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Abstract: The Lamb shift, one of the most fundamental interactions in atomic physics, arises from the
interaction of H atoms with the electromagnetic fluctuations of the quantum vacuum. The energy
shift has been computed in a variety of ways. The energy shift, as Feynman, Power, and Milonni
demonstrated, equals the change in the vacuum energy in the volume containing the H atoms due
to the change in the index of refraction arising from the presence of the H atoms. Using this result
and a group theoretical calculation of the contribution to the Lamb shift from each frequency of the
vacuum fluctuations, in this paper we obtain an expression for the region of the vacuum energy for
each frequency ω around the H atom due to the Lamb shift. This same field plays an essential role
in the van der Waals force. We show the ground state atom is surrounded by a region of positive
vacuum energy that extends well beyond the atom for low frequencies. This region can be described
as a steady state cloud of vacuum fluctuations. For energies E = h̄ω less than 1 eV, where h̄ is the
reduced Planck constant and ω is frequency, the radius of the positive energy region is shown to be
approximately 14.4/E Å. For a vacuum fluctuation of wavelength, λ, the radius is (α/2π)λ, where α

is the fine-structure constant. Thus, for long wavelengths, the region has macroscopic dimensions.
The energy–time uncertainty relation predicts a maximum possible radius that is larger than the
radius based on the radiative shift calculations by a factor of 1/4α.

Keywords: Bethe; radiative shift; shift spectral density; spectral volume; vacuum fluctuations; vacuum
field; Lamb shift; QED; energy field; van der Waals force; zero point fluctuations; hydrogen atom

1. Introduction

Feynman called the three-page 1947 non-relativistic Lamb shift calculation by Hans
Bethe the most important calculation in quantum electrodynamics because it tamed the
infinities plaguing earlier attempts [1]. The seminal process in the calculation was to
subtract the divergent energy shift for free electrons from the expression for the total energy
shift, which reduced the divergence to a manageable logarithmic divergence. Bethe believed
the radiative shift was primarily a non-relativistic phenomena and used a frequency cut-
off corresponding to the the mass of the electron. When the sum over all states was
evaluated numerically, his renormalized result provided a finite prediction of the energy
difference between the 2S1/2 and 2P1/2 levels of the hydrogen atom that was close to the
experimental values [2,3]. There are numerous higher-order contributions to the Lamb
shift [4–6] that have been computed precisely. For example, to secure the highest accuracy
possible, the upper limit of integration for the Bethe log, which Bethe took as the mass of
the electron, was increased to about 1042 times the mass of the electron, securing a precision
of 23 digits [7].

This paper, however, is not focused on high accuracy but on the spectral interpretation
of the dominant lowest-order non-relativistic radiative shift, which is what Bethe calculated,
and which accounts for about 97% of the total shift. This shift can be interpreted as
arising from virtual transitions of the H atom induced by the quantum fluctuations of the
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electromagnetic field. Since the vacuum field contains all frequencies, virtual transitions to
all states, bound and scattering, are possible. These short lived virtual transitions result in
a slight shift in the average energy of the atom, the radiative Lamb shift [8]. The radiative
shift for the ground state is positive because all virtual transitions are to higher energy
levels. This same mechanism shifts every atomic energy level. For most conditions H atoms
are primarily in the ground state, which is why the focus in this paper is on the ground state
radiative shift and its interpretation in terms of the frequencies of the virtual transitions.
The Lamb shift can also be described as an interaction of the electron with its own radiation
field, yielding the exact same results as if calculated with the vacuum field [8,9]. Thus the
results described in this paper do not depend on the presence of vacuum fluctuations.

Both the Lamb shift and van der Waals forces can be interpreted in terms of the inter-
actions of atoms with the quantum fluctuations of the electromagnetic fields. When only
one atom is present, the interaction results in the field around the atom corresponding to
the Lamb shift. If multiple atoms are present, these clouds affect neighboring atoms; along
with the zero-point field, this interaction leads to the van der Waals force.

