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Abstract: The Casimir forces between metals or good conductors have been checked experimentally.
Semiconductors and especially dielectrics have not been investigated because of the surface charges,
which generate strong electrostatic forces. Here, it is proposed to study the Casimir interaction of a
dielectric and metal using a thin dielectric layer deposited on an optically thick metallic substrate.
If the thickness of the layer is a few tens of nanometers, the electrostatic force due to charging can
be compensated for by applying an extra voltage between the metallic plates. On the other hand,
the contribution of the dielectric layer to the Casimir force is sufficiently large to extract information
about the interaction between the bulk dielectric and metal.
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1. Introduction

The Casimir forces [1] between bulk bodies have been intensely investigated during
the last 20 years (see reviews [2–5]). Critical experiments have been performed in vacuum
with a high precision at distances of the order of 100 nm [6–9]. A theoretical description of
these forces generated by thermal and quantum fluctuations of the electromagnetic field
has been proposed by Evgeniy Lifshitz and later developed along with his colleagues, Igor
Dzyaloshinskii and Lev Pitaevskii [10,11]. Predictions of the Lifshitz theory have been
checked in special experiments. The dependence of the Casimir forces on the dielectric
functions of interacting materials has been verified [12–17], including magnetic materi-
als [18,19]. Shorter distances up to 10 nm have been explored [20,21] and the importance of
the effects of surface roughness has been stressed [22,23]. Larger distances in the range of
micrometers have been carefully investigated experimentally [24–27] and it was found that
there are some systematic deviations in the thermal contribution to the force.

The total force that is directly measured in the experiments includes the Casimir and
electrostatic forces. The latter to be considered a background effect and has to be excluded.
To minimize the electrostatic force, nearly all experiments have been performed with well-
conducted materials but, even for good conductors, the electrostatic contribution to the
total force is still important. The electrostatic force originates from the contact potential
difference between different materials. However, even for similar interacting materials, the
contact potential is nonzero because of the potential difference in the external circuit.

Dielectrics have never been used for force measurements because they contain trapped
charges resulting in a strong electrostatic contribution. Even for semiconductors, only a few
special cases have been tackled: silicon passivated with hydrogen (H-terminated) [13,28]
that prevents oxidation and silicon carbide heavily doped with nitrogen [21], which behaves
similar to metals. In general, the effect of charging significantly restricts the choice of
materials that can be used for measurements of the Casimir forces.

Investigation of the insulating materials has been concentrated on the space charge in
materials [29,30], where the trapped charges in localized states are produced by irradiation,
ionization or injection. For thick dielectrics, the charging can be non-homogeneous in depth
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but, here, one considered homogeneously charged thin dielectric layers on metallic surfaces.
The charging mechanisms in general are rather complicated but the total concentration of
the surface charges can vary in the range of 1010–1013 cm−2 depending on the technological
processing, with typical values in the range of 1011–1012 cm−2.

The purpose of this paper is to demonstrate that the electrostatic force between
two metals, one of which is covered by a thin dielectric layer, can be compensated for
by applying an external potential between the bodies. Only for thick dielectrics is it not
possible to compensate for the electrostatic force. It is also demonstrated that a layer with a
thickness of a few tens of nanometers is sufficient to extract information about the Casimir
interaction of the dielectric and metal. Only metallic substrates are considered here to
concentrate on the main idea but not on the technical details. The application of the same
idea applied to semiconductor substrates will be considered elsewhere. The problem solved
in this paper is rather simple but, to the best of our knowledge, it has not been discussed in
relation to the Casimir force measurements.

2. Electrostatic Interaction of Metals Covered by the Dielectric

Let us consider the electrostatic force between two metal plates, one of which is
covered by a thin dielectric layer (see Figure 1). The dielectric can be deposited on the metal
surface in a controlled way, for example, by magnetron sputtering. The dielectric layer
with the thickness d can be made of any chemical compound and is charged with the bulk
density ρ0. The Casimir force will be larger if only one metal is covered by the dielectric,
so let us consider this configuration. In the experiments measuring the Casimir forces,
researchers always try to avoid surface charges. When the force is measured between
metals, the residual potential difference can be compensated for by applying an external
voltage between the metals, as has been carried out in all the experiments [6–9]. If one
metal has a dielectric covering, one has to take into account a finite concentration of charges
in the dielectric. Here, we are going to answer the question: is it possible to compensate for
the electrostatic force in this case?

