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Abstract: Particle identification is an important feature of the future SPD (Spin Physics Detector) ex-
periment at the NICA (Nuclotron-based Ion Collider fAcility) collider. In particular, the identification
of particles with momenta up to a few GeV/c (with ¢ the speed of light) by their time-of-flight facili-
tates the reconstruction of events of interest. The high time resolution of modern TOF (Time-Of-Flight)
detectors demands the need to obtain the event collision time, fy, with comparable accuracy. While the
determination of the collision time is feasible through the use of TOF signals supplemented by track
reconstruction, it proves to be computationally expensive. In the presented study, a dedicated Genetic
Algorithm is developed as a fast and accurate method to determine the proton—proton collision time
by the measurements of the TOF detector at the SPD experiment. By using this reliable method for
the fy determination we compare different approaches for the particle identification procedure based
on TOF signals.

Keywords: genetic algorithm; time-of-flight; particle identification; spin physics; NICA project; SPD;
TOF detector

1. Introduction

The Spin Physics Detector (SPD) is a future experiment that is planned to be placed
in one of the two interaction points of the NICA (Nuclotron-based Ion Collider fAcility)
collider in the Joint Institute for Nuclear Research (JINR, Dubna, Russia). By studying colli-
sions of polarized proton and deuteron beams, the SPD Collaboration is going to perform a
comprehensive study of the unpolarized and polarized gluon content of nucleons and other
spin-related QCD (Quantum Chromodynamics) phenomena [1]. With polarized proton—
proton (pp) collision energies, /s, up to 27 GeV, and a luminosity up to 103 cm~2s71,
SPD is designed to cover a kinematic range between the low-energy measurements at
ANKE-COSY [2] and SATURNE [3] experiments and the high-energy measurements at
RHIC (Relativistic Heavy Ion Collider, Brookhaven, USA) [4] and the LHC (Large Hadron
Collider, Geneva, Switzerland) [5].

The SPD experimental setup is planned as a general-purpose 47 detector with ad-
vanced tracking and particle identification capabilities. The particle identification will be
performed by means of the measurement of their ionization losses, Time-Of-Flight (TOF)
detector, electromagnetic calorimetry, and muon-filtering techniques. The experiment is
considered to use a system of Multigap Resistive Plate Chambers (MRPC) [6,7] as the TOF
detector. A main aim of the TOF detector is to provide 7t/ K/p-identification of charged
particles with momenta up to a few GeV/c, where ¢ denotes the speed of light.

Identification of particle types by their time-of-flight is an established technique
in high energy physics collider experiments [8-12]. It requires just three ingredients: p—
momentum of the particle, L—arc length of its trajectory between the primary collision point
and the TOF detector, and T—the corresponding time-of-flight. The latter is calculated as a
time-difference between the stop and start signals. While the stop signal is measured with
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high precision by the TOF detector, the collision time, t), cannot be obtained directly with
the same accuracy. The collision time can be estimated from the timing of the accelerator
or deduced from signals of a corresponding TO-detector, which is supposed to detect the
appearance of secondary particles scattered on small angles with respect to the beams
axis, but, in this case, the uncertainty of the collision time dominates the uncertainty of the
difference between stop and start signals. Fortunately, ¢y can be determined with sufficient
precision from the TOF measurements by means of x?-minimization procedure [8-10].

As a significant number of secondary particles, originating from the proton—proton
collision, subsequently enter the acceptance and are detected by the TOF detector, one can
reconstruct fy as a common value for all detected particles through minimization of the sum
of the squares of residuals, x. A residual is defined as a difference between the measured
TOF signal and its expected arrival time, assuming a given mass hypothesis. Thus, the x?
is minimized with respect not only to ty but to all mass hypotheses, which proved to be
quite a complicated computational task [9].

As the bulk of secondary particles are pions, kaons or protons, it is natural to try
different combinations of their masses in order to minimize x?, thus the minimization is
performed over a discrete set of particle types. The global minimum can be found using
the Brute Force Algorithm (BFA), which is characterized by a relatively long run-time.
In this study, an Asynchronous Differential Evolution-inspired [13] Genetic Algorithm
(ADE-GA) is developed which solves the y?-minimization problem within significantly
reduced computational time.

This reliable method for t; determination facilitates the identification of particles by
their time of flight. Several approaches can be used for the PID (particle identification)
procedure [14]. In this paper, we compare the performance of the Bayesian approach, the
so-called “n-sigma” criteria, and the direct solution of the Xz—minimization problem.