Feynman provided an alternative non-relativistic description of the origin of the
Lamb shift which is the conceptual basis for our calculation of the vacuum energy cloud.
He expressed the Lamb shift in terms of the change in energy of vacuum fluctuations
due to the presence of H atoms altering the index of refraction in the region around the
atom [10]. The change in the refractive index alters the frequencies present, altering the
energy. The actual calculation was done by Power, who showed that the shift in the energy
in the vacuum field around an H atom in a large box exactly equals the non-relativistic
radiative shift predicted by Bethe [9,11,12]. In this calculation, Power had to subtract the
divergent effect of the free electrons to secure the same result as Bethe. This paper does not
explore the details of Power’s calculation, but just uses the conclusion that the shift in the
energy in the vacuum field around the atom equals the Lamb shift.

In a similar spirit, for a single H atom, Milonni computed the shift in the atomic energy
level due to the Stark effect arising from the atom’s exposure to the vacuum field, finding
that the shift in the atom’s energy level exactly equals the change in the energy of the
vacuum fluctuations and that both equal the Lamb shift as computed by Bethe [13] (p. 438).

We have previously calculated the non-relativistic Lamb shift using SO(4,2) group
theory to transform Bethe’s renormalized expression for the shift before any approximations
to simplify its evaluation. The level shift is expressed as an integral of a shift spectral
density over the frequency of the vacuum fluctuations [12,14] (In ref [14], there are two
typographical errors: The right side of Equation (297) should have a plus sign not a minus
sign; on the right side of Equation (299) the integral should have a minus sign and the
ln-term should be +δLO ln 2

(Zα)2 .). There is no sum over states as in Bethe’s evaluation of
the shift. This approach provides an analytical expression for the contribution of each
frequency of the vacuum fluctuations to the radiative Lamb shift. This expression allows us
to compute the volume corresponding to the spectral components present in the Lamb shift.

The calculations by Power and Milonni show that for the ground state 1S Lamb shift,
which is positive, the energy density of the fluctuating zero-point field around the atom
must increase such that the integral of the energy over the volume surrounding the atom
gives the 1S Lamb shift. The increased energy is supplied by the quantum fluctuations of
the electromagnetic field. By comparing the needed vacuum energy obtained from our
calculation of the the spectral shift density [12,14] with the known energy density of the
free vacuum fluctuations, it is possible to compute the volume of vacuum energy needed
for each spectral component of the shift. For energies above about 100 eV, the spectral
volume is much smaller than the region occupied by the ground state wavefunction; for
energies below about 1 eV, the spectral volume is significantly larger than the ground state
wavefunction. Consequently, the focus of this paper is on the low energy regime. For this
regime, it is shown that the radius of the spherical spectral volume for a vacuum fluctuation
of wavelength λ is approximately (α/2π)λ, where α is the fine structure constant. A simple
estimate of the size of the virtual photon cloud based on the uncertainty relation for energy
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and time predicts a maximum radius of the spectral volume which is larger than that
predicted by the Lamb shift model by a factor of 1/4α [8,15].

2. Radiative Shift and Spectral Density Calculations

The group theoretical approach is based solely on the Schrodinger and Klein–Gordon
equations of motion in the non-relativistic dipole approximation, with minimal coupling to
the electrons field. We obtain the result [14] :

∆ENL =
2α

3π(mc)2

∫ h̄ωc

0
dE〈NL|pi

H − EN
H − (EN − E)− iε

pi|NL〉, (1)

where E = h̄ω is the energy of the vacuum field, h̄ is the reduced Planck constant,
ω the radial frequency, c is the speed of light, m is the mass of the electron, pi denotes the

momentum operator for direction i. The Hamiltonian is H = p2

2m −
Zαh̄c

r , where p2 is the
momentum squared operator, r is the position operator for the electron, Z is the atomic
number for the nucleus, and the states |NL〉 are the H atom energy eigenstates with energy
EN . Here, ωc is a cutoff frequency for the integration such that h̄ωc = mc2 = 511 keV.
Equation (1) represents the renormalized shift; the divergent shift due to the free electron
has been subtracted. Inserting a complete set of states, 1 = ∑ |n〉〈n|, where H|n〉 = En|n〉,
gives Bethe’s expression for the finite observable shift ∆ENL for the state |NL〉:

