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Abstract: The energy-conserving semi-implicit (ECsim) method presented by the author in 2017, is a
particle-in-cell (PIC) algorithm for the simulation of plasmas. Energy conservation is achieved within
a semi-implicit formulation that does not require any non-linear solver. A mass matrix is introduced
to linearly express the particle-field coupling. With the mass matrix, the algorithm preserves energy
conservation to machine precision. The construction of the mass matrix is the central nature of the
method and also the main cost of the computational cycle. Here, three methods that modify the
construction of the mass matrix are analyzed. First, the paper considers how the sub-cycling of the
particle motion modifies the mass matrix. Second, a form of smoothing that reduces the noise while
retaining exact energy conservation is introduced. Finally, an approximation of the mass matrix is
discussed that transforms the ECsim scheme to the implicit moment method.
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1. Introduction

The energy-conserving semi-implicit (ECSim) method is an algorithm for plasma
simulation based on the particle-in-cell (PIC) approach [1]. PIC methods can be explicit,
semi-implicit or fully implicit. Plasmas are governed by two sets of equations: the equations
for the motion of the particles and the equations for the evolution of the fields. The two
sets of equations are coupled because the field equations need the sources (current and
charge) from the particles, and the particles need the fields to compute the force. As a
particle moves, the fields are modified, and as the fields change, the forces on the particles
are modified. This link is central to the physics of plasmas: plasmas are collective sets of
particles interacting via the fields. The coupling between particles and fields is non-linear,
and to represent it in discretized equations in its fullness, one needs fully implicit methods.
In fully implicit methods, the particle equations of motion and the field equations are
solved together within a non-linear solver, such as the Newton–Krylov approach [2,3].
In explicit methods, conversely, the coupling between particles and fields is suspended
for a small time step [4]. In that small time interval, one assumes that the known fields
can be used unchanged for moving the particles, and the particle information can be used
unchanged to evolve the fields. This has three major consequences.

First, the explicit method is straightforward with no iteration is needed, and explicit
PIC can be implemented as one of the most efficient algorithms known in computer science,
consistently being a top performance achiever on any new computer architecture intro-
duced. For example, PIC was one of the first applications to reach petascale performance [5].
Implicit PIC is much more complex in its implementation. Especially on massively parallel
computers, reaching high efficiency is a challenge.

Second, in explicit PIC, the time step becomes limited by numerical stability consider-
ations, requiring the use of high resolution. The peculiarity of PIC is that the resolution
needs to not just be refined in time to resolve the electron plasma frequency: ωpe∆t < 2 [6],
where ωpe denotes the electron plasma frequency and ∆t is the time step, but also in space
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to avoid the so-called finite-grid instability [4]. This limitation is removed by the implicit
approach that allows one to select grid spacing and a time step based on the accuracy
needed and not on the stability of the numerical algorithm [7].

Third, in explicit PIC, energy is not conserved. Using a good resolution, energy is
acceptably maintained. There is always a secular trend of energy increase [4], but as the
resolution is relaxed closer to the stability limit of the finite grid instability, the energy
increase becomes more severe, until at the instability limit, it starts to grow exponentially.
This effect cannot be avoided, but it can be improved by using smoothing and higher-
order interpolation techniques. Recent structure-preserving geometric particle-in-cell
methods use symplectic integrators to ensure local energy conservation at small time
steps [8]. The implicit PIC method, instead, conserves energy exactly, whatever resolution
is used [2,3]. This feature is physically important and practically impactful. Physically,
of course, confidence comes from using an algorithm that preserves one of the most
established properties in physics: conservation of energy. If energy starts to spontaneously
increase, confidence in the results is shaken. Practically, lack of energy conservation requires
a tedious and careful tuning of the parameters to make sure the simulation does not increase
its energy excessively, leading in some situations to excessively resolved models that need
to use much more resolution than the processes of interest require.

The semi-implicit PIC method tries to make a compromise and retain some of the
advantages of both approaches. In semi-implicit methods, the particles and the fields are
still advanced together, and an iteration is needed, but the coupling is linearized, and
the iteration uses linear solvers. Different methods are used to linearize the coupling.
The implicit moment method formulates the particle response to changes in the fields
using the moment closure method [9]. The direct implicit method uses a formal linear
expansion of the coupling operator [10]. In all these approaches, the stability properties of
the semi-implicit method are superior to explicit methods and allow a good compromise in
the resolution needed [7]. However, energy is not conserved. Unlike explicit PIC, energy
can either increase or decrease depending on the implementation because dissipation terms
are included in the algorithm to suppress energy growth.

