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Abstract: Noncommutativity in physics has a long history, tracing back to classical mechanics. In
recent years, many new developments in theoretical physics, and in practical applications rely on
different techniques of noncommutative algebras. In this review, we introduce the basic concepts and
techniques of noncommutative physics in a range of areas, including classical physics, condensed
matter systems, statistical mechanics, and quantum mechanics, and we present some important
examples of noncommutative algebras, including the classical Poisson brackets, the Heisenberg
algebra, Lie and Clifford algebras, the Dirac algebra, and the Snyder and Nambu algebras. Potential
applications of noncommutative structures in high-energy physics and gravitational theory are also
discussed. In particular, we review the formalism of noncommutative quantum mechanics based on
the Seiberg–Witten map and propose a parameterization scheme to associate the noncommutative
parameters with the Planck length and the cosmological constant. We show that noncommutativity
gives rise to an effective gauge field, in the Schrödinger and Pauli equations. This term breaks
translation and rotational symmetries in the noncommutative phase space, generating intrinsic
quantum fluctuations of the velocity and acceleration, even for free particles. This review is intended
as an introduction to noncommutative phenomenology for physicists, as well as a basic introduction
to the mathematical formalisms underlying these effects.

Keywords: noncommutative quantum mechanics; noncommutative phase space; quantum Hall
effect; Seiberg-Witten map

1. Introduction

Different physical theories depend on different mathematical structures. For example,
classical Hamiltonian mechanics is defined on a symplectic manifold, and relativistic
gravity theories describe the dynamics of pseudo-Riemann geometries, while quantum
theories are defined by using complex vector spaces [1]. Noncommutativity naturally arises
in various formalisms, tracing back to the descriptions of angular momentum and work
in classical mechanics, through to the Heisenberg algebra and its associated uncertainty
relations in canonical quantum mechanics, and on to more speculative recent theories
regarding the noncommutative nature of spacetime at the Planck scale [2–5]. The latter
include the Snyder algebra [6], Heisenberg–Weyl algebra, various types of Lie algebra,
and the so-called noncommutative phase space algebra [2,7].

Snyder proposed a five-dimensional noncommutative spacetime, with global Lorentz
invariance, to remove singularities in particle physics without renormalization techniques [6].
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His model was generalized to curved spacetimes by C. N. Yang, in order to include grav-
itational effects [8]. These early studies were among the first to suggest that quantized
spacetime should be described by a kind of noncommutative geometry (NCG), which, it is
hoped, can provide a self-consistent formalism to unify quantum theory with gravity [9–11].
Thus, it is believed that NCG could play a vital role in removing the infinities and singular-
ities that unavoidably emerge in both particle physics and cosmology.

In addition, the recent discoveries of dark energy and dark matter in cosmological
observations lead to many puzzles, and the fundamental physics behind these phenomena
is not well understood. There are many candidate theories, and, even though dark energy
can be interpreted phenomenologically as a cosmological constant, there is still no direct
experimental evidence capable of determining the physical mechanism that gives rise to
it [12,13]. One possibility is that the small but nonzero vacuum energy emerges from the
quantum fluctuations of the spacetime background at the Planck scale, which is expected
in the framework of noncommutative field theory and quantum gravity models based on
noncommutative geometry [14–16].

In less speculative fields, noncommutativity also plays a vital role in describing a
range of important physical phenomena. In condensed matter physics, it may be shown
that a two-dimensional electronic system, immersed in a strong magnetic field, is equiva-
lent to its free electron counterpart, formulated in a noncommutative phase space [17–22].
Thus, by generalizing the canonical Heisenberg algebra to include nontrivial space–space
and/or momentum–momentum commutation relations, this so-called noncommutative
quantum mechanics (NCQM) can successfully model known phenomena, such as the
Aharonov–Bohm effect [23–26], the quantum Hall effect [22,27,28], the existence of mag-
netic monopoles [17] and the Berry phase [29,30], by using a different language and mathe-
matical formalism.

Currently, there are several schemes used to implement such phase space noncommu-
tativity [7,27,31–33], including the Seiberg–Witten (SW) map [34–36], the Moyal product
formalism [3] and the Wigner–Weyl phase space approach [37–40]. Based on these non-
commutative algebras, the Heisenberg uncertainty principle can be extended to include
new space–space and momentum–momentum uncertainty relations, which are clearly of
great phenomenological interest to physicists. These physical phenomena also stimulate
mathematical interest in noncommutative algebras and noncommutative geometry [14–16].

An example of a new mathematical formalism, with potential applications in high-
energy physics and gravitational theory, is the Nambu generalization of symplectic geome-
try, in which the Poisson algebra is generalized to the so-called Nambu bracket, yielding
generalized Hamiltonian [41–43] and Lagrangian mechanics [44,45]. The quantisation of
the classical Nambu brackets generates a deformed Heisenberg algebra [46–49], which
leads to new physical phenomenology [50–52], and to a new phase space structure, which
is also of interest to mathematicians [53–55].

In this paper, we present an accessible introduction to noncommutative physics in a
pedagogical format with a strong focus on phenomenology. For completeness, and so
that the text can be read as a self-contained reference, we also include brief summaries of
the basic mathematical formalisms needed to implement noncommutative structures in a
range of example systems. We begin by reviewing important examples of noncommutative
phenomena in physics in Section 2, including the canonical Poisson brackets of classical
mechanics, permutation symmetries in statistical mechanics, and the classical and quantum
Hall effects.

In Section 3, we give an overview of some known noncommutative algebras, including
the Poisson algebra in classical symplectic geometry, the Heisenberg, Lie, Clifford, and Dirac
algebras in canonical quantum theory, the Snyder and Nambu algebras in theoretical
physics, and the deformed Heisenberg algebra used to generate models of NCQM [7].

In Section 4, we give a detailed presentation of NCQM, based on the deformed Heisen-
berg algebra, and review its phenomenological implications for gravitational theories and
high-energy particle physics. Based on the SW map, we give the Heisenberg representation
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of the Schrödinger, Heisenberg, and Pauli equations, and consider some basic properties
of the model, including the existence of anomalous velocity and acceleration terms in the
free-particle dynamics induced by the noncommutativity of the background. We propose
a parameterization scheme that associates the noncommutative parameters of the space–
space and momentum–momentum commutators, respectively, with the Planck length and
the cosmological constant and discuss its implications for particle physics and cosmology.

However, in this pedagogical introduction to noncommutative physics we do not
discuss Conne’s approach to noncommutative geometry, K theory, noncommutative field
theory, the Moyal star product technique, or κ−deformed symmetries of spacetime. For
details of these (more mathematical) approaches, readers are referred to [14–16,56–59] and
references therein. We summarise our conclusions, and offer a few opinions on the outlook
for noncommutative geometry in physics research in Section 5.

2. Noncommutative Phenomena in Physics: Important Examples

In this Section, we review important examples of noncommutative phenomena in
classical and quantum physics.

2.1. Noncommutativity in Classical Physics

The best known example of noncommutativity in classical physics comes from Hamil-
tonian mechanics, in which the Poisson bracket is defined as

{ f , g} :=
∂ f
∂qi

∂g
∂pi
− ∂ f

∂pi

∂g
∂qi . (1)

This relation implies that the generalised coordinates, qi, i ∈ {1, 2, . . . d}, where d is the
dimensionality of the system, and their corresponding canonical momenta, pi = ∂L/∂qi,
obey the commutation relations [60] {

qi, qj
}

= 0, (2)

{
pi, pj

}
= 0, (3)

{
qi, pj

}
= δi

j, (4)

where δi
j is the Kronecker delta. These relations are called the fundamental Poisson brackets.

Together, the coordinates and canonical momenta define the phase space of the system. All
physical quantities are expressed in terms of maps on the phase space and the evolution of
the system follows the integral curves generated by the flow of the Hamiltonian vector field,

γ̇ = {γ,H}. (5)

The physical quantity γ is conserved if {γ,H} = 0 [60].