∆ENL =
∫ h̄ωc

0
dE

2α

3π(mc)2 ∑
n
|pnN |2

(En − EN)

En − EN + E− iε
. (2)

Bethe performed the integration over E, assuming that mc2 � |En − EN |, to obtain an
expression for the Lamb shift for an S state with principle quantum number N [3]:

∆EBethe
N =

4α

3π

(
1

mc

)2

∑
n
|pnN |2(En − EN) ln

(
mc2

En − EN

)
. (3)

To simplify the evaluation of the sum, Bethe took the ln term out of the summation and
replaced En with an average energy. An alternative approach is taken in this paper.

One can express the radiative shift ∆E1 for the 1S ground state as an integral over the
renormalized spectral shift density d∆E1/dE [12]:

∆E1 =
∫ mc2

0

d∆E1

dE
dE. (4)

This equation is a definition of the spectral shift density: if a level shift is expressed as an
integral over energy, then the integrand is the spectral shift density. Since the shift ∆E1 is in
units of eV, the spectral shift density d∆E1

dE has the units of eV/eV, which is dimensionless.
The spectral shift density from Bethe’s formulation equals the integrand in Equation (2),
which requires the evaluation of a sum over all states, including scattering states. A more
convenient expression for the spectral shift density for the renormalized ground state can
be obtained by transforming Equation (1) using group theory [14]:

d∆E1

dE
=

4α3

3π
e−2φ sinh φ

∫ ∞

0
dsese−φ 1

sinh2(s/2)
1

(coth(s/2) + cosh φ)3 . (5)

The integral over s can be evaluated exactly by Mathematica for specific values of the
dimensionless normalized frequency variable, φ:

φ =
1
2

ln
(

1 +
E
|E1|

)
, (6)

where E1 is the ground state energy of −13.6 eV.
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Figure 1 shows a log–log plot of the spectral density d∆E1
dE of the ground state Lamb

shift (with Z = 1) for the entire range of energy, E, computed from Equation (5). For energies
above about 100 eV the spectral density is approximately proportional to 1/E, whereas
below about 10 eV the spectral density increases slowly to a maximum at E = 0, as shown
in Figure 2.

Figure 1. The log of the spectral density of the ground state shift from the group theoretical expression
(5) on the vertical axis versus the log of the energy, E. For energies above about 100 eV, the behavior
is dominated by inverse energy dependence, 1/E. From about 10 eV to 0 eV, there is a slight linear
increase in the spectral density.

Figure 2. The ground state spectral density as a function of energy calculated from group theory
from 3 eV to 0 eV, showing an approximately linear increase to its maximum value at 0 eV.

The low-energy limit of the group theoretical result from Equation (5) for the S state
shift density can be taken analytically, giving [12]

d∆En

dE
|E→0 =

2α

3π

(Zα)2

n2 − α

πmc2 E, (7)

where n is the principle quantum number. The corresponding spectral density for the
ground state with n = 1 and Z = 1 is

d∆E1

dE
|E→0 =

4α× 13.6
3πmc2

(
1− 3E

4× 13.6

)
= 8.253× 10−8(1− 0.0551E), (8)

which is in agreement with Figure 2. As E decreases to zero, the spectral density increases
linearly to a constant value, 4α

3π
|En |
mc2 = 2α3Z2/3πn2 = 8.253 × 10−8/n2. The intercept

follows 1/n2 behaviour and the slope equals α/πmc2. For E < 1 eV, the ground state
spectral density equals 8.25 × 10−8 to within about 5%.