The ECsim approach is the first semi-implicit PIC to retain exact energy conservation
as in the fully implicit PIC. ECsim uses a mathematical construct called a mass matrix to
express the coupling between particles and fields. With the mass matrix, the coupling is
linear, but energy is conserved exactly. Below, it is reviewed how this was achieved [1].

Since its recent introduction, ECsim has found application in a number of applications
in space [11–15] and in fusion [16,17]. An important improvement has removed the lack
of charge conservation in the original scheme [18,19]. The current paper reports some
extensions of the method that can widen its practical applicability.

First, a method to introduce smoothing to reduce noise while retaining exact en-
ergy conservation is described. Smoothing is an affordable way to effectively introduce
a higher-order interpolation scheme. It removes the high frequency part of the spectrum.
Without special attention, smoothing will tend to break energy conservation by just remov-
ing high-frequency fluctuations from the system. Instead, a method that conserves energy
is presented.

Second, sub-cycling is a convenient approach in plasma simulations to address the
faster scales seen by the particles. In some applications, the particle response (or that
of a subset of the particle population) is faster than the evolution of the fields, and it is
beneficial to move the particles several times without advancing the fields. In explicit
PIC, the operation is straightforward since fields and particles are not advanced together.
In implicit and semi-implicit PIC, instead, sub-cycling also needs to be done in the coupling,
requiring the modification of the algorithm to compute the current used in the field solution.

Finally, we illustrate how the mass matrix formulation opens up the opportunity to
approximate the mass matrix in certain limit cases to reduce the cost of the simulation.

The paper is organized as follows. Section 2 recaps the key properties of the ECsim
needed for the discussion. Section 3 introduces how smoothing can be implemented to
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reduce noise while retaining the property of energy conservation. Section 4 is dedicated
to the algorithm for sub-cycling the particle motion within the ECsim scheme. Section 5
derives a limit case of the mass matrix formulation that transforms the ECsim algorithm
into the standard implicit moment method [9]. Results are presented in Section 6, and final
conclusions are drawn in Section 7.

2. Summary of the ECsim Method

The ECsim method [1] is based on a formulation of the mover similar to the classic
leap-frog scheme:

xn+1/2
p = xn−1/2

p + ∆tvn
p ,

vn+1
p = vn

p +
qp∆t
mp

(
En+θ(xn+1/2

p ) + vp × Bn(xn+1/2
p )

)
,

(1)

where xp denotes the particle (labeled with p index) space position, vp the particle velocity,
qp is particle charge, mp is the particle mass, n denotes the number of a particle, and E
and B are electrical and magnetic fields, respectively, vp = (vn+1

p + vn
p)/2 is the averaged

speed, and En+θ = θEn+1 + (1− θ)En.
This mover differs from both the explicit leap-frog mover [20] and the implicit θ-

mover [21]: it combines the first equation from the explicit mover with the second equation
from the implicit mover, but with an important difference: the electric and magnetic
fields are computed at the known position xn+1/2

p rather than at the unknown position xp.
The important consequence is that the particle equations can be solved directly without any
iteration needed among themselves. Instead, in the standard θ-mover, a predictor-corrector
iteration is required. Yet, the mover is still implicit because the new fields are not known
until the field equations are solved. The ECsim method retains the coupling between
advanced fields and advanced particles, requiring the solution of a linear coupled system.
However, the mover itself does not require any iteration, a substantial simplification.

In the ECsim scheme, the electric and magnetic fields are computed at the known
position xn+1/2

p . In the θ-scheme, instead, they are computed at the unknown position
xp. These two positions are conceptually the same; they express the particle position
at the mid-time between the old and new evaluations of the velocity. However, one
is computed explicitly, in the leap-frog sense, while the other is computed as part of a
predictor-corrector iteration [22,23]. Both methods are second-order accurate, but the ECsim
scheme is simpler to compute. This simplicity is not just a virtue in itself but leads to an
important consequence: the simplicity allows us to formulate the coupling with the fields
in a way that insures exact energy conservation without requiring non-linear iterations.
The θ-scheme can be made energy conserving but at the cost of a fully non-linear iteration
requiring a non-linear solver [2,3].The ECsim scheme allows exact energy conservation
without requiring any non-linear iteration.