2.2. Permutation Symmetries in Statistical Mechanics

In statistical physics, the statistical behavior of multiparticle systems depends sen-
sitively on the permutation symmetries of elementary particles. The mean occupation
numbers for free particles in thermal equilibrium states are given by

n = e−(ε−µ)/kBT (6)
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for classical particles, and

n =

{ 1
e(ε−µ)/kBT−1

for bosons,
1

e(ε−µ)/kBT+1
for fermions

(7)

in quantum physics, where T is the temperature of the system, kB is Boltzmann’s constant,
and µ is the chemical potential. The differing bosonic and fermionic distributions, known
as the Bose–Einstein (BE) distribution and the Fermi–Dirac (FD) distribution, respectively,
are governed by different algebras. In the particle number representation, the particle
creation and annihilation operators for bosons and fermions obey, respectively,[

b̂i, b̂†
j

]
= δij1̂,

[
b̂i, b̂j

]
=
[
b̂†

i , b̂†
j

]
= 0 (BE), (8)

{
âi, â†

j

}
= δij1̂,

{
âi, âj

}
=
{

â†
i , â†

j

}
= 0 (FD), (9)

where 1̂ is the identity operator, [A, B] ≡ AB− BA denotes the commutator of AB and B,
and {A, B} ≡ AB + BA is the anticommutator. The anticommutative property of fermion
operators (âi âj = −âj âi, â2

i = 0) is known as a Grassmann algebra. The relationship between
the Fermi–Dirac distribution, spin, and the Grassmann algebra, is called the spin-statistics
theorem [54].

2.3. The Heisenberg Algebra

To understand the discrete atomic spectrum of hydrogen, Bohr proposed an orbital
model of the atom in which discrete spectra are generated by the transitions of electrons
between orbits with different energy levels, ωnm = (En − Em)/h̄, where En(m) label the
discrete energy levels and h̄ is the reduced Planck’s constant. Heisenberg proposed an
equation of motion, now known as the Heisenberg equation, from which Bohr’s empirical
formula could be derived in a more rigorous way,

ih̄
dÔ
dt

= [Ô, Ĥ], (10)

where Ô is the operator corresponding to any physical observable and Ĥ is the Hamilto-
nian operator of the system. For any system, all observables, with the exception of spin
(discussed in Section 2.2 above), are functions of the canonical position and momentum
operators, x̂i and p̂j. These are governed by the noncommutative algebra,

[x̂i, p̂j] = ih̄δi
j1̂, [x̂i, x̂j] = 0, [ p̂i, p̂j] = 0, (11)

where i, j ∈ {1, 2, 3} and (x1, x2, x3) ≡ (x, y, z) denote global Cartesian coordinates in three-
dimensional Euclidean space, R3. The noncommutativity of the position and momentum
variables leads directly to the Heisenberg uncertainty relation,

∆xi∆pj ≥
h̄
2

δi
j, (12)

and Equation (11) is known as the Heisenberg algebra. The uncertainty relation reveals
the intrinsic quantum fluctuations caused by the wave–particle duality of matter in the
microscopic world. This form of noncommutativity not only leads to the emergence of
quantum mechanics, but was also the original inspiration stimulating many attempts to
extend noncommutative concepts to different fields in physics [2,7].
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2.4. The Classical and Quantum Hall Effects

The current density in a conductor is given by

Ji = σijEj, (13)

where σij are the components of the conductivity matrix and Ej are the components of the
applied electric field. In the equilibrium state, σxx = σyy = 0, the transverse conductivity
obeys the noncommutative relation,

σxy − σyx = 2σH , (14)

where σH = nee/B, e is the charge of the electron, ne is the density of electrons per unit area,
and B = |B| is the magnitude of the magnetic field strength [22]. Discovered by Edwin Hall
in 1879, this is the canonical example of noncommutativity in classical electrodynamics.
Practically, the noncommutative relation (14) can be applied to detect the types of charge
carriers in semiconductors, namely, electrons (−) or holes (+).

In the quantum Hall effect, which occurs in the presence of strong magnetic fields, the
quantized Hall conductivity emerges, σij = νe2εij/h̄, where εij is the antisymmetric (Levi–
Civita) tensor. Here, ν is the filling factor defined as ν = ne/nB ∈ N, where nB = 2πeB/h̄
is the maximum number of electron states per unit area of a single Landau level [22].

In a strong constant magnetic field, the electron feels a Lorentz force and undergoes cir-
cular motion in the plane perpendicular to the magnetic field lines. The planar coordinates,
(x, y), may be decomposed into the “guiding center” (X, Y) and the “relative coordinate”
(Rx, Ry) parts, such that x = X+R, where Rx = −PY/eB, Ry = PX/eB and (PX , PY) denote
the covariant momenta. The guiding center coordinates are then given by [22]

X̂ = x̂− 1
eB

P̂Y, (15)

Ŷ = ŷ +
1

eB
P̂X , (16)

where [x̂, P̂X ] = [ŷ, P̂Y] = ih̄1̂. We then have[
X̂, Ŷ

]
= i`2

B1̂, (17)

[
P̂X , P̂Y

]
= i

h̄2

`2
B
1̂, (18)

and [
X̂, P̂X

]
=

[
X̂, P̂Y

]
= 0, (19)

[
Ŷ, P̂X

]
=

[
Ŷ, P̂Y

]
= 0, (20)

where

`B =

√
h̄

eB
(21)

is called the magnetic length, which describes the fundamental scale in the quantum
Hall system.
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To solve the quantum Hall system, we introduce two kinds of boson operators [22],

â =
`B√
2h̄

(P̂X + iP̂Y), (22)

â† =
`B√
2h̄

(P̂X − iP̂Y), (23)

b̂ =
1√
2`B

(X̂ + iŶ), (24)

b̂† =
1√
2`B

(X̂− iŶ), (25)

which obey the commutation relations:[
â, â†

]
=

[
b̂, b̂†

]
= 1, (26)

[
â, b̂
]

=
[

â, b̂†
]
= 0, (27)

[
â†, b̂

]
=

[
â†, b̂†

]
= 0, (28)

and the Fock vacuum is defined by the conditions â|0〉 = 0 and b̂|0〉 = 0. The Fock states
are explicitly constructed as

|N, n〉 =
√

1
N!n!

(â†)N(b̂†)n|0〉, (29)

and the orthonormal completeness relations are

〈M, m|N, n〉 = δMNδmn, (30)

∑
N,n
|N, n〉〈N, n| = 1. (31)

Consequently, the Hamiltonian can be rewritten as

Ĥ =

(
b̂† b̂ +

1
2

)
h̄ωc, (32)

where ωc = h̄/(me`2
B) = eB/me, and me is the effective mass of the quantum Hall system.

The corresponding eigenenergies (Landau levels) are then obtained as

EN =

(
N +

1
2

)
h̄ωc. (33)

Each level is multiply degenerate and the state |N, n〉, given in Equation (29), is called
the nth Landau site in the Nth Landau level. Each Landau site occupies an area ∆A = 2π`2

B
in real space. The density of states is given by

ρφ =
1

2π`2
B
=

B
φD

, (34)
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where φD = 2πh̄/e is the Dirac flux quantum. The quantization of the Hall conductance
then leads to the relation [22]

ν =
ne

ρφ
= 2π`2

Bne. (35)

In Section 4.8 below, we show how constructing a quantum Hall system in a non-
commutative phase space modifies the effective magnetic field, giving Bnc = B + Bη ,
where Bη is related to the noncommututivty parameter of the momentum–momentum
commutation relations, η. In the proposed parameterization scheme (see Section 4.8),
η = m2

dSc2 ≡ h̄2Λ/3, where mdS = (h̄/c)
√

Λ/3 is the de Sitter mass, Λ ' 10−52 cm−2 is
the cosmological constant [13], and c denotes the speed of light. The effective magnetic

length becomes `nc
B =

√
h̄

e(B+h̄Λ)
and the quantized Hall conductivity is σij = νe2εij/h,

where ν = 2π(`nc
B )2ne, and h is Planck’s constant, 2πh̄. However, since Bη � B, the non-

commutative effect is too small to be observable with current technology [7,24,25].