3. Computing the Size of the Vacuum Energy Field

Consider a large box containing H atoms in the ground state. The spectral density
d∆E1

dE of the ground state shift and the energy density of the quantum vacuum with no H
atoms present are both known. In the box containing the H atoms, the vacuum field density
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must increase such that the integral of the energy density over the volume provides the 1S
Lamb shift. This increase in vacuum energy results from the vacuum fluctuations, which
have a free-field spectral energy density (energy/volume-frequency) equal to [9]

ρ0(ω) =
h̄ω3

2π2c3 (9)

where c is in cm/s, ω is the radial frequency in s−1 and ρ has units of erg/cm3−s−1. If the
frequency is measured in eV then it is essentially the energy E = h̄ω and the vacuum
spectral energy density has units of (eV/cm3− eV) = 1/cm3 and is

ρ0(E) =
E3

2π2h̄3c3
, (10)

so that the integral
∫ E2

E1
ρ0(E)dE represents the energy density eV/cm3 in the energy interval

E1 to E2. The question being addressed here is: what volume of vacuum energy of density
ρ0(E) is required to supply the amount of energy corresponding to the radiative shift?
The total renormalized radiative shift ∆E1 can be expressed as the integral of the vacuum
energy density ρ0(E) over an effective volume V1(E):

∆E1 =
∫ mc2

0
dEρ0(E)V1(E), (11)

with the same upper limit for E as used previously [9]. Recall the definition of the spectral
shift density Equation (4):

∆E1 =
∫ mc2

0
dE

∆E1

dE
. (12)

Comparing Equation (11) with Equation (12) shows that the effective spectral volume V1(E)
needed to insure energy balance at each energy E is [12]

V1(E) =
d∆E1

dE
1

ρ0(E)
. (13)

The spectral volume V1(E) has dimensions of cm3 and contains the amount of vacuum
energy at energy value E that corresponds to the ground state spectral density at the same
energy E.

Equations (11)–(13) are general equations and apply to any calculation of the radiative
Lamb shift that can be expressed as an integral over the vacuum energy, as in Equation (4).
The utility of Equations (11)–(13) lies in our ability to provide an explicit analytical expres-
sion for the spectral shift using our group theoretical results [14].

An example of Equation (11) is in the calculation of the Lamb shift as a Stark shift by
Milonni [9]. Consider the energy W = − 1

2 d · E(ω) for a dipole d in an isotropic field, E(ω).
Assuming that the dipole is induced by the field, then d(ω) = α(ω)E(ω). The energy for
an atom A at xa with polarizability αA(ω) can be expressed as [9]

WA = −1
2

∫ ∞

0
dωαA(ω)〈E2(ω)〉. (14)

For the Lamb shift, 〈E(ω)2〉 = 4πρ0(ω), where ρ0 is the zero-point vacuum spectral energy
density, one obtains

WA = −2π
∫ ∞

0
dωαA(ω)ρ0(ω). (15)

The polarizability is provided by the Kramers–Heisenberg formula, and has units of volume.
This expression for the Lamb shift has the same form as Equation (11). To complete the
Stark shift calculation, the contribution from free electrons needs to be subtracted, after
which the final result is identical to that of Bethe [9].
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The spectral volume, V1(E), in Equation (13) is assumed to be spherical since the
ground state is an S state, so the radius can be calculated from the known spectral volume.
In Section 4 this assumption is discussed in more detail. Figure 3 shows a log–log plot of the
radius in Å of the spectral volume, V1(E), for the ground state as a function of E. Figure 4
shows the radius of the spherical spectral volume for energies below 23 eV. For an energy
of 21.7 eV, the spectral radius equals the mean radius of the ground state wavefunction
of 0.53 Å. For energies less than 21.7 eV, the radius will be greater than the ground state
radius. For an energy of 1 eV, the radius is about 14 Å. This calculation predicts that there
is a sphere of positive vacuum energy of radius 14 A around the atom, corresponding to
the 1 eV shift in the spectral density.

Figure 3. The log of the radius of the spherical spectral volume V1(E), Equation (13), as a function
of the log of the vacuum field energy E, from 0.0027 eV (where the radius is 5330 Å) to 511,000 eV
(where the radius is 10−17 Å).

Figure 4. The log of the radius of the spherical spectral volume V1(E),Equation (13) as a function
of the vacuum field energy E, from 0.05 eV to 23 eV, with corresponding radii of 288 Å and 0.5 Å.
The radius approximately follows 1/E behaviour.

