probability that an agent opinion is ‘+’ at time t, the probability of
opinion ‘−’ is then P−(t) = 1− P+(t). The probability P+(t + 1) is estimated in Ref. [6] as

P+(t + 1) =
L

∑
k=1

ak

k

∑
j=b k

2+1c
Ck

j P+(t)j{1− P+(t)}k−j, (1)

where bzc is the largest integer less or equal to z, and Ck
j is the binomial coefficient, (k

j).
Let N+(t) (N−(t) = N − N+(t)) be the number of agents who at time step t have

opinion ‘+’ (‘−’). Observe that for small values of N, setting P+(0) = N+(0)/N, where
N+(0) is the number of agents thinking ‘+’ at time t = 0, for any t ≥ 1 the quantity P+(t)
may possibly differ from the ‘actual’ frequency of ‘+’, i.e., N+(t)/N (see [7]). Nevertheless,
the estimated probability P+(t + 1) always lies in the interval [0, 1] being

k

∑
j=b k

2+1c
Ck

j P+(t)j{1− P+(t)}k−j <
k

∑
j=0

Ck
j P+(t)j{1− P+(t)}k−j = 1.

A relevant role in the model is taken by the value P̂+ such that

when P+(0) > P̂+ then lim
t→∞

P+(t) = 1,

when P+(0) < P̂+ then lim
t→∞

P+(t) = 0,

when P+(0) = P̂+ then P+(t) = P+(0), ∀ t > 0.
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P̂+ constitutes the threshold value such that when N+(0)/N is greater than P̂+, then
all agents will eventually have opinion ‘+’. Conversely, when t → ∞ all the agents will
definitely think ‘−’ if N+(0)/N < P̂+. The value P̂+ is the fixed point of Equation (1)
and is called the killing point or tipping point of the model. In Figure 1, one can observe
the dynamics described by relation (1), when the largest cardinality L of the subgroups
takes integer values in the interval [3, 20] and ak = 1/L, for any k: for each of the 18
curves, the killing point is identified by the intersection with the bisector line other than the
extreme points (0, 0) and (1, 1). Observe that for small values of L no killing point appears
(or equivalently, it coincides with the extreme point (1, 1)). Figure 2 shows a zoomed in
perspective of Figure 1.

Figure 1. Dynamic curves described by relation (1), when the largest cardinality L of the subgroups
takes integer values in the interval [3, 20] and ak = 1/L, for any k.

Figure 2. Dynamic curves described by relation (1), when the largest cardinality L of the subgroups
takes integer values in the interval [3, 20] and ak = 1/L, for any k: magnification of the area of
intersections among curves.

3. Capturing Additional Dynamics Using a Generalised Galam’s Model

According to model (1), a strict majority of members with positive opinion is a neces-
sary and sufficient condition to have opinion ‘+’ for all the subgroup members.
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Since the ultimate choice in a group is frequently the product of a discussion, rather
than a simple tally of the two opposing viewpoints in the group, a rule that is so rigorous
yet so straightforward could not correctly reflect the actual opinion dynamics in practice.
As an illustration, think about the propagation of political opinions. The probability that
everyone in the group would share the same view (e.g., +) at the close of a conversation
may rise smoothly with the number of members who had that opinion prior to the meeting.
As a second application, the reader may consider the audience of social networks, where
the dynamics of information spreading was widely investigated in the dedicated literature
(see, e.g., [11]).

Accordingly, we suggest to generalise Galam’s model (1) taking into account a softer
dynamics of opinion change, i.e., without using rigid majority as a necessary and sufficient
condition to shift the entire group to the same view. In particular, we assume that after
the conversations, all agents in a group will have opinion ‘+’ with a probability αk

j that
is dependent on the size k of the group and the number j of agents that had opinion ‘+’
before the discussion. We use the following definition to model the relationship between
the probabilities of having an opinion ‘+’ before (i.e., P+(t)) and after (i.e., P+(t + 1))
discussion (see [12] for a preliminary version of the model):

P+(t + 1) =
L

∑
k=1

ak

k

∑
j=0

αk
j Ck

j P+(t)j{1− P+(t)}k−j. (2)

Model (2) generalises model (1), since it is possible to select indeed the probabilities
{αk

j } that exactly replicate model (1) (see also Figure 3):

αk
j =


0 if j <

⌊ k
2
+ 1
⌋

,

1 if j ≥
⌊ k

2
+ 1
⌋

.