3. An Overview of Noncommutative Algebras

Noncommutative phenomena are governed by noncommutative algebras. Here, we
present several typical examples of noncommutative algebras in physics.

3.1. The Poisson Algebra in Symplectic Space

In classical mechanics, the Poisson bracket corresponds to the quantum mechanical
commutator, in the limit h̄→ 0 of a canonical quantization scheme. The Poisson bracket
can be regarded as a generalized product that defines an algebra (the Poisson algebra),
which gives rise to the symplectic structure of Hamiltonian mechanics in the canonical
phase space. The canonical phase space is defined, formally, as the cotangent bundle, T∗Qn,
of the configuration space, Qn, with the symplectic structure given by [60]

Ω = dqi ∧ dpi, (36)

where A ∧ B = A⊗ B− B⊗ A is the Cartan wedge product. In the matrix representation
of the symplectic structure, the generalized coordinates and momenta are redefined as
{zα} = {z1, · · · , z2n} := {q1, · · · , qn, p1, · · · , pnc, where i = 1, · · · , n for q and p, while
α = 1, · · · , 2n for z. The symplectic 2-form Ω is defined as a bilinear map, Ω : Z× Z → R,
where Z is a linear vector space [60], i.e.,

Ω(z, z) = zT Jz, (37)

where z is a column vector with 2n components z ∈ Z, the subscript T denotes the transpose,
and J = (Jαβ) is the 2n× 2n symplectic matrix

J =
(

0 I
−I 0

)
. (38)

Here, 0 denotes the n× n-zero matrix, and I is the n× n unit matrix. It can be seen that J is
skewed and regular, det J = 1.

For any pair differentiable functions on the phase space, f , g ∈ F (T∗Q), one has

d f ∧ dg =
∂ f
∂qi

∂g
∂pi

dqi ∧ dpi

=
1
2

(
∂ f
∂qi

∂g
∂pi
− ∂ f

∂pi

∂g
∂qi

)
dqidpi, (39)

and the Poisson bracket is defined by Equation (1). The Poisson bracket is skew-symmetric
and bilinear, and obeys the Leibniz rule and the Jacobi identities, namely [60]

{ f , g} = −{g, f }, (40)
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{α f + βg, h} = α{ f , g}+ β{ f , h}, (41)

{ f , αg + βh} = α{ f , h}+ β{g, h}, (42)

{ f , gh} = { f , g}h + g{ f , h}, (43)

{{ f , g}, h} + {{g, h}, f }+ {{h, f }, g} = 0, (44)

where α and β are real constants.

3.2. From Poisson to Heisenberg

The canonical quantization procedure is based on a correspondence between the
classical Poisson brackets and the Heisenberg algebra, in which classical dynamics are
regarded as the h̄→ 0 limit of quantum theory,

lim
h̄→0

1
ih̄

[
x̂i, p̂j

]
:=

{
xi, pj

}
= δi

j, (45)

lim
h̄→0

1
ih̄

[
x̂i, x̂j

]
:=

{
xi, xj

}
= 0, (46)

lim
h̄→0

1
ih̄
[
p̂i, p̂j

]
:=

{
pi, pj

}
= 0. (47)

Note that here the xi denote global Cartesians, not generalised coordinates, and the pi
denote the corresponding linear momenta [1]. For a classical observable O(x, p), the corre-
sponding quantum operator is then defined as Ô(x̂, p̂), up to ordering ambiguities caused
by the noncommutativity of the position and momentum operators.

In general, any pair of operators f̂ , ĝ preserves the canonical structure

lim
h̄→0

[
f̂ , ĝ
]
= { f , g}. (48)

The position–momentum commutator defined by canonical quantization therefore inherits
all the familiar properties of the Poisson bracket, namely, skew-symmetry, bilinearity,
and compatibility with the Leibniz rule and the Jacobi identities (40)–(44).

3.3. From Heisenberg to the Lie, Clifford, and Dirac Algebras

Based on the canonical quantization procedure, the angular momentum operator
is defined as L̂i = iεij

k x̂j p̂k. The components of the angular momentum obey the Lie
algebra [1]

[L̂i, L̂j] = ih̄εij
k L̂k, (49)

where εij
k is the three-dimensional Levi-Civita symbol. Similarly, the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ2 =

(
1 0
0 −1

)
, (50)

which are used to define the spin-1/2 operators ŝi = (h̄/2)σi, also obey the Lie algebra[
σi, σj

]
= 2iεij

kσk, (51)

as well as the Clifford algebra {
σi, σj

}
= 2iδij1, (52)
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where
{

σi, σj
}

:= σiσj + σjσi again denotes the anticommutator [61].
To describe both particles and antiparticles, Dirac introduced a set of operators known

as the gamma matrices, which are often denoted by using the slightly inconsistent notation
(γµ, γ5) = (γ0, γi, γ5), where µ ∈ {0, 1, 2, 3} and i ∈ {1, 2, 3}. Explicitly, these may be
written as

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi
−σi 0

)
, γ5 =

(
0 I
I 0

)
, (53)

and it is straightforward to demonstrate that γ5 := iγ0γ1γ2γ3. The Dirac operators obey
the following relations [61]

{γµ, γν} = 2ηµν
1 (Clifford algebra), (54)

{
γ5, γν

}
= 0, (55)

{
γ5, σµν

}
= 0, (56)

γµγν = (ηµν − iσµν)1, (57)

(γµ)2 = ηµµ
1, (58)

γµγµ = 4, (59)

where ηµν = (1,−1,−1,−1) is the Minkowki metric and σµν := i
2 [γ

µ, γν]. These
(anti-)commutation relations are called the Dirac algebra.

3.4. The Snyder Algebra

To regularise the emergence of singularities in particle physics, while preserving
Lorentz invariance, Snyder introduced a noncommutative algebra formulated in five-
dimensional spacetime with a constraint, namely

x = ia
(

η4 ∂

∂η1 − η1 ∂

∂η4

)
, (60)

y = ia
(

η4 ∂

∂η2 − η2 ∂

∂η4

)
, (61)

z = ia
(

η4 ∂

∂η3 − η3 ∂

∂η4

)
, (62)

t =
ia
c

(
η4 ∂

∂η0 + η0 ∂

∂η4

)
, (63)

where a is the noncommutative parameter, the ηi are real variables, and the constraint

− η2 = η2
0 − η2

1 − η2
2 − η2

3 − η2
4 (64)
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defines the embedding of a four-dimensional de Sitter geometry [6]. Consequently, the space-
time variables obey the following commutation relations,

[xi, xj] =
ia2

h̄
εijkLk, (65)

[t, xi] =
ia2

h̄c
Mi, (66)

where

Li = ih̄εi
jkηj

∂

∂ηk , (67)

Mi = ih̄
(

η0 ∂

∂ηi
+ ηi ∂

∂η0

)
. (68)

When a→ 0 the Snyder algebra (65) and (66) reduces to the standard commutative relations
of ordinary Minkowski space. This noncommutative algebra preserves Lorentz invariance
and can help to alleviate or avoid singularities in quantum field theories, defined on the
associated background geometry, without the use of renormalization techniques [6].

3.5. Beyond Poisson: The Nambu Algebra

Nambu’s original idea was to look for an alternative formalism for Hamiltonian
mechanics, which preserves the volume of the phase space (the Liouville theorem), and
which, therefore, can be applied to statistical ensembles [41]. To achieve this, he introduced
the so-called N-triplet canonical variables, and an “extended” Poisson bracket. The Nambu
formalism of extended Hamiltonian mechanics was later quantized, giving rise to the so-
called “Nambu quantum mechanics” [46,48], which can be used, among other applications,
to describe quark triplets [62], magnetic monopoles [50], and superconductivity [53]. The
Nambu dynamics also inspired various mathematicians, who later reformulated the theory
in geometric terms [55]. Here, we introduce the basic formulation of Nambu dynamics and
briefly describe the procedure for quantizing classical Nambu systems.