For low-energy vacuum fluctuations, the spectral density from Equation (7) can be
approximated for an S state with principle quantum number n as a constant:

d∆En

dE
|E→0 =

2α

3π

(Zα)2

n2 . (16)

Equation (16) is accurate to about 5% at 1 eV, and the accuracy increases as the energy
decreases. This approximation corresponds to the end point E = 0 of the nearly horizontal
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portion of the spectral density in Figure 1. For these low energies, the spectral volume,
Vn(E), from Equation (13) is

Vn(E) =
4π

3
α(Zα)2

n2
(h̄c)3

E3 . (17)

Assuming a spherical spectral volume of radius RV(E) for a state n, one obtains:

RV(E) =
[

α(Zα)2

n2

]1/3 h̄c
E

, (18)

which for low E for the 1S state of hydrogen gives

RV(E) = α
h̄c
E

=
14.4 Å
E eV

. (19)

The H atom is surrounded by a steady-state cloud of virtual quanta; this cloud has a radius
RV(E) and is continuously emitted and reabsorbed by the field. The virtual quanta cannot
leave the vicinity of the atom, as they are reabsorbed. This vacuum energy density of the
cloud is positive in the sense that it is above the free-field vacuum energy density.

It is remarkable that the asymptotic low energy spectral radius, RV(E), in Equation (19)
has such a simple form. This result can be rewritten using the definition, α = e2/h̄c, with e
the elementary charge, as

E =
e2

RV(E)
. (20)

Thus the Coulomb energy for two electrons separated by a distance RV(E) equals the
energy E = h̄ω of the corresponding vacuum virtual photon.

It is interesting to compare the radius RV(E) of the spectral volume with the wave-
length, λ, of the vacuum fluctuation corresponding to E = h̄ω = 2πh̄c/λ. For the ground
state, this gives

RV(E) =
α

2π
λ =

λ

861
. (21)

The radius of the spectral volume equals α/2π times the wavelength of the corresponding
vacuum fluctuation. Thus long-wavelength vacuum fluctuations produce macroscopic
regions of positive vacuum energy for the hydrogen ground state.

Comparison to Predictions from the Uncertainty Relation

A simple analysis using the uncertainty relation can provide an order of magnitude
estimate of the largest extent of the positive energy vacuum field. The hydrogen atom is a
quantum system, and its ground state energy can consequently vary for a time interval τ
by an amount ∆Eu which is constrained by the uncertainty relation [13] (p. 201)

∆Euτ < h̄/2. (22)

The variation in energy is modeled by the emission and absorption of virtual photons of
energy ∆Eu = h̄ωu and frequency ωu. Since the velocity of the photon is c, in the time τ it
can travel a distance 2Ru where [15]

Ru <
h̄c

4∆Eu
=

c
4ωu

=
λ

8π
, (23)

where λ is the wavelength of the virtual photon. Comparing Equation (23) to Equation (21)
shows that for the same energy virtual photon,

RV = 4αRu. (24)
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For vacuum fluctuations of energy E below about 1 eV, the dimension RV of the virtual
cloud predicted by an analysis of the ground state Lamb shift is 4α times smaller than the
maximum extent, Ru, allowed by the uncertainty relation. Ref. [15] has suggested that
(4π/3)α can be considered the mean density of virtual photons in the region around the
atom, which may explain the difference between Ru and RV .

4. Significance of the Zero-Point Field around the Atom

The cloud of quantum fluctuations surrounding the H atom can be interpreted as
resulting from the scattering of the free-field vacuum fluctuations by the atom. The zero-
point field activates the atom in a continuous process, creating the steady state cloud of
quantum fluctuations that is described in this paper. As the derivation of the Lamb shift
in terms of the Stark effect suggests, the zero-point field induces an instantaneous dipole
moment in the atom that leads to a dipole field. The continuous stochastic excitation from
the zero-point field leads to a sum of incoherent contributions that average to a spherically
symmetric cloud [13] (p. 201).