(3)

Figure 3. For a given 1 ≤ k ≤ L, the model (3) considers the above step-shaped choice for the
coefficients {αk

j }. In particular, if j < bk/2 + 1c then αk
j = 0, otherwise αk

j = 1, so that this choice
corresponds exactly to obtain the original Galam’s model (1).

As mentioned, probabilities {αk
j } should reasonably increase with the number j of

‘+’ in a subgroup, and decrease with respect to the size of the group k. In this regard, it is
reasonable to expect for the probability αk

j to become negligible when the number j of ‘+’ in
a subgroup is relatively small (i.e., much lower than the strict majority), and to become close
to 1 as the number of ‘+’ noticeably increases (i.e., higher than strict majority). In general,
the probability that all agents in the subgroup will adopt the opinion ‘+’ is conceivably
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a function rising from zero to one as j increases. If one assumes that this function of j is
linear, one may precisely define the probabilities αk

j as (see Figure 4)

αk
j =



0 , if j <
⌊ k

2
+ 1
⌋
+ zk

j − h,

1
2
+

[
j−
(⌊

k
2 + 1

⌋
+ zk

j

)]
2h

, if
⌊ k

2
+ 1
⌋
+ zk

j − h ≤ j <
⌊ k

2
+ 1
⌋
+ zk

j + h,

1 , if j ≥
⌊ k

2
+ 1
⌋
+ zk

j + h.

(4)

Figure 4. For a given 1 ≤ k ≤ L, the model (4) considers the above piecewise-linear choice for the
coefficients {αk

j }, where zk
j represents a shift with respect to the abscissa bk/2 + 1c, and 1/(2h) is the

slope of the ramp.

When zk
j = h = 0, the probabilities defined in Equation (4) are exactly the same as in

Equation (3). The value of zk
j in (4) represents a shift (either positive or negative) from the

value bk/2 + 1c, while the slope of the ramp in Figure 4 is 1/(2h).
To better grasp the geometric insight behind the choice of the parameters in (4), let

us consider the simple numerical example reported in Ref. [6], where L = 4, a1 = 0,
and a2 = a3 = a4 = 1/3 (and h = zk

j = 0 for all j and k). As reported in Ref. [6], the
killing point (KP) lies in between 0.84 and 0.87 (see Figure 5). Then, in Figure 6, there is
also the model (2) with the choice (4), after setting h = zk

j = 0.5 for any j and k. One can
immediately infer that the dynamics of Galam’s model [6] is definitely spoiled when the
choice for the coefficients {αk

j } in Equation (3) is replaced by Equation (4). Equivalently,
even in case P+(t) = 1 (complete consensus among agents to think +) then the choice (4)
imposes a regression towards the stable point given by the origin.

Hence, the presence of a killing point for Galam’s model seems to be strictly related to
the expression (1), and introducing the coefficients {αk

j } definitely also spoils the killing
point. Moreover, one observes that, in case the majority rule is not explicitly applied in
Equation (1), then the dynamics of the model is strongly altered.

Nevertheless, the model (2) retains a number of properties and can suggest fruitful
results, following both of the next guidelines:

• it provides clues on the perspective for studying the process of diffusion of informa-
tion;

• it may suggest proper ways to control information spreading among agents.
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Figure 5. The numerical example from Ref. [6], with L = 4, a1 = 0, a2 = a3 = a4 = 1/3 and
probabilities (3).

Figure 6. The numerical example from Ref. [6], with L = 4, a1 = 0, a2 = a3 = a4 = 1/3 but
probabilities (4).