In Nambu mechanics, the Poisson pair of canonical variables in two-dimensional
phase space, (x, p), is extended to a triplet of dynamical variables in a three-dimensional
phase space, x = (x1, x2, x3). Two Hamiltonian functions are introduced on this space,
denoted as H1 and H2, yielding a generalized Hamilton equation [41–43],

dx
dt

= ∇H1 ×∇H2. (69)

The divergence of the velocity field, v = dx/dt, is given by∇ · v = ∇ · (∇H1×∇H2). The
invariance of the phase space volume requires ∇ · (∇H1 ×∇H2) = 0, which corresponds
to a generalized Liouville theorem. Similarly, for any function F(x1, x2, x3), the equation of
motion is given by

dF
dt

= ∇F · (∇H1 ×∇H2), (70)

where
∇F · (∇H1 ×∇H2) = εijk∂iF∂j H1∂k H2. (71)

The Nambu bracket, which is a generalization of the canonical Poisson bracket, is
defined as

{A1, A2, A3} := εijk∂i A1∂j A2∂k A3. (72)

It possesses the following properties and obeys the following relations.
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1. Skew-symmetry:

{A1, A2, A3} = (−1)ε(p)
{

Ap(1), Ap(2), Ap(3)

}
, (73)

where p(i) is the permutation of indices and ε(p) is the parity of the permutation.
2. Leibniz rule:

{A1 A2, A3, A4} = A1{A2, A3, A4}+ {A1, A3, A4}A2. (74)

3. Fundamental identity:

{A1, A2, {A3, A4, A5}} = {{A1, A2, A3}, A4, A5}+ {A3, {A1, A2, A4}, A5}+ {A3, A4, {A1, A2, A5}}. (75)

In particular, one has that {
xi, xj, xk

}
= εijk (76)

and {
Aj, Aj, Ai

}
=
{

Aj, Ai, Aj
}
=
{

Ai, Aj, Aj
}
= 0, (77)

for any i, j ∈ {1, 2}. The corresponding generalisation of Hamiltonian mechanics on a
2d-dimensional symplectic manifold, with canonical variables (xi, pj), i, j ∈ {1, 2, . . . , d} is
straightforward, but the relations are cumbersome to write, and we neglect them here for
the sake of pedagogical clarity.

The Nambu bracket structure is preserved under differential maps xi → yi(x), which
preserve the volume of the phase space, such that

{
y1, y2, y3} = 1, i.e.,{

y1, y2, y3} := εijk∂iy1∂jy2∂ky3. These are called the volume-preserving diffeomorphisms
(VPD). In general, these involve two independent functions, f and g, and the infinitesimal
three-dimensional generator of VPDs is defined as [47]

D( f , g) := εijk∂i f ∂jg∂k ≡ Dk( f , g)∂k. (78)

The volume-preserving property implies ∂iDi( f , g) = ∂k

(
εijk∂i f ∂jg

)
= 0, which is equiva-

lent to the divergencelessness of the velocity ∇ · v = 0.
We may also consider parametrizations of the triple phase space, of the form

{xα} → {Xα}, where α = 0, 1, · · · , d. The induced infinitesimal volume element is given
by [47]

dσ =
√{

Xα, Xβ, Xγ
}

dx1dx2dx3, (79)

where the volume element is invariant under the transform Y = X + εD( f , g)X. The
Nambu bracket is also invariant under this transformation,{

Yα, Yβ, Yγ
}
−
{

Xα, Xβ, Xγ
}

= εD( f , g)
{

Xα, Xβ, Xγ
}
+O(ε2). (80)

The quantization of the classical Nambu brackets in Equation (72) should preserve
the properties in Equations (73)–(75). Following the canonical quantization procedure,
the quantum Nambu bracket is defined as

lim
h̄→0

1
ih̄
[A1, A2, A3] = {A1, A2, A3}, (81)

such that it obeys the the following properties [46,47].

1. Skew-symmetry:

[A1, A2, A3] = (−1)ε(p)
[

Ap(1), Ap(2), Ap(3)

]
, (82)

where p(i) is the permutation of indices and ε(p) is the parity of the permutation.
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2. Leibniz rule:
[A1 A2, A3, A4] = A1[A2, A3, A4] + [A1, A3, A4]A2. (83)

3. Fundamental identity:

[A1, A2, [A3, A4, A5]] = [[A1, A2, A3], A4, A5] + [A3, [A1, A2, A4], A5] + [A3, A4, [A1, A2, A5]]. (84)

In particular, [
xα, xβ, xγ

]
= ih̄εαβγ, (85)

and [
Aβ, Aβ, Aα

]
=
[
Aβ, Aβ, Aβ

]
=
[
Aα, Aβ, Aβ

]
= 0, (86)

for all α, β. Written explicitly, the quantum Nambu bracket can be expressed in terms of the
Heisenberg canonical bracket as [47–49]

[A, B, C] = A[B, C] + B[C, A] + C[A, B]. (87)

The quantum Nambu equation is given by

ih̄
dF
dt

= [F, H1, H2] (88)

for an arbitrary function F.
When the triple variables are generalized to n-component vectors xi and n− 1 Hamilto-

nian functions, the n-component Nambu bracket also keeps the above properties. However,
it is still unclear how to link Nambu mechanics to Hamiltonian and Lagrangian mechanics,
directly, and what relationship should exist between the extended and canonical variables.
Most importantly, it remains unclear how to construct multiple Hamiltonian functions on a
phase space with an odd number of dimensions [42,44].

3.6. The Deformed Heisenberg Algebra: Noncommutative Phase Space

Various generalizations of the Heisenberg commutation relations have been considered
in the existing literature on noncommutative geometry, and these have been based on
various physical arguments. In this Section, we review some of the best explored and
motivated proposals; for more details, see [2–5,7,17,18] and references therein.

Model I: Gedanken experiments in phenomenological quantum gravity, as well as
several specific approaches to this problem, including string theory, loop quantum gravity,
and others, suggest the existence of a minimum resolvable length scale in nature, of the
order of the Planck length [3,9]. The minimal implementation of this idea therefore suggests
that the spatial coordinates may be noncommutative but that the canonical Heisenberg
commutation relations between the positions and momenta are preserved, giving [26,28]

[X̂i, P̂j] = ih̄δi
j1̂, (89)

[X̂i, Ŷ j] = iθij
1̂, (90)

[P̂i, P̂j] = 0. (91)

The noncommutative relations (90) yield additional quantum fluctuations between dif-
ferent spatial components, giving rise to the generalized uncertainty relations
∆Xi∆Y j ≥ θij/2.

Model II: In some models, the existence of dark energy, which drives the present-
day accelerated expansion of the universe, is associated with the existence of a minimum
resolvable momentum, and hence energy [12,13]. The physical scenario considered here is
one in which there exists a minimum energy density, and hence a minimum curvature of
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spacetime, which arises directly from quantum fluctuations of the canonical momentum
components, yielding [11]

[X̂i, P̂j] = ih̄δi
j1̂, (92)

[X̂i, Ŷj] = 0, (93)

[P̂i, P̂j] = iηij1̂. (94)

The noncommutative relations (94) yield additional quantum fluctuations between
different momenta, such that ∆Pi∆Pj ≥ ηij/2.

Model III: Combining both arguments above motivates us to include both spatial
and momentum noncommutative relations, while still leaving the canonical position–
momentum commutator of the Heisenberg algebra intact, giving [24,25,33]

[X̂i, P̂j] = ih̄δi
j1̂, (95)

[X̂i, Ŷ j] = iθij
1̂, (96)

[P̂i, P̂j] = iηij1̂. (97)

In this case, we obtain additional quantum fluctuations arising from the noncommuta-
tivity of both the spatial and momentum components.