One can imagine the atom undergoing virtual transitions from the ground state
to all higher energy states and then returning to the ground state in accordance with
the time–energy uncertainty relation. For a zero-point fluctuation of wavelength λ, our
calculations show that the cloud extends about αλ/2π from the nucleus, which can be
a macroscopic distance. Thus far, direct measurement of such vacuum fluctuations has
eluded experimentalists. There are two ways of exploring the significance of this cloud
of vacuum energy: first, by computing estimates of the mean energy density; and second,
by explaining its role in the creation of van der Waals forces under the assumption that
another H atom is nearby.

4.1. Energy Density of the Zero-Point Field around the Atom

Using the results of Section 3, it is possible to compute the energy density of this field
as a function of distance for different wavelength or energy intervals of the zero-point field.
Consider a spherical shell: the inner radius corresponds to one energy and is given by
Equation (19). The outer radius corresponds to a slightly smaller energy. For this energy
interval, one can estimate the contribution to the total Lamb shift by integration of the
curve in Figure 1 [12]. For energies below 1 eV the contribution to the ground state Lamb
shift is about 0.24% of the total shift. In this low energy range, the contribution to the shift
scales linearly with the energy, as shown in Figure 2. This allows us to compute a mean
energy density, ρshell

LS , of the quantum fluctuations in a spherical shell.
The density of the Lamb shift energy in the spherically symmetric region of vacuum

energy surrounding the H atom can be analyzed in terms of shells with an outer radius
of R = αh̄c/E and inner radius of R1 = αh̄c/E1. It is convenient to let E1 = βE, where
β > 1. Assuming that both energies are less than 1 eV, one can integrate the Lamb shift
(LS) spectral density from Equation (16) for the ground state and Z = 1 to obtain

∆Eshell
LS (E) =

∫ βE

E
dE

2α3

3π
=

2α3

3π
E(β− 1) (25)

to an accuracy of about 5%. The volume of the shell is

Vshell(E) =
4π

3
(αh̄c)3

(
1− 1

β3

)
1

E3 . (26)

Therefore the Lamb shift energy density (in erg/cm3) in the shell is

ρshell
LS (E) =

∆Eshell
LS (E)

Vshell(E)
=

1
2π2

1
(h̄c)3

β− 1
1− 1/β3 E4. (27)
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The Lamb shift energy density for a shell with outer radius R = αh̄c/E, and inner radius
R1 = αh̄c/(βE), is proportional to E4 or 1/R4

V(E). Figure 5 shows the value of ρshell
LS as a

function of the inner radius (in Å), where the outer radius is 1.03 times the inner radius
(β = 1.03).

Figure 5. The Lamb shift energy density, ρshell
LS Equation (27) as a function of the inner radius,

R1 = αh̄c/(βE), of the shell. The outer radius, R = αh̄c/E, is 1.03 times the inner radius; thus,
g(β) = 11.3 (see Equation (29)).

One can compare the energy density ρshell
LS (E) from Equation (27) (in erg/cm3) to the

energy density ρshell
0 (E) (in erg/cm3) of the free zero-point vacuum field for the same

spectral interval, i.e., from E to βE:

ρshell
0 (E) =

∫ βE

E
dEρ0(E) =

1
8π2h̄3c3

E4(β4 − 1). (28)

One finds that the ratio

ρshell
LS (E)

ρshell
0 (E)

= 4
β− 1

1− 1/β3
1

β4 − 1
= g(β), (29)

is a constant that depends on β. The Lamb shift energy density for the shell is directly
proportional to the free vacuum energy density for the same energy interval. This result
follows for low E since the spectral density, d∆E1

dE from Equation (16), is a constant. Compar-
ison with Equation (13) shows that ρ0(E)V1(E) is therefore constant and independent of E
for low E values.

The function g(β) is singular at β = 1 and decreases rapidly as β increases. For
1 < β < 1.35, g(β) is greater than 1. For β of (1.01, 1.02, 1.03, 1.05, 1.1), the corresponding
values of g(β) are (33.5, 16.8, 11.3, 6.8, 3.5). For these shells, ρshell

LS (E) is always larger than
ρshell

0 (E). Just as the free-field vacuum fluctuations are important in many physical systems,
the field of fluctuations due to the Lamb shift must be equally important.