At least a couple of intriguing issues in applications can steer the choice of the coeffi-
cients {αk

j }, ranging from small–medium- to large-scale (number of agents) applications:

• One Period Analysis. One may assess values for {αk
j } so that, considering at time t the

probability P+(t), one miximizes the probability P+(t + 1) at time t + 1. In this regard,
the values {αk

j } represent costs for steering the information among agents and fostering

the positive opinion: the larger {αk
j } (i.e., higher costs) the larger the probability to

convey a group to opinion ‘+’. Certainly, the combination of the proper values for
each of the coefficients {αk

j } is strongly related to the value P+(t), the probabilities

{ak}, and the binomial coefficients Ck
j ;

• Multi-Period Analysis. Similarly to the previous item, one may decide to select {αk
j }

such that, considering again at time t the probability P+(t), one miximizes the probabil-
ity P+(T) at time T > t, and compute the entire sequence
P+(t + 1), P+(t + 2), . . . , P+(T) of intermediate probabilities.
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The last two scenarios can be declined in a variety of contexts, including production
and marketing, where consumers play the role of agents and the aforementioned per-
spectives may be the answer to the question: what is (if any) the necessary extra effort
in terms of advertising campaign, in order to promote a certain spread of the products
or customers’ expectations on items? In this regard, the quantities {αk

j } summarise the
resulting effort, while from a mathematical programming perspective they represent un-
knowns to be assessed. This also suggests that a number of additional questions may arise
adopting the model (2), mapping relevant practical instances where a tentative forecast
is sought in order to plan the use of (possibly scarce) resources to control the process of
diffusion of the information. For the sake of brevity, we itemise below some proposals that
are representative but not exhaustive:

• Feasibility Problem. Given the value of P+(t) and the target value P̄, one may deter-
mine a set of values for the coefficients {αk

j } such that, starting at t from P+(t), at time
T > t, P+(T) ≥ P̄;

• Focus Group Problem. Given the value of P+(t) and the target value P̄ and the time
T > t, one may be interested to determine a set of values for the coefficients {αk

j }

such that α
(k)
m ≤ αk

j ≤ α
(k)
M , where αm, αM are possible bounds, and P+(T) ≥ P̄. This

scenario models a specific interest on those subgroups of cardinality k.

4. Single Period Maximisation of Diffusion

As from the analysis in Section 3, one of the possible proposals to couple the dynamics
described through the model (2) with a single period optimisation framework, is given by
the following LP scheme:

max
α

L

∑
k=1

ak

k

∑
j=0

αk
j Ck

j P+(t)j{1− P+(t)}k−j, (5)

αk
j ≤ αk

j+1 j = 0, 1, . . . , k− 1; k = 1, . . . , L, (6)

αk
j ≥ αk+1

j j = 0, 1, . . . , k; k = 1, . . . , L− 1, (7)

L

∑
k=1

k

∑
j=0

αk
j ≤ b(t), (8)

0 ≤ αk
j ≤ 1 j = 0, 1, . . . , k; k = 1, . . . , L. (9)

The last optimisation problem assumes that the value P+(t) is given, so that both the
objective function and the constraints are linear in the set {αk

j }. Though the meaning asso-
ciated with the objective function is relatively clear, for the constraints some clarifications
seem necessary:

• the constraints in Equation (6) state that for a given dimension k of a subset, larger
values of the number of agents thinking ‘+’ imply a larger probability αk

j ;

• similarly, in the constraints in Equation (7), when the number of agents thinking ‘+’
remains constant, the larger the set cardinality (i.e., k), the smaller the probability αk

j ;

• the constraint in Equation (8) expresses the overall cost (i.e., it is a budget constraint)
allowed to assess the probabilities {αk

j }, at time t;

• since the quantities {αk
j } need to represent probabilities, they are required to fulfill

also the constraint (9).



Physics 2023, 5 943

In order to avoid either infeasible or straightforward solutions for the optimisation
Problems (5)–(9), the following lemmas gives some indications on the choice of the parame-
ter b(t), for any t (for a proof, see [12]).

Lemma 1. Let one be given the linear Programs (5)–(9) with the choice (1 ≤ k ≤ L and 0 ≤ j ≤ k)

αk
j =


0, f or any j <

⌊
k
2 + 1

⌋
,

1, f or any j ≥
⌊

k
2 + 1

⌋
.