Model IV: The physical scenario considered in Model III can be generalized even
further, to modify the canonical Heisenberg relation between position and momentum,
such that [24,25,33]

[X̂i, P̂j] = iκi
j1̂, (98)

[X̂i, Ŷ j] = iθij
1̂, (99)

[P̂i, P̂j] = iηij1̂, (100)

where κi
j 6= h̄δi

j. We discuss this generalization in detail in Section 4 below.
However, before concluding this Section, let us note that each of the models above can

also be motivated in a number of different ways. For example, models, in which [P̂i, P̂j] 6= 0
can be derived from the theory of relative locality [63], where the noncommutativity of the
momentum components is generated via the curvature of momentum space. Noncommuta-
tive generalizations of the canonical Heisenberg algebra can also be derived by considering
deformations of the canonical spacetime symmetries, as in the κ−Poincare approach to
noncommutative geometry, which has been extensively applied in the construction of
noncommutative field theories [59]. These results suggest deep geometric connections
between the deformed phase space, noncommutative algebras, and quantum geometry.

4. Noncommutative Quantum Mechanics

In this Section, we give a pedagogical introduction to one of the most studied methods,
used to generalize the canonical Heisenberg algebra to noncommutative phase space,
namely, the SW map [7,27,31–33].
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4.1. Position and Momentum in Noncommutative Phase Space

In general, the canonical Heisenberg phase space can be generalized to a noncommuta-
tive phase space by imposing the algebra (98)–(100). For simplicity, one may assume that all
nonzero components θij, ηij are equal in magnitude, i.e., θii = 0, ηii = 0 and θij = −θ ji = θ,
ηij = −ηji = η, for i 6= j. Similarly, we assume that the diagonal components of the
matrix κi

j are equal, κi
i = κα, and that the off-diagonal components differ by at most a

change of sign, κi
j = −κ j

i = κβ, as required by the symmetries of the noncommutative
relations (98)–(100). For later convenience, we write down the noncommutative matrices,
explicitly, as

[θij] =

 0 θ θ
−θ 0 θ
−θ −θ 0

, [ηij] =

 0 η η
−η 0 η
−η −η 0

, [κi
j] =

 κα κβ −κβ

κβ κα κβ

−κβ κβ κα

. (101)

Note that here we choose to parameterize the antisymmetric matrices θij and ηij and the
symmetric matrix κi

j with the minimum possible number of independent parameters, i.e., θ,
η, κα and κβ. However, this choice is made for the sake of simplicity and pedagogical
clarity, and more complicated models, with more parameters, may be more suitable for the
description of various physical scenarios. In the Section 4.8 below, one can see how this
“minimal” set of noncommutative parameters can be naturally associated with universal
physical constants, such as the Planck length and cosmological constant, which may provide
a physical scenario for dark energy and quantum gravity, in terms of noncommutative
geometry. Moreover, one can see that the κi

j matrix parameters, κα and κβ, can be naturally
expressed in terms of θ and η, based on the SW map with the Bopp shift [29].

The corresponding generalised uncertainty relations are

∆Xi∆Pj ≥
κi

j

2
, (102)

∆Xi∆Y j ≥ θij

2
, (103)

∆Pi∆Pj ≥
ηij

2
. (104)

4.2. Angular Momenta in Noncommutative Phase Space

In the canonical quantum mechanics, the angular momentum operators are the gener-
ators of the rotation group SO(3). A vector rotation is expressed as

x̂′ = x̂ + δφ× x̂, (105)

where δφ = (δφx, δφy, δφz) are the infinitesimal Euler anglers. The wave function trans-
forms under rotations according to

ψ′(x, t) = ÛR(δφ)ψ(x̂, t), (106)

where
ÛR(δφ) = I − i

h̄
δφ · L̂, (107)

and L̂ = x̂× p̂ is the operator counterpart of the orbital angular momentum pseudovector.
The components of the angular momentum thus satisfy the closed relations
[L̂α, L̂β] = ih̄εαβ

γ L̂γ, which are equivalent to the su(2) Lie algebra. In isotropic space,
[ÛR(φ), Ĥ] = 0 and [L̂, Ĥ] = 0, which implies that the angular momentum is conserved.
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In the noncommutative phase space, we assume the rotation transformations (105)–(107)
still hold, but x̂→ X̂, p̂→ P̂ and L̂→ L̂ = X̂× P̂. In other words, the angular momentum
operator in the noncommutative phase space is given explicitly as

L̂i = εijkX̂ j P̂k. (108)

By using the basic noncommutative relations in (98)–(100), the commutation relations for
the components of angular momenta can be obtained as

[L̂α, L̂β] = iεαj
kεβb

c[(κ j
cX̂b P̂k − κb

kX̂ j P̂c) + (ηkcX̂ jX̂b + θ jb P̂c P̂k)]. (109)

It can be seen that the angular momentum does not obey the SO(3) Lie algebra. It can
be verified that [L̂, Ĥ] 6= 0, which implies that rotational symmetry is broken in the
noncommutative phase space.

However, it should be noted that in some approaches to noncommutative geometry,
such as the κ−Minkowski model of noncommutative spacetime, generalized operators
are taken, by definition, as the generators of deformed-symmetry transformations [57,58].
In this approach, the Lie algebras of canonical quantum mechanics are replaced by Hopf
algebras, and the dynamics of the canonical theory are generalized to include additional
couplings between matter and gravity, as required by the structure of the κ−Poincare Hopf
algebra [57,58].

4.3. The Heisenberg Equation and Conservation Laws

As in canonical quantum mechanics, it is assumed that the equation of motion for a time-
dependent operator, Q̂, in the noncommutative phase space, is the Heisenberg equation

d
dt

Q̂ =
1
ih̄
[
Q̂, Ĥ

]
, (110)

where [Q̂, Ĥ] is the appropriate (perhaps noncanonical) commutator.
According to Noether’s theorem, a physical variable Q̂ is conserved under a unitary

transformation, Û = e−iαQ̂, where α ∈ R is a continuous parameter, if [Q̂, Ĥ] = 0. In
canonical quantum mechanics, the spatial translation operator, which acts according to
T̂X : X̂ → X̂ + a, ψ

(
X̂, t
)
→ T̂Xψ

(
X̂, t
)
= ψ

(
X̂ + a, t

)
, is given by T̂X = e

i
h̄ a·P̂. Hence,

the momentum operator can be regarded as the generator of the translation group. However,
in the noncommutative phase space, we have [T̂X, Ĥ] 6= 0 and [P̂, Ĥ] 6= 0, even for the free
particle with Hamiltonian, Ĥ = P̂2/(2m). As with the generalized angular momentum
operators, discussed in Section 4.3, one can just define generalised “translations” as a group
of transformations in the noncommutative phase space, then identify their generators with
the (noncommutative) components of the generalized momenta (c.f. [57,58]).

In addition, assuming that the vector momentum operator is given in the usual way,
P̂ = P̂Xi+ P̂Yj+ P̂Yk, and using the basic noncommutative relations in (98)–(100), we obtain

[P̂, Ĥ] =
η

m
K̂p, (111)

where
K̂p =

(
P̂y + P̂z

)
i−
(

P̂x − P̂z
)
j.−

(
P̂x + P̂y

)
k. (112)

The noncommutative relation in (111), between the momentum and Hamiltonian op-
erators, implies that d

dt
〈
P̂
〉
= η

m
〈
K̂p
〉
6= 0. Namely, that momentum is not conserved in the

noncommutative phase space, even for a free particle. This is because spatial translational
symmetry is broken. However, interestingly, it can be verified that [P̂2, Ĥ] = 0, which
implies that the amplitude of the momentum is still conserved. In other words, the direction
of the momentum shows an intrinsic stochastic behavior, in the noncommutative phase
space, due to fluctuations of the background geometry, but this does not alter the total
energy of the system.
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The commutation relation between the angular momentum operator and the Hamilto-
nian of the free particle is obtained as

[
L̂, Ĥ

]
=

ih̄
m
(
Ω̂Xi + Ω̂Yj + Ω̂Zk

)
≡ ih̄

m
Ω̂, (113)

where

Ω̂X =
η

h̄
(
−
{

Ŷ, P̂Y
}
−
{

Ẑ, P̂Z
}
−
{

Ŷ, P̂X
}
+
{

Ẑ, P̂X
})

+
κβ

h̄

({
P̂X , P̂Y

}
+
{

P̂X , P̂Z
}
+ 2P̂2

Y + 2P̂2
Z

)
, (114)