Table 1 shows the results of computing the energy densities for different spherical
shells. The first row corresponds to a shell with the frequency range of the visible spectrum
(400 nm to 700 nm), for which the energy density in the shell, ρshell

LS , is 98.7 erg/cm3, which
is 45% of the corresponding ρshell

0 (the free-field energy density for the shell) of 218 erg/cm3.
For cases with β < 1.35, the ratio ρshell

LS /ρshell
0 in the fifth column is greater than one.

The energy densities ρshell
LS for the shells are significant, for example, compared to the

energy densities, ρbb, for black body radiation over the same spectral intervals. For a temper-
ature of 600 K (for which the peak intensity is at about 5 micrometers or 0.25 eV) the ratio of
ρshell

LS /ρbb is 2.8 × 104, 148, and 10.1, respectively, for the shells with radii 20–30 Å, 50–60 Å,
and 200–210 Å. Of course black body radiation is ordinary electromagnetic radiation, while
the Lamb shift energy consists of vacuum fluctuations of the electromagnetic field.
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Table 1. The inner and outer radii for a spherical shell around the atom, the corresponding fluctuation
energies ρshell

LS and ρshell
0 , and the ratio of ρshell

LS to ρshell
0 .

Inner and Outer Radii of
Spherical Shell (in Å)

Quantum Fluctuation En-
ergy Range (in eV)

Mean Shell Lamb
Shift Energy Density,
ρshell

LS (in erg/cm3)

Mean Shell Free
Field Energy
Density, ρshell

0 (in
erg/cm3)

ρshell
LS /ρshell

0

4.64 to 8.13 Visible 3.10 to 1.77 98.7 218 0.45
10 to 20 0.72 to 1.44 3.34 10.65 0.314
20 to 30 0.48 to 0.72 0.399 0.570 0.700
30 to 40 0.36 to 0.48 0.1024 0.0959 1.068
40 to 50 0.288 to 0.36 0.0373 0.0262 1.16
50 to 60 0.240 to 0.288 0.0167 0.00941 1.77
60 to 70 0.2057 to 0.240 0.00852 0.00403 2.12
70 to 80 0.180 to 0.2057 0.00480 0.00196 2.45
80 to 90 0.160 to 0.180 0.00291 0.00104 2.79
90 to 100 0.144 to 0.16 0.00186 0.000595 3.13
140 to 150 0.096 to 0.1029 0.000344 0.0000718 4.78
200 to 210 0.0686 to 0.072 8.59 × 10−5 1.25 × 10−5 6.87
300 to 310 0.0465 to 0.048 1.76 × 10−5 1.67 × 10−6 10.49
400 to 410 0.0351 to 0.036 5.63 × 10−6 4.27 × 10−7 13.16
1000 to 1020 0.01412 to 0.0144 1.46 × 10−7 8.58 × 10−9 16.97

4.2. Relationship between the Zero-Point Field around the Atom and van der Waals Forces

Zero-temperature Lamb shifts and van der Waals interactions have straightforward
physical interpretations in terms of fluctuating zero-point fields [16]. Here, we consider
an isolated atom A and describe the fluctuating field around this atom that arises from its
interaction with the free field vacuum fluctuations. The field around atom A corresponds
to the non-relativistic Lamb shift for atom A. If another atom is present, the field around A
plays an essential role in the van der Waals forces between the atoms.

To illustrate this, generalize Equation (14) for the energy of an induced dipole at A to
include a second atom B. The total field is Ek,ω and the combined energy is [9] (Section 3.11)

WAB = −1
2 ∑

kω

αA(ωk)〈E2
kω(xA, t)〉, (30)

where αA(ωk) is the polarizability of atom A, k is the wave vector, and t denotes the time.
The presence of the second atom breaks the spherical symmetry so a summation over k for
the non-isotropic field is included. The total field acting on A is assumed to be the sum of
the zero-point field E0,kω(xA, t) acting on A and the field produced at A by atom B:

Ekω(xA, t) = E0,kω(xA, t) + EB,kω(xA, t). (31)

Each atom is “driven” by the zero-point field at its location, creating a fluctuating dipole
field about the atom. The field about atom B affects atom A and vice versa. The portion of
the energy WAB that depends on the distance between the atoms corresponds to the van
der Waals force, and is