(10)

Then, relations (10) satisfy the constraints (6), (7) and (9). Moreover, if Equation (10) also
satisfies Equation (8), then the value of the objective function in Equation (5) coincides with
P+(t + 1) in Equation (1).

Note that Lemma 1 gives a straightforward idea of the fact that the solution of the linear
Programs (5)–(9) is substantially nothing else but a generalisation of Equation (1). Further-
more, the next result will give a precise indication on the possible values for the budget
b(t) in Equation (8).

Lemma 2. Let one be given the optimisation problems (5)–(9) and let {αk
j } be assigned as in

Equation (10), for any 1 ≤ k ≤ L and 0 ≤ j ≤ k. Then,

L

∑
k=1

k

∑
j=0

αk
j =



(
L
2

)2
+

L
2

, when L is even,

(
L− 1

2

)2
+ L, when L is odd.

(11)

Note that the right sides of Equation (11) explicitly give some hints for the selection of
the parameter b(t) in Equation (8), both whether in case L it is even or it is odd.

Regarding some technicalities associated with the solution of the optimisation
problems (5)–(9), one observes that it is a continuously differentiable problem, where
all the functions are linear. Hence, it is a convex problem, so that the set of all its solutions
(possibly an empty set or a singleton) is a convex set. This implies that for any given pair
of its solutions, all the points in the segment joining them will be solutions, too. Moreover,
being a linear program, all its (possible) solutions will lie on vertices of the feasible set,
and not in the interior of the feasible set. As is known, this makes its solution relatively
simple (throughout any solver based on the simplex method) and achievable in polynomial
time. Hence, large-scale instances are well tractable and allow for a scalable solution in
a number of applications with a great number of agents (e.g., problems involving social
media or large social groups).

We complete this section highlighting that one further generalisation of the linear pro-
grams (5)–(9) suggests to disaggregate the budget constraint and to replace the inequality (8)
by the set of constraints,

k

∑
j=0

αk
j ≤ bk(t), k = 1, . . . , L.

Observe that the value bk(t), for any k, represents a budget devoted to possibly affect
the solution after working uniquely on the subsets of cardinality k. This increases the
flexibility of the model without compromising its overall complexity (being the resulting
model yet a linear program).
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5. Preliminary Numerical Experience

This Section is devoted to provide a numerical experience where the potentialities
of the formulations (5)–(9) are exploited. In this regard, the investigation here is limited
to a couple of meaningful instances. The first one is a small-scale (number of unknowns)
problem, while the second one attempts to scale the first’s by 100.

5.1. Small-Scale Instance

Regarding the value of the coefficients in (5)–(9), we consider for the small-scale
instance the following setting:

L = 10,
{ak} = {0.1, 0, 0.15, 0, 0.3, 0, 0.3, 0, 0.15, 0},
P+(t) = 0.65.

The above choice corresponds to possibly allow only subgroups of dimensions 1,
3, 5, 7, and 9, with probabilities that include null values and possibly repeated values.
Furthermore, we set the initial percentage of the population thinking ‘+’ to P+(t) = 65%.
Finally, in order to avoid an empty feasible set in Equations (5)–(9) we also selected,
respectively, the values b(t) = 5 and b(t) = 10, based on Lemma 2. The outcomes of our
numerical experience are obtained using the solver CPLEX 20.1.0.0 available on the NEOS
Server platform [13]. Let us remark that CPLEX is definitely among the best and faster
solvers for LP, along with the alternative solver BARON. Our numerical experience on the
above two instances is summarised as follows:

• b(t) = 5: the problems (5)–(9) is coded using AMPL (A Mathematical Programming
Language; see [14,15]). The presolve tool in CPLEX eliminated 65 constraints from
the formulation, so that the simplified problem was reduced to 65 variables and 110
linear inequality constraints. Regarding the final solution, CPLEX performed 13 dual
simplex iterations (i.e., iterations of a method for LP which represents the counterpart
of the simplex method, after exploiting the duality theory), with an overall time for
the solution not larger than a couple of seconds. Finally, the value of P+(t + 1) found
by the solver is