2. Time-of-Flight Detector and Event Selection

The TOF system is designed to consist of a barrel and two end-cap parts (see Figure 1)
with a radius of about 105 cm and a length of 370 cm. It will have an overall active area
of 27 m? and cover polar angles greater than 100 mrad. The short distance from the TOF
detector to the interaction point dictates the TOF resolution to be within 50-60 ps, which
can be achieved with the MRPC technologies [7]; in the current study, we use a conservative
estimation, 0; = 70 ps. The TOF detector is considered to be located within the solenoidal
magnetic field (B = 1 T, parallel to the beam axis) outside the inner tracker, which is aimed
to measure particles momenta with relative precision, 0, /p = 2% [1].

Electromagnetic calorimeter Magnet Range system Vertex detector Endcap Range system Endcap

Time-of-flight system Electromagnetic calorimeter Endcap

Straw tracker Time-of-flight system and Aerogel Endcaps

Vertex detector Zero degree calorimeter

Beam pipe

Figure 1. General layout of the Spin Physics Detector (SPD) [1].

PYTHIA 8 Monte Carlo generator [15] has been used for the simulation of pp collisions
at /s = 27 GeV, “SoftQCD:all” settings have been selected to simulate minimum-bias
events. All charged particles have been propagated through the uniform magnetic field.
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Intersection points of helix trajectories with the TOF detector have been calculated through
the closed-form expressions. Only charged tracks with momenta greater than 0.5 GeV/c
have been used in the analysis, as relativistic particles are characterized by negligible track
distortions due to multiple scattering and ionization losses in the walls of the beam pipe
and material of the inner tracker. For the open-charm production, which is of interest to the
SPD, more than 10 charged tracks are supposed to be detected by the setup in 90% of events.
In the following, for each track i the generated momentum value, p; o, and the arrival time,
ti o, to the TOF detector are smeared according to Normal distributions, p; = N(p;o,0p)
and t; = N(t;,01), respectively.

3. Event Collision Time Measurement Performed by the TOF Detector
3.1. Method to Reconstruct the Event Collision Time

A large fraction of particles produced in pp collisions at y/s = 27 GeV has momenta
below 2 GeV/c, which suggests a time-of-flight as a powerful technique for particles
identification. Statistically, more than half of secondary charged particles detected by
the TOF detector are pions. Other major contributions are protons and charged kaons.
Admixtures of electrons and muons do not exceed a few percent and to be identified by
the Electromagnetic Calorimeter and the Muon Range System [1], see Figure 1. One can
calculate all possible times-of-flight,

7= " M

by assigning independently for each track i a certain particle type j. Equation (1) is correct
only for relativistic particles; for low momenta, Equation (1) has to be replaced by a
piecewise summation along the particle’s trajectory intersecting coordinate detectors. The
arc length, L;;, should take into account details of a type j particle interaction with matter. In
this analysis, we select only the tracks with momentum above 0.5 GeV /¢ so that the matter
effects can be neglected. For the event with N reconstructed tracks, the event collision time
can be found by a x?>-minimization procedure:

N (to+Ti—t;
:ZOTf 2 )

1]

where the time-of-flight uncertainty, o ; ,,.), due to the uncertainty in momentum is given

by

-1 -1

L., m? m2 o L., m?
Oeipy = =23 | A1+ = | FL=002-2-— ©)
¢ p p; p ¢ p

For pions with momenta 0.5 GeV/c, 07 ; . is as large as 100 ps and is taken into
account. Another contribution to 07 (; ,,) is the uncertainty in the reconstructed track length.
In the SPD experiment, tracking detectors are supposed to provide us with up to 30 to
40 hits per track in spatially separated detector planes [1], thus, for 0.5 GeV /¢ pions, the
time-of-flight uncertainty, due to the uncertainty in the reconstructed track length, is less
than 10 ps and is neglected in this study.

For a certain choice of mass hypotheses, an analytic solution for tj reads:

4)

So, the task is reduced to a minimisation of x? (2)~(4) by finding the proper mass
hypothesis—vector of masses (1, my, ..., my) for tracks in the event-by-event way. The
emphasis is paid to deducing an accurate and unbiased estimation of the collision time t,.
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Sections 3.2 and 3.3 are dedicated to developing algorithms to perform the minimiza-
tion step.