WvdW
AB = −1

2 ∑
kω

αA(ωk)〈E0,kω(xA, t)EB,kω(xA, t) + EB,kω(xA, t)E0,kω(xA, t)〉. (32)

The term αA(ωk)〈E0,kω(xA, t)〉2 in the summation in Equation (30) does not depend on the
separation between the atoms, and corresponds to the Lamb shift for atom A. This is the
field of vacuum fluctuations about the atom which represents the atom’s response to the
vacuum field described in this paper. From Equation (32), one can immediately see that
this field plays an essential role in the van der Waals force. Similarly, this field would be
essential for the Casimir–Polder force between an atom and a surface [9].
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The term EB,kω(xA, t) represents the field from the induced dipole at atom B, and is
proportional to the polarizability αB(ωk) of atom B. After computation, the final expression
for the van der Waals force is shown to be a symmetric integral over ω of the product
αA(ω)αB(ω) times a function of ω and r = |xA − xB|.

Along with the free field, the field about the atom corresponding to the Lamb shift
affects the nearby atom and results in a fluctuating induced dipole moment. The correlation
between the fluctuating dipole moments at the two locations gives rise to the van der
Waals forces. The correlation falls off rapidly with frequency and with the distance r
between the two locations, giving the r−6-dependence of the non-retarded van der Waals
interaction [9]. The cloud of zero-point fluctuations about the H atom described in this paper
is fundamental to the van der Waals forces as well as to the Lamb shift. These phenomena
are linked in that both arise from the interaction between atoms and the fluctuating zero-
point field.

Van der Waals forces tend to become retarded for distances greater than about a0/α
(a0 being the Bohr radius of the ground state wavefunction), or about 70 Å. From the
calculations in Table 1, one can see that lower energy fluctuations are responsible for these
dispersion forces.

5. Conclusions

The nonrelativistic Lamb shift can be interpreted as being due to the interaction
between atoms and the fluctuating zero-point electromagnetic field of the quantum vacuum.
The renormalized radiative Lamb shift can be expressed in terms of a spectral shift density,
which is a function of the frequency ω or energy E = h̄ω of the vacuum field. The integral
of the spectral density from E = 0 to the rest mass energy of an electron, 511 keV, gives
the nonrelativistic radiative shift for that state of the atom. Feynman, Power, and Milonni
showed that the radiative shift equals the change in the energy of the vacuum fluctuations
in the region containing the H atom. Using this result with a group-theoretical calculation
of the contribution to the Lamb shift from each frequency of the vacuum fluctuations, one
can obtain an expression for the size of the region of vacuum energy corresponding to each
value of the vacuum energy E around the H atom. The spectral volume for the energy
E around an H atom contains vacuum fluctuations of energy E; the total energy of these
fluctuations equals the radiative shift corresponding to that energy E. For the ground
state, the energy density in the spectral volume is positive, meaning that it is above the
free-field energy density. For E > 23 eV, the radius of the region of positive energy vacuum
fluctuations is less than the atomic radius; on the other hand, for energies less than 1 eV
the radius is shown to be approximately αh̄c/E = 14.4/E Å, and can be much larger than
the ground state wavefunction. The radius of the spectral volume can also be expressed
in terms of the wavelength of the corresponding vacuum fluctuations as αλ/2π = λ/861.
An estimate of the extent of photons from virtual transitions based on the uncertainty
relation for time and energy predicts a maximum radius that is about 1/4α larger that the
radius based on the radiative shift calculations.

The vacuum energy field around the H atom described in this paper plays an essential
role in the van der Waals forces as well as in the Lamb shift. These phenomena are linked
since both arise from the interaction between atoms and the fluctuating zero-point field.

The calculations in this paper were performed for the ground state of H, which has
a positive radiative shift. States with a negative radiative shift, such as 2P, would have a
spectral volume as well; however, the energy would be negative, i.e., below the free-field
vacuum energy. Notably, this analysis is complicated by the fact that the 2P state decays to
the 1S state.
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