Ω̂Y =
η

h̄
({

X̂, P̂X
}
+
{

X̂, P̂Y
}
+
{

Ẑ, P̂Z
}
+
{

Ẑ, P̂Y
})

+
κβ

h̄

({
P̂X , P̂Y

}
−
{

P̂Y, P̂Z
}
− 2P̂2

X + 2P̂2
Z

)
, (115)

Ω̂Z =
η

h̄

(
−
{

X̂, P̂X
}
−
{

Ŷ, P̂Y
}
+
{

X̂, P̂Z
}
−
{

Ŷ, P̂z

})
+

κβ

h̄

(
−
{

P̂X , P̂Z
}
−
{

P̂Y, P̂Z
}
− 2P̂2

X + 2P̂2
Y

)
. (116)

In general, for η 6= 0 and κβ 6= 0, we have Ω̂ 6= 0. This implies that d
dt
〈
L̂
〉
= ih̄

m
〈
Ω̂
〉
6= 0,

i.e., that the angular momentum is not conserved in noncommutative phase space, even for
free particles. However, whether there exist specific states, and/or specific nonzero values
of η and κα, such that 〈Ω̂〉 = 0, is an interesting question, although we do not attempt to
answer it here. In addition, the commutation relation between the square of the angular
momentum and the Hamiltonian can be expressed as

[L̂2, Ĥ] =
ih̄
m
(
L̂ · Ω̂ + Ω̂ · L̂

)
, (117)

which implies that the amplitude of the angular momentum is also not conserved, in con-
trast to the energy. In general, both spatial translation and rotation symmetries are broken
in the noncommutative phase space.

By contrast, time translations are defined implicitly through the Heisenberg equation,
as the transformations generated by the Hamiltonian, Ĥ. Hence, the preservation of
time-translation symmetry is a direct consequence of the Heisenberg equation, which is
assumed to also hold in the noncommutative phase space model. More specifically, the time-
translation operator, which acts according to T̂t : t → t + τ and ψ(X̂, t) → T̂tψ(X̂, t) =

ψ(X̂, t + τ), is given by T̂t = eτ ∂
∂t = e−

i
h̄ τĤ , where Ĥ = ih̄ ∂

∂t . We then have
[
T̂t, Ĥ

]
= 0 and

[Ĥ, Ĥ] = 0, i.e., time-translation symmetry still holds in the noncommutative phase space,
which corresponds to the conservation of energy.

However, since spatial translation symmetry is broken in the noncommutative phase
space, let us investigate the velocity and acceleration of a free particle. The velocity of the
particle is defined as v̂ := d

dt X̂, so that by using the Heisenberg equation (110) one has:

v̂ =
1
ih̄
[X̂, Ĥ]. (118)

For the free particle, the velocity is obtained, explicitly, as

v̂ =
1
m

(
καP̂ + κβK̂v

)
, (119)

where
K̂v =

(
P̂Y − P̂Z

)
i +
(

P̂X + P̂Z
)
j +
(
−P̂X + P̂Y

)
k. (120)

It can be seen that there exists an intrinsic velocity, associated with the noncommu-
tative parameters, and driven by the stochastic fluctuations of the background geometry.
However, when the canonical momentum of the particle vanishes,

〈
P̂
〉
= 0, we obtain
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〈
K̂v
〉
= 0. In Section 4.4 below, we give the Heisenberg representation of the velocity

based on the SW map. This raises interesting issues regarding the nature of the principle of
relativity in noncommutative space, but an in-depth discussion of these points lies outside
the scope of the present review;. for further literature, see references in Ref. [64].

Consistent with the definition of velocity, the acceleration is defined as â := d
dt v̂. Again,

by using the Heisenberg equation, this gives

â =
1
ih̄
[v̂, Ĥ]. (121)

For the free particle, the acceleration is obtained, explicitly, as

â =
η

m2h̄
(κα + κβ)K̂p, (122)

where
K̂p =

(
P̂y + P̂z

)
i−
(

P̂x − P̂z

)
j−
(

P̂x + P̂y

)
k. (123)

Hence, there also exists an intrinsic stochastic acceleration. We can interpret this intrinsic
acceleration as arising from quantum fluctuations of the noncommutative phase space
background. This is associated with fluctuations in the components of the momentum,
but we note that the direction of the acceleration is not, in general, the same as the direction
of the momentum fluctuations.

4.4. Seiberg–Witten Map and the Heisenberg Representation

The noncommutative phase space provides a new operator algebra, beyond the canon-
ical Heisenberg algebra, with which to explore unsolved puzzles in physics. To establish a
rigorous mathematical basis for the model, and to allow clearer comparison with the canoni-
cal quantum formalism, several methods have been proposed in the literature to implement
the noncommutative algebra (98)–(100) via a map on the canonical quantum operators. The
three most used methods are the SW map, the Moyal star product, and the Wigner–Weyl
phase space formulation [19–21]. Here, we outline the method of Seiberg and Witten (SW),
which constructs a map linking the noncommutative phase space relations to the canonical
Heisenberg algebra [29,34,35].

Formally, the SW map is defined as a map from the noncommutative phase space
to the canonical Heisenberg phase space, which preserves the form of functions of the
canonical variables, i.e.,

φSW :
(
X̂, P̂

)
→ (x̂, p̂),

Ô
(
X̂, P̂

)
→ Ô(x̂, p̂),

(124)

where (X̂, P̂) obey the algebra (98)–(100) and (x̂, p̂) obey Equation (11).
In other words, the noncommutative relations between the operators in

Equations (98)–(100) can be implemented equivalently by the Heisenberg commutation
relations, together with the SW map. The SW map may be implemented, explicitly, via the
so-called Bopp shift [29], which is expressed as

X̂i = x̂i + αik p̂k, (125)

P̂j = p̂j + β jl x̂l , (126)

where

θij := h̄(αji − αij), ηij := h̄(β ji − βij) (127)

and

κi
j := h̄(δi

j − αikβ jk). (128)
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By using the matrices (101), this gives X̂
Ŷ
Ẑ

 =

 x− θ
2h̄
(

p̂y + p̂z
)

y + θ
2h̄ ( p̂x − p̂z)

z + θ
2h̄
(

p̂x + p̂y
)
, (129)

 P̂X
P̂Y
P̂Z

 =

 p̂x +
η
2h̄ (y + z)

p̂y − η
2h̄ (x− z)

p̂z − η
2h̄ (x + y)

, (130)

which implies [
αij
]
=

 0 − θ
2h̄ − θ

2h̄
θ

2h̄ 0 − θ
2h̄

θ
2h̄

θ
3h̄ 0

 (131)

and [
βij
]
=

 0 η
2h̄

η
2h̄

− η
2h̄ 0 η

2h̄
− η

2h̄ − η
2h̄ 0

. (132)

This representation of the position and momentum operators can be regarded as the
Heisenberg representation of noncommutative quantum mechanics. The SW map provides
an efficient way to modify the Heisenberg algebra, giving rise to a noncommutative phase
space, even though the map is not unitary or canonical.

By using the SW map (125) and (126) together with the noncommutative matrices
(101), we obtain the explicit form of the noncommutative parameters that generalises the
position–momentum commutator as

κα = h̄
(

1 +
θη

2h̄2

)
, κβ =

θη

4h̄
, (133)

which implies that the noncommutative phase space can be described by two independent
parameters, θ and η.