Figure 1. The structure under investigation. The plates are separated by a vacuum gap, h, and the
thickness of the dielectric layer on one of the metals is d. The relative dielectric functions (ε1,2) of the
materials are indicated; they are needed to calculate the Casimir attraction in this structure.

2.1. Solution of the Electrostatic Problem

The structure under investigation is shown in Figure 1. The relative dielectric functions
ε1,2 and εd are, in general, functions of frequency, ω, but, for the electrostatic interaction
(ω → 0), εd is a constant and ε1,2 → ∞. Let the potential the metal 1 be Ψ1; however, the
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potential of metal 2 can be chosen to be zero: Ψ2 = 0. In between the metals, the potential
is described by the Poisson equation

d2Ψ
dx2 =


0, 0 < x < h,

−ρ0/ε0εdrm, h < x < h + d,
(1)

where ε0 is the permittivity of the vacuum.
The external boundary conditions are chosen as Ψ(0) = Ψ1 and Ψ(h + d) = 0. The

solution that obeys the external boundary conditions is

Ψ(x) =


Ψ0 + Ax, 0 < x < h,

− ρ0(x−h−d)2

2ε0εd
+ B(x− h− d), h < x < h + d,

(2)

where A and B are unknown constants which are defined by the internal boundary condi-
tions. At the vacuum–dielectric interface x = h, these are the continuity of the potential and
electric displacement. Some surface charges can exist in the dielectric at the interface with
the metal. However, in contrast with semiconductors, those charges do not contribute be-
cause the static dielectric constant of metals is going to infinity. Thus, the internal boundary
conditions are

Ψ(h− δ) = Ψ(h + δ),
dΨ
dx

∣∣∣∣
h−δ

= εd
dΨ
dx

∣∣∣∣
h+δ

, δ→ 0. (3)

The electric field, E, in the vacuum gap is E = A and the electrostatic pressure between
the plates is defined by the normal component of the Maxwell stress tensor, Pe = −ε0E2/2,
(minus sign because the force is attractive). Determining the constant A from the internal
boundary conditions, one finds, for the pressure:

Pe = − ε0

2

[
(ρ0d/ε0)(d/2εd)−Ψ1

h + d/εd

]2

. (4)

If there are no trapped charges in the dielectric (ρ0 = 0), the only difference in the
electrostatic pressure between metals is the effective increase in the distance between the
plates, which is heff = h + d/εd. At a finite density of charges, the metal potential, Ψ1, is
shifted to the value,

∆U =

(
ρ0d
ε0

)(
d

2εd

)
, (5)

where one can interpret ρ0d as the projection of the charge density on the surface.
In most of the Casimir force experiments, a sphere–plate configuration is used for

measurements and the electrostatic force has to be defined for this configuration. The
electrostatic force acting between the sphere and the plate can be immediately found from
Equation (4) by applying the proximity force approximation (Derjaguin’s approximation [31,32]),
which is true for h� R, where R is the radius of the sphere. Then, one finds the electrostatic
force between the sphere and the plate:

Fe ≈ −
(

πRε0

2

)
[(ρ0d/ε0)(d/2εd)−Ψ1]

2

h + d/εd
. (6)

This result also depends on the shifted potential and effective distance. The exact
expression for the force can be found analytically, but one can expect that this expression
can also depend on the shifted potential and effective distance. It is worth noting that, at
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short distances, the roughness of the interacting surfaces starts to contribute. One can deal
with the electrostatic forces on the same basis as was proposed for the Casimir forces [23].

2.2. Compensation of the Surface Charges

In all the experiments, both plates (more often it is a sphere and plate) are grounded.
Nevertheless, Ψ1 is nonzero and can be as large as 100 mV or so. This value is due to
the contact potential difference, Vc: Ψ1 = Vc. In the case of two metals, this potential
can be compensated for by applying the external voltage between the bodies as equal to
−Vc. Equation (4) shows that one can also compensate for the electrostatic force between
two metals, one of which is covered by the dielectric. If the external voltage is U, then
Ψ1 = Vc + U and one finds the compensating potential,

U = −Vc + ∆U. (7)

Thus, in the case of the charged dielectric, one has to apply, in addition to −Vc, an
extra voltage, ∆U, which is proportional to the density of charges in the dielectric. Similarly
to the two metals case, the compensating potential does not depend on the distance, h,
between the plates.