3.2. Brute Force Algorithm

The most straightforward solution is to check all mass hypotheses and thus locate the
global minimum-—a combination of masses which has minimal x?, so-called exhaustive
search or BFA. If N, is the number of possible masses (possible particle types), then the
total number of combinations is N\ and the time complexity of this algorithm is O(N - N}Y).
Exponential running time means that this algorithm is computationally expensive if the
number of reconstructed tracks N exceeds 10. To keep BFA execution time reasonable,
possible particle types are restricted to 7+, K* and (anti)protons (N, = 3).

3.3. Genetic Algorithm

The minimization of x? (2)-(4) is performed over a discrete set of particle species,
thus represents a typical problem in the domain of the discrete optimization. To solve
the problem, an Asynchronous Differential Evolution-inspired [13] Genetic Algorithm
(ADE-GA) is developed here.

All possible types of particles are represented as a mass-ordered set (genetic represen-
tation), e.g., [my, mg, mp] — [0,1,2]. The algorithm maintains a set of candidate solutions
called a population. It optimizes a problem by iteratively improving the population through
the generation of new candidate solutions, which can replace inferior population members
by means of natural (Darwinian) selection. Opposite to the exhaustive search, the algorithm
does not check all possible mass combinations but identifies better solutions and performs
further searches around them.

The algorithm’s workflow for an event with N tracks is as follows:

—_

(M, mg, mp] — [0,1,2]

2. Create an initial population of Npop random candidate solutions. Each candidate solu-
tion is a (pseudo)random set of N masses associated with corresponding tracks, each
species has equal probability, 1/ Ny, to be assigned to a given track. The initialization
procedure enforces that all population members are unique and for each track, there
are at least two different masses within the population.

At initialization, the population should be as much as possible to cover the search
space. The requirement of at least two different masses per track within the population
diverts the risk of a degenerated search—the search in a subspace of the search domain.
Furthermore, at initialization, the expected abundance of particle species is not taken
into account, but each species has an equal probability to be assigned to a given
track—this approach facilitates the exploration ability of the algorithm. Example of a
population in event with 6 tracks and size of population Npop = 5:

v1 | (0,1,1,2,0,0) <> (my, mg, mg, mp,mﬂ,mn)
vy | (2,2,0,1,0,0) <> (mp, mp, My, mg, My, M)
v3 | (1,1,1,0,0,1) <> (mg, mg, mg, Mz, My, MK)
vy | (0,0,0,2,1,0) < (mz, My, My, My, mg, M)

vs | (2,0,1,1,2,2) < (mp, iy, mg, mg, mp, myp)

3.  Create a new candidate solution (offspring generation):

(a) Choose three distinct random solution vectors from the current population
and create a mutant vector:

Umut = Upar + Av. (5)

Vector vpqr is called a parent vector. Two other vectors form a difference vector,
Av. If any coordinate falls outside the range [0, N;, — 1], it is projected back to
the corresponding boundary. The mutant vector has to be different from any
population member, otherwise the generation is repeated.
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Example:
Umut = (0,1,1,2,0,0) + (2,2,0,1,0,0) — (1,1,1,0,0,1) = (1,2,0,2,0,0). (6)

(b) Calculate fitness of the offspring: tg““ and x2,,; (see Equations (2)—(4)).

() Compare xg, and X7

(d) If sznut < X}%ar—the new mutant vector is better than the parent, then the
offspring supersedes the parent vector in the population. Otherwise, the popu-
lation remains unchanged. This step is called natural (Darwinian) selection.

4. Steps 3(a)-3(d) are repeated until a terminating criterion is reached. After a predefined
number of iterations, Niteps, the solution with the smallest x? is chosen as the best
combination.

The size of the population, Npop, is an important parameter in ADE. If one uses too
small population size, the algorithm can fail to locate the global minimum. Search with a
large Npop is characterized by better convergence, but consumes longer computer time [13].
Numerical simulations proved that Npop = 15 is sufficient to solve the Xz—problem (2) even
for the largest possible number of tracks. While low-multiplicity events can be resolved
with somewhat smaller population sizes, usage of Npop < 10 should be turned down
due to a lower convergence to the global minimum. In this paper, a fixed population size
Npop = 15 is used for all events.