P+(t + 1) = 0.245428625

with the set of variables (αk
j )
∗ given by

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
j = 0 0 0 0 0 0 0 0 0 0 0
j = 1 1 0 0 0 0 0 0 0 0 0
j = 2 . 0 0 0 0 0 0 0 0 0
j = 3 . . 2/3 2/3 2/3 0 0 0 0 0
j = 4 . . . 2/3 2/3 0 0 0 0 0
j = 5 . . . . 2/3 0 0 0 0 0
j = 6 . . . . . 0 0 0 0 0
j = 7 . . . . . . 0 0 0 0
j = 8 . . . . . . . 0 0 0
j = 9 . . . . . . . . 0 0
j = 10 . . . . . . . . . 0

• b(t) = 10: again the problem (5)–(9) is coded using AMPL and the presolve tool in
CPLEX eliminated 65 constraints from the formulation, so that again the simplified
problem was reduced to 65 variables and 110 linear inequality constraints. CPLEX
performed 18 dual simplex iterations with an overall time for computation similar to
the case where it is b(t) = 5. Finally, the value of P+(t + 1) found by the solver is
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P+(t + 1) = 0.4392275888

with the set of variables (αk
j )
∗ given by the matrix,

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
j = 0 1 0 0 0 0 0 0 0 0 0
j = 1 1 0 0 0 0 0 0 0 0 0
j = 2 . 0 0 0 0 0 0 0 0 0
j = 3 . . 1 1 1 0 0 0 0 0
j = 4 . . . 1 1 0.285714 0.285714 0 0 0
j = 5 . . . . 1 0.285714 0.285714 0 0 0
j = 6 . . . . . 0.285714 0.285714 0 0 0
j = 7 . . . . . . 0.285714 0 0 0
j = 8 . . . . . . . 0 0 0
j = 9 . . . . . . . . 0 0
j = 10 . . . . . . . . . 0

Note that while allowing a larger value of the budget (for example, b(t) = 10),
the solver is able to select a larger number of nonzero unknowns, so that the final
value of P+(t + 1) is almost doubled with respect to the case b(t) = 5. In actual
applications, this implies that, in order to obtain almost twice the effect of the previous
case, on this instance twice the value of the budget must be allowed.

5.2. Large-Scale Instance

Here, we focus on the same instance of Section 5.1, where conversely, a larger number
of unknowns is considered. The novel setting of the parameters for the solver are given
as follows: 

L = 1000
ak = 1/L, k = 1, . . . , L,
P+(t) = 0.65.

The above choice corresponds to possibly allow all the subgroups with the same
probability, and again the initial percentage of the population thinking ‘+’ is equal to
P+(t) = 65%. Similarly to the small-scale instance, we consider two values for the budget,
b(t) = 50 and b(t) = 100. The computation is again performed adopting the solver
CPLEX 20.1.0.0 on the NEOS Server [13]. The outcomes of the resulting two instances are
summarised as follows:

• b(t) = 50: the problems (5)–(9) is coded using AMPL and the presolve tool in CPLEX
eliminated 501,500 constraints from the formulation. The overall simplified prob-
lem contained 501,500 variables and 1,001,000 linear inequality constraints. CPLEX
performed 192 dual simplex iterations with a time of computation smaller than 20 s,
showing that the linear model can well scale the time of computation. The final value
of P+(t + 1) found by the solver is

P+(t + 1) = 0.01061571566

with the set of variables (αk
j )
∗ given by
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k ≥ 13
j = 0 1 0 0 0 0 0 0 0 0 0 0 0 0
j = 1 1 1 1 0 0 0 0 0 0 0 0 0 0
j = 2 . 1 1 1 1 0 0 0 0 0 0 0 0
j = 3 . . 1 1 1 1 1 0 0 0 0 0 0
j = 4 . . . 1 1 1 1 1 0 0 0 0 0
j = 5 . . . . 1 1 1 1 1 1 0 0 0
j = 6 . . . . . 1 1 1 1 1 1 0 0
j = 7 . . . . . . 1 1 1 1 1 0.8333 0
j = 8 . . . . . . . 1 1 1 1 0.8333 0
j = 9 . . . . . . . . 1 1 1 0.8333 0
j = 10 . . . . . . . . . 1 1 0.8333 0
j = 11 . . . . . . . . . . 1 0.8333 0
j = 12 . . . . . . . . . . . 0.8333 0
j = 13 . . . . . . . . . . . . 0
j = 14 . . . . . . . . . . . . 0
j > 14 . . . . . . . . . . . . 0