Consider an example where metal 2 is covered by silicon dioxide with the dielectric
constant, εd = 3.9. It is convenient to consider as a parameter the surface charge density

σs = ρ0d0, d0 = 10 nm. (8)

The expected value for this parameter [30] is in the range of |σs| = 10−8− 10−7 C/cm2

(concentration of the surface charges Ns ∼ 1011 − 1012 cm−2). The extra voltage needed to
compensate for the electrostatic force is estimated to be in the range of

|∆U| = (14.5− 145)(d/d0)
2 mV. (9)

If one considers |∆U| < 1 V as a realistic compensating potential, then Equation (9)
restricts the thickness of the dielectric layer. From this restriction, one can conclude that,
for the largest charge density, the dielectric film thickness has to be smaller than 26 nm and,
for the smallest |σs| = 10−8 C/cm2, it has to be smaller than 83 nm. Now, the question is:
can one obtain information about the Casimir interaction between the metal and dielectric
measuring the force between two metals, one of which is covered by the dielectric with a
thickness of approximately 40 nm?

3. Casimir Interaction of Metal Covered by the Dielectric

Let us consider the Casimir force in the configuration shown in Figure 1. The force can
be calculated using the Lifshtz formula, where, as the reflection coefficient for plate 2 (the
one covered with the dielectric), one has to use the following reflection coefficients [33]:

Rν
2 =

rν
vd − rν

md exp(−2kdd)
1− rν

vdrν
md exp(−2kdd)

. (10)

This is the same for each polarization state ν = s or p. The reflection coefficients for
vacuum–dielectric (rvd) and for metal–dielectric (rmd) interfaces are defined as

rs
ab =

ka − kb
ka + kb

, rp
ab =

εbka − εakb
εbka + εakb

, (11)

where ka,b is the normal component of the wave vector in the medium a or b (a, b = v, d,
or m) that is defined at the imaginary frequency, ω = iζ, as

ka =
√

εa(iζ)ζ2/c2 + q2. (12)



Physics 2023, 5 818

In Equation (12), q is the absolute value of the wave vector in the plane of the plates,
c denotes the speed of light, and the dielectric function of metal 2 is εm = ε2. For the
reflection coefficient of plate 1, one can use Rν

1 = rν
vm, where εm = ε1 has to be taken.

The Casimir force between the plates is calculated according to the Lifshtz formula [11],
which can be presented in the form,

PC(h) = −
kBT
π

∞

∑
n=0

′ ∞∫
0

dqqkv ∑
ν=s,p

Rν
1Rν

2e−2kvh

1− Rν
1Rν

2e−2kvh , (13)

where the sum is running on the Matsubara frequencies, ζn = 2πnkBT/h̄ with kB the
Boltzmann constant, T the temperature, and h̄ the Planck constant, the prime denotes that
the term at n = 0 has to be taken with the coefficient 1/2, and kBT is the thermal energy.

The Casimir pressure is calculated as a function of distance h between two Au plates,
one of which is covered by a layer of SiO2 with the thickness d. The optical data for Au are
taken from [34] (sample 3) and the data for SiO2 are taken from the handbook [35]. Figure 2a
shows the results in the zero temperature limit for the dielectric thickness d = 0, 20, and
40 nm. Figure 2b shows the relative difference, ∆R, between the pressures with and without
the dielectric layer with respect to the pressure between the metallic plates:

∆R(h) =
P m/d

C − P m
C

P m
C

, (14)

where the superscripts, ‘m’ and ‘m/d’, refer to metal and metal covered by a dielec-
tric, respectively.
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Figure 2. (a) Casimir pressure between two Au plates, one of which is covered by the SiO2 layer with
the thickness d. (b) Difference between the pressures with the dielectric layer and without it related
to the pressure between bare metallic plates.
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Figure 2a demonstrates that, at small distances, the underlying Au has a weak effect on
the pressure since the pressures for d = 20 and 40 nm approach each other. At h = 20 nm,
the pressure for bare Au is 2.35 times larger than that for d = 40 nm. At h = 200 nm, this
ratio is 1.54 and still significant. The situation does not change essentially if one considers
the sphere–plate interaction. In this case, the ratio of the forces without and with the
dielectric layer is 2.30 and 1.40 at h = 20 nm and h = 200 nm, respectively. This example
shows that the presence of a thin dielectric layer on the metallic plate significantly changes
the force. This means that one can investigate the dielectric materials by sputtering thin
films on good conductors and comparing the pressures with and without the dielectric layer.
The unwanted electrostatic force due to the charging of the dielectric can be compensated
for if the layer is sufficiently thin.