Time complexity of GA is O(N - Npop - Nsteps), where 800 < Nsteps < 1000. Time
complexity increases only linearly as a function of track number, which makes the algorithm
suitable for high-multiplicity events. Furthermore, GA is not limited to N;;, = 3, but can
perform the global search for a wider range of possible particle types without loss of
performance.

Besides the population size Npop, the canonical DE has two other control parameters:
the crossover rate, C;. and the scale factor, F. In this study, C; is fixed to unity as minimiza-
tion variables are correlated, F = 1 is chosen due to the granularity of the mass spectra.
The developed ADE-GA algorithm represents the asynchronous evolutionary algorithm: it
updates randomly selected population members by the DE/rand/1 strategy [16]. Here,
the general convention is used to identify different mutation variants (5) by DE/x/y/z
notation, where x stands for a choice of a parent vector (a randomly chosen vector in the
current study), y is the number of difference vectors, and z denotes the crossover scheme
(not used here). In this approach, a fitness of many candidate solutions can be calculated
in parallel which further speeds up the calculations.

The algorithm can be further accelerated as soon as one monitors the convergence
speed and carefully chooses termination (stop) criteria. The results of the current study are
obtained using the algorithm performing a predefined fixed number of iterations, Niteps-
In this approach, the maximal allowed Nsteps is chosen to guarantee a high convergence
rate to the global minimum. Analysis of the convergence showed that for most events
the minimum is found by a much earlier iteration and further iterations waste computing
time. In what follows, several approaches toward early detection of global convergence
are discussed.

The result of successive iterations of the ADE-GA algorithm is a gradual improvement
of the population: naturally selected candidate solutions have smaller x?-values than their
respective parent vectors. Not only the best vector, but all population members converge
to the minimum. Thus, the spread in fitness function values within the population is
gradually reduced, the small spread can indicate either convergence or stagnation of the
algorithm [17]. To monitor convergence one can sort all population members by their
fitness values: X%, st/ 7 thnr ., storst, where sz denotes the median fitness. As the fitness
of the global minimum is expected to be of the order of N, where N is the number of
tracks, one can end iterations as soon as (x2, — X%est) /N < Am, where Ap, is a predefined
small value. Alternatively, the algorithm can monitor the typical number of iterations
between successive improvements of the ( )(%n - )(f, o St)—difference—Nprogres,s, which can be
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achieved through learning in the process. If there is no progress after kNprogress iterations,
where typically k = 3,...,5, then the algorithm is terminated. Monitoring the ( X2 — X% ost)”
difference has major advantages with respect to the terminating criteria based only upon the
)(% ost~value. The improvement steps by the algorithm can be characterized by exploration
or exploitation chances of the steps. Exploration is the ability of the algorithm to locate
a new region in the search domain with better fitness values. Exploitation is a gradual
improvement of the population through testing of potentially interesting candidate vectors
around an already found local minimum. DE is known for its exploration abilities. As soon
as a new region of interest is located, the algorithm quickly populates the neighborhood of
the local minimum, thanks to the mutation operator (5). Improvement steps by exploration
are a much rarer case, while improvements through exploitation are common. If one
monitors only the x? ost"value as a stop criterion, then after a successful exploration step
one can cause premature termination of iterations by preventing further fast exploitation
around a new minimum. Typically, at this stage exploitation leads not to only a general
improvement of the population but also to a better best-so-far solution.

4. Results and Discussion
4.1. Comparison of the Genetic Algorithm with the Brute Force Algorithm

The BFA finds the global minimum of x?-minimization and is used as a reference
to check the performance of the GA. Due to high time complexity, one can use BFA as
a reference only in events with low multiplicities (5 < N < 14). The distributions of
errors, Atg = ty — t{)r“e, for such events are presented in Figure 2. Only E, K, pi' are used
as allowed types of particles. Both BFA and GA provide an unbiased estimation of the
reconstructed event collision time with resolutions of 29 ps for BFA and 30 ps for GA.

BFA ADE-GA
x2/ndf  16.92/17 ¥ /ndf  19.89/19

[ Constant 2640 + 18.6| 2500 Constant 2459 +17.3
25001 Mean —2.933 + 0.198 L Mean —2.248 +0.199
L ) [ Sigma  29.76 + 0.24
L Sigma +
C [¢] 28.63 + 0.26 2000k
2000 [
L 1500
15001 i
1000 1000f
5001 5001~
o) VAT ISP EPAVINRN PPN IR IR PR i O'.l...|...|...|......|...|...|...|
-80 —60 —40 -20 0 20 40 60 80 -80 —60 —40 -20 O 20 40 60 80
o PS At ps

Figure 2. Distributions of errors, Aty = to — t{"¢, for the event collision time reconstructed by
(left) the Brute-Force Algorithm (BFA) and (right) the Asynchronous Differential Evolution-inspired
Genetic Algorithm (ADE-GA). The curve represents the Gaussian fit with the parameters shown;
“ndf” stays for the numbers of degrees of freedom.