• b(t) = 200: the outcomes are quite similar to the case where b(t) = 50, with 501,500 in-
dicating the overall number of variables and 1,001,000 the linear inequality constraints.
CPLEX performed 30,854 simplex iterations with a time of computation smaller than
20 s, showing again that the linear model can well scale the time of computation.
The final value of P+(t + 1) found by the solver was now

P+(t + 1) = 0.0242061448

and we do not report the value of the unknowns for the sake of simplicity.

Observe that in both the last two examples, given that subgroups are allowed to be
quite large, despite relatively high budget values, the levels reached by the probabilities
P+(t + 1) are quite low.

As a general achievement, we can immediately describe the pattern of the nonzero
unknowns which was respected in all four numerical tests reported above. In particular, we
can prove that the solution of the formulations (5)–(9) only fills the principal submatrix of
unknowns of order h× h, depending h on the value of the budget parameter along with the
number of possible subgroups L. Finally, this also allows one to straightforwardly assess a
number of null unknowns and possibly reduce the complexity of the overall formulation.

6. A Multi-Period Model

This Section considers a multi-period reformulation of the LP (5)–(9), in order to further
generalise the model (2). In particular, in place of the single-period model (5)–(9), where
at time step t the quantity P+(t + 1) is maximised starting from P+(t), we can consider a
multi-period approach with the ultimate goal of maximising P+(T + 1), where T is the time
horizon. The latter approach is summarised in the following Nonlinear Program (NLP):
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max
α

P+(T + 1), (12)

P+(t + 1) =
L

∑
k=1

ak

k

∑
j=0

αk
j (t)C

k
j P+(t)j(1− P+(t))k−j, t = 1, . . . , T, (13)

αk
j (t) ≤ αk

j+1(t) t = 1, . . . , T; j = 0, 1, . . . , k− 1; k = 1, . . . , L, (14)

αk
j (t) ≥ αk+1

j (t) t = 1, . . . , T; j = 0, 1, . . . , k; k = 1, . . . , L− 1, (15)

L

∑
k=1

αk
j (t) ≤ bj(t) t = 1, . . . , T; j = 0, 1, . . . , k, (16)

0 ≤ αk
j (t) ≤ 1 t = 1, . . . , T; j = 0, 1, . . . , k; k = 1, . . . , L. (17)

The above NLP includes the unknowns

αk
j (t), t = 1, . . . , T; j = 0, 1, . . . , k; k = 1, . . . , L,

which represent a larger number of variables with respect to Equations (5)–(9). This implies
that the larger the time horizon T, the larger the number of unknowns of the resulting
problem formulation. Moreover, as already remarked, Equations (12)–(17) represents an
NLP, which in general increases the difficulty of its solution. In particular, the nonlinearities
in Equation (13) might yield a nonconcave overall maximisation problem, which implies
that a certain number of local maxima (which are not global) might arise. In addition,
unlike Equations (5)–(9), the feasible set of Equations (12)–(17) is no longer a polyhedron,
so that the final solutions are not necessarily located on the boundary of the feasible set.
As a consequence, the choice of the starting value P+(1) in Equation (13) becomes a key
factor for at least a couple of reasons:

• the sequence {P+(t)} strongly depends on P+(1), in a similar fashion of the single-
period formulation (5)–(9);

• the choice of {P+(t)} strongly affects the local maximum provided by the solver
adopted for Equations (12)–(17).

Regarding the constraints in Equation (13), observe that the constraints just state a
recursion for the function in Equation (2), at each time step. Moreover, the constraints in
Equations (14), (15), and (17) have a similar meaning of the constraints in Equations (6), (7),
and (9), for the single-period formulation. Finally, the budget constraints in Equation (16)
have a possible double formulation, due to the multi-period scheme.