The difference between the pressures with and without the dielectric layer can be
presented via only two elementary reflection coefficients, rvd and rvm. The coefficient rmd
is expressed via rvd and rvm by the relation (10) at d = 0:

rmd =
rvm − rvd

1− rvdrvm
. (15)

Equation (15) is true for both polarizations. The difference, ∆ = P m/d
C − P m

C , between
the pressures can be presented using the Lifshitz formula (13) as

∆ =− kBT
π

∞

∑
n=0

′ ∞∫
0

dqqkv ∑
ν=s,p

1− e−2kdd

rvm
×

[
1− R1rvde−2kvh

rvd − rvm
− (rvd − R1e−2kvh)e−2kdd

1− rvdrvm

]−1
R1R2e−2kvh

1− R1R2e−2kvh ,

(16)

where the reflection coefficients, R1,2, refer to bare metals and coincide with rvm for metal 1
and 2, respectively. If metal 1 and metal 2 are similar, then R1 = rvm.

The pressure difference can be compared with the pressure between the metal and
bulk dielectric as shown in Figure 3. Naively, one could expect that the difference,
∆ = P m/d

C − P m
C , is the pressure between the dielectric membrane with the thickness

d and the metal. Figure 3a shows that this is not the case since the pressure, P d
C , between

the metal and bulk dielectric is even smaller than ∆. One can also see from Equation (16)
that ∆ does not coincide with the pressure between the dielectric membrane and metal.
The difference, ∆, still keeps information about the underlying metal. Nevertheless, the
contribution of the dielectric layer to ∆ is significant, as one can see in Figure 3b, which
shows the ratio, ∆/P d

C , as a function of the distance, h.
The effect of the dielectric layer is reduced with its thickness and, for successful

experiments, one has to keep the balance between the increasing compensating voltage
and the increasing influence of the dielectric layer on the increase in its thickness. To some
degree, one can influence the charge in the dielectric by plasma treatment or UV (ultra-
violet) irradiation. The less the charge, the thicker the layer of the dielectric that can be used.
Note that the thickness of the layer can be well characterized ellipsometrically. It is worth
mentioning that the dielectric layer contributes significantly even at rather large distances.
For example, at h = 200 nm, the relative contribution of the layer (see Equation (14)) is
∆R = 0.352 and, at h = 2000 nm, it is 0.054.
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Figure 3. (a) Difference between pressures, ∆ = P m/d
C − P m

C (blue curve), and the pressure, P d
C ,

between Au and bulk SiO2 (red curve). In P m/d
C , the thickness of the dielectric is d = 40 nm. (b) Ratio

of the pressures presented in (a). The ratio shows that ∆ carries significant information about the
metal–dielectric interaction.

4. Conclusions

The total force measured experimentally includes a significant contribution from
the electrostatic force that has to be separated from the Casimir force. When the force is
measured between metals, the problem is solved by applying the compensating potential.
The same method cannot be applied to dielectrics, for which the electrostatic force is strong
due to the charging effect. The main idea of this paper was to use, instead of a bulk
dielectric, a thin layer deposited on a metallic (or metallized) substrate. If the dielectric
layer is sufficiently thin, the electrostatic force can be compensated for by applying an extra
voltage to the metallic substrates. For a layer thickness above 100 nm, the compensating
voltage becomes above 1 V, which is too large for practical use.

At the same time, at separations smaller than or of the order of 100 nm, a dielectric
layer thicker than 10 nm contributes significantly to the Casimir force between a metal and
the other metal covered with the dielectric. There is an optimal thickness of the layer such
that the electrostatic force can be compensated for, but the contribution of the layer to the
Casimir force is sufficient to extract information about the Casimir interaction of the metal
with the bulk dielectric.

The main idea proposed in this paper can be generalized to the interaction of two di-
electrics but, physically, an even more interesting case is the interaction of a semiconductor
with metal.
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