Another important metric is the overall percentage of tracks that were identified
correctly: 97.2% for BFA and 96.8% for GA. Non-zero PID inefficiency by BFA looks counter-
intuitive, but such an inefficiency appears due to the finite resolution of the TOF detector
when the uncertainty of its measurement exceeds the typical time-of-flight difference
between two different particle types at a given momentum. In that case, a particle will be
misidentified if the global minimum of x?-minimization is deeper than the x? of the actual
particle configuration. One should note that fast tracks, whose particle type can not be
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resolved by the time-of-flight technique, contribute to above cited PID inefficiencies, but
are useful for the correct determination of the event collision time in case the difference
(t; — Ti]') in Equation (4) is insensitive to particle species.

The GA performance to solve the y2-minimization problem is on par with the exhaus-
tive search, but it demonstrates a different time complexity for high-multiplicity events;
see Figure 3. While for events with less than 8 tracks, BFA has a shorter run time, it ex-
ponentially slows down as multiplicity grows. The average run time of BFA on events
with 5 < N < 14 is 5 ms, while GA runs much faster—160 us. Both BFA and ADE-GA are
intrinsically parallel algorithms. The run-times cited have been measured in a single-thread
calculation mode to simplify the comparison. Faster execution time can be achieved with
multithreading.

0
3
R - - BFA: exp(p:+p,X) -7
5 10 (/
_._ADE—GA:;:>1x+p2 _ 7
10° -
7~
-
7~
~
10° e
./
7~
7~
10° -
7~
»
//
10 -
7
-«
v by by by by by by by by by

5 6 7 8 9 10 11 12 13 14 15N

Figure 3. Time complexity comparison of the BFA and ADE-GA: the median run-time, (t), as a
function of event multiplicity, N. The functions shown are the parametrizations of the (f)(N).

The ADE-GA analysis of events with any number of reconstructed tracks confirms that
the uncertainty in the collision time, 0y, decreases from about 32 ps for 5-track events down
to about 20 ps for high-multiplicity events and scales as 1/+/N. The achieved uncertainty
in tg is much better than the resolution of the TOF detector, 0; = 70 ps, thus the latter will
dominate the uncertainty in the time-of-flight between the collision point and the TOF
detector. The efficiency of the ADE-GA to accurately measure the collision time for events
with more than 4 reconstructed tracks is estimated to be about 97%.

The ability of the ADE-GA algorithm to efficiently solve the global minimization
problem (2) defined in discrete space is based on the following fundamental principles of
the DE [16,18]. First, the algorithm is derivative-free, thus it can perform optimization over
discrete variables. Second, DE does not use any assumption about a particular shape of
the minimized fitness function, e.g., relying on the linear or quadratic approximation of its
shape. Instead, DE adapts its population to a particular landscape through natural (Dar-
winian) selection. Better candidate solutions have higher chances to stay in a population
for a longer time thus more often playing the parent (central) role in the mutation operator
(vpar in Equation (5)). In this way, the population’s center of gravity is gradually shifted
to the deeper minimum in case of multimodal problems. Last but not least, due to the
common convergence of population members to a minimum, the algorithm automatically
adapts the difference vector Av in Equation (5)) to a typical size of the search region around
the minimum. The latter feature enables the comparatively fast convergence of DE.

Thanks to the swiftness of the GA, a wider than N;;, = 3 range of possible mass types
can be taken into account. If electrons/positrons are added into possible particle types
then the reconstructed event collision time becomes biased (Figure 4). Due to short flight
paths, the expected arrival time of pions with momenta above 1 GeV /¢ to the TOF detector
is delayed to electrons less than the TOF time resolution. In this case, some pions are
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misidentified as electrons whenever such a mass hypothesis provides a deeper minimum
for x2. As pions are much more abundant than electrons/positrons such misidentification
results in a biased estimation of the collision time.