Proposition 1. Let the sequence {αk
j (t)} be a global solution of Equations (5)–(9), for any t =

1, . . . , T. Then, {αk
j (t)}t=1,...,T is a global solution of Equations (12)–(17).

Proof. Observe that from relation (2), one has the following equalities:

P+(t + 1)− P+(t) =

T+1

∑
t=2

[
L

∑
k=1

ak

k

∑
j=0

αk
j (t)C

k
j P+(t)j(1− P+(t))k−j −

L

∑
k=1

ak

k

∑
j=0

αk
j (t− 1)Ck

j P+(t− 1)j(1− P+(t− 1))k−j

]
=

T+1

∑
t=2

∆P+(t).
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Thus, considering that P+(1) ∈ < is a constant value, the maximisation in Equation (12)
is equivalent to the maximisation,

max
T+1

∑
t=2

∆P+(t). (18)

Moreover, observe that if P+(t) is given, ∆P+(t + 1) depends only on the unknowns,

αk
j (t), j = 0, . . . , k; k = 1, . . . , L,

and the maximisation in Equation (5) is equivalent to

max
α

∆P+(t + 1).

Now, suppose the sequence {αk
j (t)}j=0,...,k; k=1,...,L is a solution of Equations (5)–(9);

then, it also satisfies Equation (13) for t, as well as Equation (14)–(17). Thus, if the sequences,{
αk

j (t)
}

j=0,...,k; k=1,...,L
t = 1, . . . , T (19)

solve the problem (5)–(9), for t = 1, . . . , T, then by Equation (18), the values in Equation (19)
are a feasible point of Equations (12)–(17), satisfying also Equation (18), i.e., Equation (19)
is a solution of Equations (12)–(17).

Lemma 3. Let
{

αk
j (t)

}
be a global solution of Equations (5)–(9), for any t ∈ {1, 2, . . . , T}, where

the inequality (8) is replaced by the nonlinear inequality,

φt

[
L

∑
k=1

αk
j (t)

]
≤ bj(t), φt : <

(L+1)(L+2)
2 −1 → <.

Then,
{

αk
j (t)

}
t=1,...,T

is also a global solution of Equations (12)–(17), with Equation (16)

replaced by

φt

[
L

∑
k=1

αk
j (t)

]
≤ bj(t), t = 1, . . . , T; j = 0, . . . , k. (20)

Proof. The proof trivially follows the guidelines of the proof for Proposition 1.

Lemma 4. Let
{

αk
j (t)

}
be a global solution of Equations (5)–(9), for any t ∈ {1, 2, . . . , T}, where

the inequality (8) is replaced by the nonlinear inequality,

Φ

[
L

∑
k=1

αk
j (t)

]
≤ bj(t), Φ : <

(L+1)(L+2)
2 −1 → <,

and Φ is any convex function. Then,
{

αk
j (t)

}
t=1,...,T

is also a feasible solution of Equations (12)–(17),

with Equation (16) replaced by

Φ

[
T

∑
t=1

λt

L

∑
k=1

αk
j (t)

]
≤ bj(t), j = 0, . . . , k; 0 ≤ λt ≤ 1;

T

∑
t=1

λt = 1, (21)

being bj ≥ ∑T
t=1 λtbj(t).
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Proof. The convexity of Φ and the hypotheses imply

Φ

[
T

∑
t=1

λt

L

∑
k=1

αk
j (t)

]
≤

T

∑
t=1

λtΦ

[
L

∑
k=1

αk
j (t)

]
≤

T

∑
t=1

λtbj(t) ≤ bj,

so that
{

αk
j (t)

}
t=1,...,T

also satisfy Equation (21). The rest of the proof follows the guidelines

of the proof for Proposition 1.