However, it should be remarked that there is actually no unique SW map between
the noncommutative phase space and the canonical Heisenberg phase space. The SW map
with the Bopp shift, defined by Equations (131) and (132), provides a straightforward way
to capture, approximately, the essential features of the noncommutative algebra in terms of
the usual canonical Heisenberg algebra [29]. Moreover, for two general operators Â(X̂, P̂)
and B̂(X̂, P̂), the SW map does not preserve the form of the canonical commutator, namely,

φSW [Â(X̂, P̂), B̂(X̂, P̂)] 6= [φSW Â(X̂, P̂), φSW B̂(X̂, P̂)]. (134)

Hence, there exists additional ordering ambiguity.
Before concluding this section, we again stress that the choice of independent parame-

ters for the antisymmetric matrices, θ and η, and for the symmetric matrix, κα and κβ, is
the simplest “natural” choice available. Nonetheless, in principle, the SW map and non-
commutative algebras do not require constant matrices. Furthermore, for the SW map with
the Bopp shift, (131) and (132), this relatively simple choice is truly “minimal”, since even
κα and κβ can be expressed in terms of θ and η, according to Equation (133). In Section 4.8
below, we associate the two noncommutative parameters, θ and η, with the Planck length
and the cosmological constant, respectively, which, it may be hoped, could provide a
physical scenario for the emergence of dark energy from noncommutative geometry.
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4.5. The Schrödinger Equation in Noncommutative Phase Space

Based on the SW map, the momentum operators in Equations (129) and (130) can be
rewritten as P̂ = p̂−Aη , where

Aη
X = − η

2h̄
(y + z), (135a)

Aη
Y =

η

2h̄
(x− z), (135b)

Aη
Z =

η

2h̄
(x + y), (135c)

and the Aη
i can be regarded as the components of an effective gauge potential. Thus,

the Schrödinger equation for the free particle can be expressed as

ih̄
∂ψ

∂t
=

1
2m

(p̂−Aη)2ψ. (136)

It can be seen that the Schrödinger equation for a free particle in noncommutative
phase space is analogous to that obtained, in the canonical theory, for a charged particle in
an electromagnetic potential. The continuity equation is given by

∂ρ

∂t
+∇ · J = 0, (137)

where ρ = |ψ|2 is the probability density and the probability current density is defined as
J = 1

m 〈ψ|p̂−Aη |ψ〉. It should be noted that the current density is not equal to the velocity
given by Equation (119).

4.6. Noncommutative Gauge Fields and the Pauli Equation

We suppose that spin in noncommutative phase space has the same form as in canon-
ical quantum mechanics, because spin is an intrinsic property of the particle, which is
independent of the spacetime background [61]. Thus, the Pauli equation for a particle with
nonzero spin and charge q, in the noncommutative space, may be written as

ih̄
∂ψ

∂t
=

[
1

2m
[σ · (p̂−Anc)]2 + qφ

]
ψ, (138)

where σ = σxi + σyj + σzk and φ is the electric potential. The effective vector potential
contains two terms,

Anc = A + Aη , (139)

where A is the canonical vector potential and Aη is the effective contribution arising from
the noncommutativity of the momentum components. The total effective magnetic field is
Bnc = ∇×Anc, where Bnc = B + Bη with B = ∇×A and Bη = ∇×Aη . Thus, the Pauli
equation can be rewritten as

ih̄
∂ψ

∂t
=

[
1

2m
(p̂−Anc)2 − h̄q

2m
σ · Bnc + qφ

]
ψ. (140)

By analogy with canonical electrodynamics, we also define the effective electromag-
netic field tensor, generated from the effective gauge potential in the noncommutative
phase space, as

Fη
µν = ∂µ Aη

ν − ∂ν Aη
µ. (141)

Substituting the gauge potential (135) into Equation (141), the explicit form of Fη
µν is

obtained as [
Fη

µν

]
=

 0 −η/h̄ −η/h̄
η/h̄ 0 −η/h̄
η/h̄ η/h̄ 0

. (142)
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Interestingly, the effective gauge field is induced by the noncommutativity between dif-
ferent directional components of momentum, in the noncommutative phase space. This
noncommutative effect can be interpreted as a spacetime curvature, so that the resulting
gauge field can be naturally related to the value of the scalar curvature. For this reason, we
relate η to the observed value of the cosmological constant, in Section 4.8.

Following Equation (124), any observable operator in the noncommutative phase space
can be mapped to the Heisenberg representation, based on the SW map. Actually, the wave
function in noncommutative phase space is also given by Ψ(X) = 〈X|Ψ〉 or Ψ̃(P) = 〈P|Ψ〉,
by analogy with the canonical theory. However, as a first-order approximation, it is
convenient to assume that [24,25,33]

Ψ(X) ' ψ(x) +O(θ), (143)

Ψ(P) ' ψ(p) +O(η). (144)

4.7. Noncommutativity-Induced Anomalous Velocity and Acceleration

For the free particle, using the SW map in Equations (124)–(126), the expectation value
of the velocity in the Heisenberg representation can be expressed as

〈v̂i〉 = 1
h̄m

(
κi

j〈 p̂j〉+
η

2
γi

j〈xj〉
)

, (145)

where

[
γi

j

]
=


0

(
1 + 3θη

4h̄2

) (
1 + 3θη

4h̄2

)
−
(

1 + 3θη

4h̄2

)
0

(
1 + 3θη

4h̄2

)
−
(

1 + 3θη

4h̄2

)
−
(

1 + 3θη

4h̄2

)
0

. (146)

Similarly, the expectation value of the acceleration is obtained as

〈âi〉 =
1

m2h̄

(
1 +

3θη

4h̄2

)(
ηij〈 p̂j〉 −

η2

h̄
χij〈xj〉

)
, (147)

where [
χij
]
=

 1 1/2 −1/2
1/2 1 1/2
−1/2 1/2 1

. (148)

As noted previously, in Section 4.3, the velocity and acceleration contain an intrin-
sic stochastic perturbation arising from the noncommutativity of momenta in different
directions of the phase space. Here, these are expressed in terms of the two independent
parameters of our specific implementation of the SW map, θ and η. This anomalous accel-
eration can be interpreted as a quantum effect, since it is induced by the noncommutative
algebra. In Section 4.8 below, we express the noncommutative parameters in terms of the
Planck length and the cosmological constant, linking the noncommutative algebra with the
spacetime background and nonzero minimal energy density.

4.8. Physical Interpretations of the Noncommutative Parameters

In canonical quantum mechanics, Planck’s constant plays an essential role in quantiz-
ing the phase space of elementary particles, such that quantum states are described by state
vectors in a Hilbert space. Roughly speaking, h̄ represents the minimum (incompressible)
volume of a phase space fluid element, ∆Xi∆Pj [9,10]. In noncommutative phase space,
the noncommutative parameters θ and η play analogous roles with respect to physical
space and momentum space, respectively, inducing minimum bounds on the volumes
∆Xi∆X j and ∆Pi∆Pj, which cannot be further compressed below their minimum values.
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Actually, one can adopt different parametrization schemes for the noncommutative
parameters, for various physical problems, associated with different energy and spacetime
scales. In other words, how one endows the noncommutative parameters with physical
meanings (and scales) depends on what physical problems are being addressed. Therefore,
let us note that many studies suggest that spacetime should be quantized, inducing a
minimum length scale of the order of the Planck length [11]. Similarly, the emergence
of dark energy implies that there exists a minimum curvature of spacetime, expressed
in terms of the cosmological constant [12,13], which can be naturally associated with the
nonzero energy/momentum density obtained in a noncommutative phase space model.
(We recall that a minimum positive curvature is equivalent, according to the gravitational
field equations, to a minimum positive energy density.)

In particular, gedanken experiments in quantum gravity, together with various the-
oretical approaches, such as string theory [11], loop quantum gravity [9,10], and others,
suggest spacetime quantization at the Planck scale. While the status of a minimum possible
momentum is less clear, several models also propose this [12,13], and it is worth noting
that in a universe governed by dark energy there exists a finite de Sitter horizon [12,13].
This places on upper bound on the value of a particle’s de Broglie wavelength and, hence,
a lower value on its momentum uncertainty, of the order of the de Sitter momentum,
mdSc = h̄

√
Λ/3, mentioned previously in Section 2.3.