The properties of stability are determined by the field-particle coupling, and in this
sense, the method is still implicit. For this reason, not requiring any non-linear iteration
but still requiring a liner solver to deal with the field-particle coupling, the method is
semi-implicit. This nomenclature is to distinguish it from the fully implicit method that
requires the non-linear iteration.

Note that the force term is expressed using the magnetic field, Bn(xn+1/2
p ), at the

initial time level, but the electric field is considered at the advanced intermediate level:
En+θ(xn+1/2

p ). The reason for this choice is simplicity and the fact that the magnetic field
does no work and using the old time level does not introduce any loss of energy conservation.
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The coupling of particles and fields requires us to interpolate the fields to the particle
positions:

En+θ
p = En+θ(xn+1/2

p ) = ∑
g

En+θ
g W(xn+1/2

p − xg) , (2)

Bn
p = Bn+θ(xn+1/2

p ) = ∑
g

Bn
gW(xn+1/2

p − xg) . (3)

A generic index g is used for the grid. In the specific implementation within the
iPic3D code [24,25], the electric field and magnetic field are not colocated, and g labels
either centers (for B) or vertices (for E). Here, the notation is simplified: Bn

p ≡ Bn(xn+1/2
p )

and En+θ
p ≡ En+θ(xn+1/2

p ). In the implementation here, the interpolation function, W, is a
b-spline of order ` = 1 [26]:

W(xp − xg) = b`(xp − xg)b`(yp − yg)b`(zp − zg) . (4)

This expression reduces trivially in 1D (one-dimensional) for the examples reported be-
low.

For Maxwell’s equation, the standard θ-scheme [24] is used:

∇g × En+θ +
1
c

Bn+1
g − Bn

g

∆t
= 0 ,

∇g × Bn+θ − 1
c

En+1
g − En

g

∆t
=

4π

c
Jg .

(5)

The spatial operators in Equation (5) are discretized on the grid labeled by g intro-
duced above.

The coupling of the field equations with the particles is expressed by the current for
each species:

Jsg =
1

Vg
∑
p∈s

qpvpW(xn+1/2
p − xg) , (6)

where the summation is over the particles of the same species, labeled by s, and Vg is the
cell volume .

As with the θ-mover, the velocity equation can be rewritten in the equivalent form [27],

vp = v̂p + βsÊp , (7)

with
v̂p = αn

pvn
p ,

Êp = αn
p , En+θ

p

(8)

and the rotation matrix αn
p given by

αn
p =

1
1 + (βsBn

p)
2

(
I− βsI× Bn

p + β2
s Bn

pBn
p

)
, (9)

where I is the dyadic tensor (a matrix with a diagonal of 1) and βs = qp∆t/2mp (indepen-
dent of the particle weight and unique to a given species). The elements of the rotation
matrix are indicated as α

ij,n
p , with labels i and j referring to the 3 components of the vector

space (x, y, z).
Substituting Equation (7) into Equation (6), one obtains without any approximation or

linearization,

Jsg =
1

Vg
∑
p

qpv̂pWpg +
βs

Vg
∑
p

qpÊn+θ
p Wpg , (10)
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where the notation is shortened, Wpg = W(xn+1/2
p − xg), and the summation is intended

over all particles of species s.
Using Equation (8), the expression for the current becomes

Jsg = Ĵsg +
βs

Vg
∑
p

qpαn
pEn+θ

p Wpg , (11)

where
Ĵsg =

1
Vg

∑
p

qpv̂pWpg . (12)

Computing then the electric field on the particles by interpolation form the grid as in
Equation (3), it follows that

Jsg = Ĵsg +
βs

Vg
∑
p

∑
g′

qpαn
pEn+θ

g′ Wpg′Wpg . (13)

Exchanging the order of summation, one obtains:

Jsg = Ĵsg +
βs

Vg
∑
g′

Ms,gg′E
n+θ
g′ , (14)

where the actor in the leading role of the ECsim scheme—the mass matrix [28] is defined:

Mij
s,gg′ = ∑

p
qpα

ij,n
p Wpg′Wpg . (15)

There are 3v (where v is the number of velocity directions) mass matrices, and in matrix
notation, they can be written as Mgg′ , that is, without the indices i, j for the vector directions.