ADE-GA with e
2
2200 X2/ ndf 15.1/21
Constant 2108 +15.1
2000 Mean 226 0.3
1800 Sigma 35.64 +0.34

1600

1400

1200

1000

800

600

400

200

C l L1 | ‘ L1 | ‘ L1 | L1 | ‘ L1 | ‘ L1l ‘ L1 | ‘ L1 | l
-60 -40 -20 0 20 40 60 80 100
Ato, ps

Figure 4. Distributions of errors, Aty = ty — ("¢, for the event collision time reconstructed by
ADE-GA with e, 1%, K, pT species. The curve represents the Gaussian fit with the parameters
shown.

To remedy the probability of misidentifications, one can remove from consideration
any track whose type is not identified in a unique way for sure (for example, by n-sigma
criteria, see Section 4.3 below). This approach was derived in Ref. [19]: using a priori
knowledge about the dominant prevalence of pions in the sample of registered particles,
one can consider all low-momenta tracks as pions; for each track, estimate the collision
time, identify the most probable one and reject all heavier-than-pion particles. In this way,
the collision time can be found with uncertainty about 32 ps for events with a fairly high
number of tracks, but not in events with less than 3 pions below 1.5 GeV /c.

As the accurate and unbiased estimation of the event collision time is the main goal of
this study, the correctness of the obtained ¢y value is further verified by iteratively removing
major addends from the x2-sum (2) followed by the y2-minimization over the rest of tracks
in the event. A statistically significant shift of the ty value indicates a possible outlier due
to noise or misidentification.

4.2. Alternative Ways to Measure the Event Collision Time

Alternatively, the event collision time can be measured by dedicated detectors installed
close to the beam tube, so-called TO detectors [20]. Such detectors typically have fine
granularity to cope with a high load of secondary particles and protons scattered on
small angles.

In SPD, the intersection region of two colliding beams will cover a few tens centimeters
along the beam axis. This demands installing a pair of TO detectors, located from both
beam directions around a collision point, to be used in combination. The Monte-Carlo
simulation shows that, if TO detectors cover polar angles between 60 and 500 mrad, then
only about half of pp collisions at /s = 27 GeV can produce charged tracks in both forward
and backward T0 detectors [1]. This limits the ability of TO detectors to measure the event
collision time in the SPD experimental conditions. Meantime, TO detectors can determine
to for events, where other detectors can not be used, e.g., in the case of elastic scattering.
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With the TO detectors, only a few tracks are involved in the event collision time
determination, while ¢ty measurement by the TOF detector uses many tracks and improves
as 1/+/N for high-multiplicity events. Moreover, measurements by the TOF detector are
accompanied by reconstructed tracks that further reduce uncertainties due to uncertainties
in time-of-flight distance and particle momentum.

Another approach to analyze high-multiplicity events was developed in the ALICE
experiment [10]. Particles originated from pp-collisions at /s = 7 TeV (or from p-Pb, Pb-Pb
collisions) and detected by the TOF detector were divided into ten momentum intervals.
The time of the event was calculated in subsamples and the weighted average of the results
was then taken. This strategy reduces the computational time but mathematically is not
equivalent to the direct minimization of the x2-function (2). The reported results show the
high efficiency of the ALICE’s mitigation strategy for high-multiplicity events (N > 15),
but efficiency decreases towards lower multiplicities, which are typical at SPD running
conditions.

4.3. Particle Identification by Time-of-Flight

Using the reliable method to reconstruct the event collision time ¢y, one can perform
particle identification through a comparison of track timing by the TOF detector to the
expected time of the particle’s arrival at the detector. There are several strategies for PID by
the time of flight:

1. One can assign particle type for each track from the result of x?>-minimization: the
track type is accepted as the most likely species (maximal probability).

2. On the other hand, for every track i in event, one can exclude this track from the
determination of the collision time ¢y to avoid correlations. Let us denote as t;; the
event collision time calculated over the rest of the tracks in the event. Then there are
two common strategies to perform PID by time-of-flight [14]:

(@) n-sigma selection—the most simple threshold discriminator:

~

ti— (tio+j)  Si— Si(my)
0',‘]‘ 0'1']‘ ’

1’11']' =

@)

Here S; is a signal obtained for track i, §i(mj) is the expected signal for a
particle of species j with momenta p;. If the signal belongs to the range +20
(standard deviation) or 3¢ of a certain species, this track is accepted as the
particle of this species. The track can be accepted as multiple species.
(b)  Bayesian method: takes into account yield of particle species. The conditional
probability for track i to be a particle of species j reads:
P(Is) = P ®)
sz:n,K,p P(Sz ‘HIX)C(HIX)