Thus, we propose a parametrization scheme for the noncommutative parameters,
which is associated with the Planck length and the cosmological constant, namely

θ = `2
Pl, η = m2

dSc2, (149)

where we define the Planck and de Sitter mass scales explicitly as

`Pl =

√
h̄G
c3 ' 10−33 cm, mPl =

√
h̄c
G
' 10−5 g, (150)

`dS =

√
3
Λ
' 1028 cm, mdS =

h̄
c

√
Λ
3
' 10−66 g. (151)

Combining the relations (149) and (150), we obtain the independent components of
the generalised position–momentum commutator, in the noncommutative phase space, as

κα = h̄(1 + ∆), κβ =
h̄∆
2

, (152)

where

∆ :=
ρΛ

ρPl
' 10−122, (153)

and

ρΛ =
Λc2

8πG
, ρPl =

3
4π

c5

h̄G2 , (154)

are the dark energy and Planck densities, respectively, with G the gravitational constant.
Interestingly, a new model of generalised uncertainty relations was developed [65,66],
in which the action scale β := 2h̄

√
∆ ' h̄×O(10−61) was proposed as the fundamental

quantum of action for spacetime, as opposed to matter. In this model, the generalised
uncertainties were obtained without modifying the canonical space–space or momentum–
momentum commutators, but the parameterization above suggests that an extension of this
approach could be used to provide a physical mechanism for noncommutative geometry.
This intriguing possibility will be analysed in detail in a future work.
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5. Conclusions and Outlook

The interplay between physics and mathematics stimulates new ideas to resolve
unsolved puzzles in nature. In this review, we have given a brief introduction to the
interplay between physics and mathematics in the fields of noncommutative geometry
and noncommutative phase space, encompassing topics in both classical physics and
quantum mechanics.

Although noncommutative phenomena were discovered, even in classical mechanics,
their true significance became apparent only with the advent of quantum theory in the 1920s.
Since then, noncommutative structures have inspired bold new attempts to solve unsolved
problems in gravity and high-energy theory, and, arguably, their significance to modern
theoretical physics has only increased since the heady days of the early twentieth century.

From classical Poisson brackets to the Heisenberg commutation relations and the
quantum Hall effect, physicists have found real-world phenomena described by noncom-
mutative algebras and geometries. Furthermore, as we attempt to extend our current
physical theories into previously unprobed regimes at the Planck scale, or dark energy
scale, infinities and singularities unavoidably emerge, suggesting new types of noncom-
mutative structures which may be able to cure them. Increasingly, a large number of
researchers believe that the infinities and singularities which break all known physical laws
may be cured if there exist quantum fluctuations of the spacetime background, governed
by noncommutative algebras, which are able to prevent such divergences. Thus, noncom-
mutative phenomena inspire many attempts to construct a unified framework for both
gravity and high-energy particle physics [2–4].

In this review, we have introduced the basic concepts underlying noncommutative
phenomena in classical and quantum mechanics and presented some important examples
in condensed matter and statistical physics. We discussed the basic noncommutative alge-
bras that arise in physical theories, including the classical Poisson brackets in symplectic
geometry, the Heisenberg algebra of fundamental operators, acting on the Hilbert space of
canonical quantum mechanics, and the Lie, Clifford, and Dirac algebras associated with
rotational symmetry and spin. On a more theoretical note, we also gave brief expositions of
the Snyder and Nambu algebras, which have been proposed as extensions of existing phys-
ical theories, and are intended to help cure the emergence of the singularities mentioned
above [12,13].

Based on the SW map, we outlined the basic properties and novel phenomena that
occur in the noncommutative extension of the Heisenberg phase space, incorporating both
space–space and momentum–momentum noncommutativity. These include the breaking of
translation and rotational symmetries, as well as important phenomenological predictions
like the existence of anomalous, stochastic perturbations to the velocity and acceleration of
free particles, induced by noncommutativity. The stochastic perturbations can be viewed
as an additional quantum force, driving particle motion due to quantum fluctuations of
the background geometry, and we showed that the noncommutative terms give rise to
an effective gauge field in the Schrödinger and Pauli equations. With this in mind, we
proposed a parametrization scheme for the noncommutative parameters, which associated
them with both the Planck length and the dark energy density, where the latter is expressed
in terms of the cosmological constant.

Based on this parametrization scheme, the effective gauge field that arises from the
noncommutativity of the phase space can also be interpreted in terms of the minimum
length, and minimum energy density of the universe. We showed that this gives rise
to phenomenologically interesting effects on the dynamics of free particles, which are
subjected to intrinsic stochastic velocity and acceleration perturbations. These perturbations
depend on the initial momentum and position, and can be regarded as a quantum effects
induced by the noncommutative phase space. The quantum anomalous acceleration of free
particles could actually provide a microphysical model for dark energy.

However, we note that noncommutative models in physics have been developed in
many different ways, including Conne’s approach to noncommutative geometry [14,15],
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noncommutative M-theory [4,56], noncommutative field theory based on the Moyal star
product [3], the principle of relative locality, and κ−deformed spacetime symmetries based
on Hopf algebras [57–59]. These interesting results suggest that noncommutative phase
space may provide a deep connection between the dynamics of microscopic particles and
the quantum theory of gravity, including dark energy; for details of these and other ap-
proaches to noncommutative phenomena, that were not covered in the present pedagogical
introduction, see the bibliography and references therein.

Author Contributions: Conceptualization, S.-D.L.; methodology, S.-D.L. and M.J.L.; validation,
S.-D.L. and M.J.L.; formal analysis, S.-D.L. and M.J.L.; resources, S.-D.L. and M.J.L.; writing—original
draft preparation, S.-D.L.; writing—review and editing, S.-D.L. and M.J.L.; visualization, fund-
ing acquisition, S.-D.L. and M.J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors thank the Grant of Scientific and Technological Projection of Guangdong
Province (China), no. 2021A1515010036. The research of M.J.L. was supported by the Natural Science
Foundation of Guangdong Province (China), Grant no. 008120251030.

Data Availability Statement: Not applicable.

Acknowledgments: M.J.L. wishes to thank the Department of Physics and Materials Science, Faculty
of Science, and the Office of Research Administration, Chiang Mai University (Thailand), for provid-
ing research facilities.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Takhtajan, L.A. Quantum Mechanics for Mathematicians; American Mathematical Society: Providence, RI, USA, 2008.
2. Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977–1029. [CrossRef]
3. Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep. 2003, 378, 207–299. [CrossRef]
4. Konechny, A.; Schwarz, A. Introduction to M(atrix) theory and noncommutative geometry. Phys. Rep. 2002, 360, 353–465.

[CrossRef]
5. Rosenbaum, M.; Vergara, J.D.; Juarez, L.R. Noncommutative field theory from quantum mechanical space-space noncommutativity.

Phys. Lett. A 2007, 367, 1–10. [CrossRef]
6. Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38–41. [CrossRef]
7. Gouba, L. A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A 2016,

31, 1630025. [CrossRef]
8. Yang, C.N. On Quantized space-time. Phys. Rev. 1947, 72, 874. [CrossRef]
9. Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [CrossRef]
10. Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [CrossRef]
11. Fredenhagen, K. Gravity induced noncommutative spacetime. Rev. Math. Phys. 1955, 7, 559–565. [CrossRef]
12. Matarrese, S.; Colpi, M.; Gorini, V.; Moschella, U. Dark Matter and Dark Energy; Springer Science+Business Media/Canopus

Academic Publishing Limited: Dordrecht, The Netherlands, 2011. [CrossRef]
13. Peebles, P.J.E. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [CrossRef]
14. Connes, A.; Marcolli, M. A walk in the noncommutative garden. In An Introduction to Noncommutative Geometry; Khalkhali, M.,

Marcolli, M., Eds.; World Scientific: Singapore, 2008; pp. 1–128. [CrossRef]
15. Connes, A. Non-commutative differential geometry. Int. Hautes Etudes Sci. Publ. Math. 1985, 62, 257–360. [CrossRef]
16. Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The quantum structure of spacetime at the Planck scale and quantum fields. Commun.

Math. Phys. 1995, 172, 187–220. [CrossRef]
17. Delduc, F.; Duret, Q.; Gieres, F.; Lefrancois, M. Magnetic fields in noncommutative quantum mechanics. J. Phys. Conf. Series 2008,

103, 012020. [CrossRef]
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