Remark 1. Note that from Lemma 4, if the sequences
{

αk
j (t)

}
, t = 1, . . . , T, are global solutions

of Equations (5)–(9) for t = 1, . . . , T, then the sequence
{

αk
j (t)

}
t=1,...,T

is a feasible solution but

possibly not a global solution of Equations (12)–(17), with Equation (16) replaced by

Φ

[
T

∑
t=1

λt

L

∑
k=1

αk
j (t)

]
≤ bj(t), j = 0, . . . , k; 0 ≤ λt ≤ 1;

T

∑
t=1

λt = 1,

and bj ≥ ∑T
t=1 λtbj(t).

A Numerical Example

We provide here a preliminary numerical example, where the solution of the formula-
tion (12)–(17) is considered, and the budget constraints (16) are replaced by the unique one
(which aggregates possible different budgets at the epoches 1, . . . , T):

L

∑
k=1

k

∑
j=0

T

∑
t=1

αk
j (t) ≤ budget.

Since the multi-period formulation is indeed nonlinear and possibly nonconvex, we
preferred to preliminarily investigate its solutions through a renowned nonlinear (NLP)
solver from the literature. In particular, we adopted Knitro 13.2.0 from the NEOS Server [13].
Nevertheless, we are aware that since the problem might be nonconvex (unless the last
property is explicitly proved to hold for Equations (12)–(17)), the choice of the starting
point by the NLP solver may be crucial, to both outreach an accurate final solution and to
reduce the overall computational burden. The parameters of the two instances considered
are summarised as follows (respectively):

L = 10
ak = 1/L, k = 1, . . . , L,
P+(t) = 0.65,
T = 6,
budget = 20,

and 
L = 10,
ak = 1/L, k = 1, . . . , L,
P+(t) = 0.65,
T = 6,
budget = 100.

In what follows, we briefly show that, due to the smaller budget (i.e., 20 < 100) in
the first scenario, it yields worse results (i.e., a smaller value of P+(T)) with respect to the
second scenario. Indeed, adopting the first set of parameters for our multi-period formula-
tion, Knitro presolver was able to eliminate 403 constraints and 1 variable, so that the final
formulation included 395 variables and 660 constraints. Moreover, for the probabilities
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{P+(t)}, we obtain the following nonmonotone sequence (due to the nonlinearity of the
multi-period model)

P+(1) = 0.65,
P+(2) = 9.21406× 10−5,
P+(3) = 1.51607× 10−5,
P+(4) = 2.37203× 10−5,
P+(5) = 2.06585× 10−5,
P+(6) = 0.499547.

Conversely, adopting the second set of parameters for our multi-period formulation,
Knitro presolver was again able to eliminate 403 constraints and 1 variable, yielding for the
probabilities the values

P+(1) = 0.65,
P+(2) = 0.140855,
P+(3) = 0.0613564,
P+(4) = 0.0521609,
P+(5) = 0.0573217,
P+(6) = 1.

Again, one observes a nonmonotone behaviour for the sequence {P+(t)}, due to
nonlinearities of the multi-period model. For the sake of completeness let us remark that
the solution of the last two nonlinear instances by Knitro required no more than 10 s each.

7. Conclusions

In this paper, we studied the problem of possibly enhancing standard dynamics from
sociophysics (namely the model (1)), using a mathematical programming perspective.
We were interested about following a couple of lines of research. First, we coupled the
model (1) with an LP scheme in order to possibly control the probability P+(t + 1) for a
given probability P+(t), after leveraging the unknowns αk

j in Equation (2). The final value of
these variables gives a measure of the effort which is required to steer the diffusion process
of the opinion ‘+’ for the subgroups of cardinality k. The dynamics are strongly based
on the idea of possibly maximising P+(t + 1). A numerical experience is also reported
in this regard, showing that the computational effort for solving LPs associated with this
first proposal is definitely modest, even in the case where the solution of large instances
is sought.

As a second task, we also extended the (one period) LP formulations to a more general
multi-period formulation, and in this case it was necessary to compute the sequence
{P+(t + 1), P+(t + 2), . . . , P+(T)} for a given value of P+(t) and for a given time horizon,
T. Some theoretical properties showing a connection between the solutions of both our
proposals have been given, though much work yet is required, including a broad numerical
experience also in the multi-period case.
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