Here C(H;) is a prior probability that is calculated iteratively. It takes into ac-
count the relative abundance of species j, which depends on particle momenta
and emission angle. The likelihood function, P(S;|H;), is given by

1 1
P(SilHj) = ——=—exp <—2n§->. ©)
g

Separation power, no,x = (Tix — Tix)/0ix, can be used as a measure of the PID
performance [10]. In the SPD, identification of particles by their time-of-flight can be
performed up to 1.7 GeV/c for /K separation and up to 3 GeV/c for K/p at 3o-level, see
Figure 5.
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Figure 5. 71/K and K/p separation powers as functions of momenta. See text for details.

4.4. PID Benchmarks for Two-Prong Decay Channels

Different PID methods have been compared by reconstructing several decay channels
with two oppositely charged particles in the final state: ¢ — K*K—, A — p*7~ and
K9 — 7 71~ For this study, two-prong decay channels have been chosen due to the smaller
combinatorial background with respect to multi-prong decays. Only PID by time-of-flight
is used in this section. One should note that in real data analysis, it will be accompanied
by other methods to reduce background: secondary vertex reconstruction of intermediate
particles, particle identification by ionization losses, etc.

In Figures 6-8 (left), the invariant mass of all pairs of oppositely charged tracks is
shown. The same combination of masses has been assigned to each pair as for the channel of
interest (indicated “no pid”). In the n-sigma approach only tracks with TOF signals within
+30;; of a certain species j are selected (“3 sigma”). In the case of the weighted Bayesian
PID, all combinations are included with the pair’s weight as a product of conditional
probabilities (8) for each prong (“bayesian”). The possible pair combinations corresponding
to the global minimum of the y?-minimization are marked as “chi2_min”. Finally, the
“ideal” corresponds to Monte-Carlo combinations with known particle types.

The weighted Bayesian approach, which exploits both PID-by-TOF capabilities and
the abundance of particle species, provides the best suppression of background while pre-
serving particles of interest; see Figures 6-8 (right). Kaons are less abundant than pions and
protons, therefore the advantage of the Bayesian approach is more pronounced if kaons are
the decay products (Figure 6 (right)). By applying the n-sigma approach one can preserve
more signal events, but at the same time, the suppression of the combinatorial background
is reduced. Benchmarks analyses, shown in Figures 6-8, demonstrate the power of the
identification of particles by the time-of-flight method in the SPD experimental conditions.
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Figure 6. Invariant mass (left) and signal-to-background ratios (right) as a function of the center-of-
mass energy, 1/Skx, of pairs of oppositely charged tracks assumed to be KK~ under different PID
strategies as indicated. Signal of ¢ — K™K~ decays stands out of the combinatorial background,
which is reduced by a factor greater than 20. See text for details.
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Figure 7. Invariant mass (left) and signal-to-background ratios (right) as a function of the center-of-
mass energy, /S, of pairs of oppositely charged tracks assumed to be 7+ 77~ under different PID
strategies as indicated. Combinatorial background to K3 — 771~ decays is suppressed by a factor
of ~2. See text for details.
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Figure 8. Invariant mass (left) and signal-to-background ratios (right) as a function of the center-of-
mass energy, ,/Spr, of pairs of oppositely charged tracks assumed to be psr~ under different PID
strategies as indicated. Combinatorial background to A° — p7t~— decays is suppressed by a factor of
~3. See text for details.

5. Conclusions

In the SPD experiment, the accurate determination of the event collision time is
required to perform 7/ K/p identification in the low-momenta range (0.5-3 GeV/c) by the
time-of-flight method. The collision time can be reconstructed on an event-by-event basis
by a minimization procedure, which uses measurements of the TOF detector combined
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with track reconstruction, but the corresponding solution is computationally expensive. In
this paper, we present a dedicated Asynchronous Differential Evolution-inspired Genetic
Algorithm (ADE-GA), which is shown to solve the optimization problem without any
simplifications, thus providing a fast and reliable measurement of the event collision
time throughout the range of track multiplicities. Finally, different strategies of particle
identification by time-of-flight are tested to prove the power of the PID-by-TOF method in
the SPD experimental conditions.
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