The mass matrices Ms,gg′ are the most important aspect of the ECsim method and
are also the most expensive part of the computation [25]. A number of symmetries can be
used to reduce the cost. Speeding up the construction can be achieved using offloading
to accelerator processors (e.g., graphical processing units, GPU) [29]. The mass matrices,
as shown in Equation (14), provide an explicit linear link between the advanced current
at the mid-point of the time step and the electric field at the advanced time. This linear
relationship can be substituted into the discretized Maxwell’s Equation (5) to form a linear
set of equations:

∇g × En+θ +
1
c

Bn+1 − Bn

∆t
= 0 ,

∇g × Bn+θ − 1
c

En+1 − En

∆t
=

4π

c

Ĵg + ∑
g′

Mgg′E
n+θ
g′

 ,

(16)

where the total current is Ĵg = ∑s Ĵsg, and the species summed mass matrices that are
written by elements are:

Mij
gg′ = ∑

s

βs

Vg
Mij

s,gg′ . (17)

The direct link provided by the mass matrix is analytically exact for the original set of
discretized equations. Unlike the implicit moment method, where the equations have to be
approximated by Taylor series expansion [27], here, the link is still exactly the same as in
the original set of discretized equations. Having eliminated the need for any approximation
or Taylor series expansion is the reason why ECsim conserves energy exactly.
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Let us consider now how energy conservation can be shown in the case θ = 1/2.
This is important for the derivations below to consider what key steps enable energy
conservation.

The inner product of the velocity from Equation (1) with the average speed, vp, gives,
by summing over all particles,

1
2 ∑

p

(
mp(vn+1

p )2 − (vn
p)

2
)
= ∆t ∑

p

(
qp ∑

g
vp · EgWpg

)
, (18)

where the electric field is computed as an average consistent with the choice θ = 1/2, and
the magnetic field drops out as obvious from the properties of the cross-product.

Exchanging the summation over particles and cells leads to:

1
2 ∑

p

(
mp(vn+1

p )2 − (vn
p)

2
)
= ∆t ∑

g
Jg · Eg , (19)

where it is recognized that Jg = ∑p qpvpWpg.
Multiplying the first Equation (5) by Bg and the second by Eg and summing them

leads to:
(Bn+1

g )2 − (Bn
g)

2

2c
+

(En+1
g )2 − (En

g)
2

2c

= ∆t
(

4π

c
Jg · Eg + Eg · ∇g × B− Bg · ∇g × E

)
.

(20)

Assuming a mimetic grid discretization that preserves the continuum properties of
the operators and summing over all grid points gives:

∑
g

(Bn+1
g )2 − (Bn

g)
2

4π
+ ∑

g

(En+1
g )2 − (En

g)
2

4π

= ∆t ∑
g

Jg · Eg +
c∆t
4π ∑

g
∇g · (Eg × Bg) .

(21)

This conservation law states that the variation of the magnetic and electric energy,
as measured on the grid, equals the amount exchanged with the particles and carried by
the grid-discretized divergence of the Poynting flux. For energy to be conserved in the
system, the energy exchange term on the particle equations (Equation (19)) needs to be
identical to that on the field equations, (Equation (21)). This term is indeed identically equal
to ∑g Jg · Eg in both equations. Energy conservation is enforced exactly to round off.

In addition to guaranteeing physical conservation of energy, a cornerstone in any
physical model, the existence of this conservation constraint also guarantees a form of non-
linear stability of the discretized equations [1], expanding the stability of the semi-implicit
method compared with the moment implicit scheme [11,16].

3. Smoothing with the Mass Matrix Formulation

Smoothing can be designed to be compatible with the energy conserving properties of
the mass matrix. Only the electric field is chosen to be smoothed, since the magnetic field
tends to be much smoother in PIC simulations and smoothing is not needed.

From the proof of energy conservation recapped above, it is clear that for energy
conservation, the smoothing of the current must be done in the same way as that of the
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electric field in the mover. Starting from the mover and calling Sgg′ the smoothing operator,
a smoothed electric field on the grid is defined as:

ESM
g = ∑

g′
Sgg′E

n+θ
g′ . (22)

From Equation (22), the smoothed electric field acting on a particle can be computed
as:

ESM
p = ∑

g
ESM

g W(xn+1/2
p − xg) . (23)

The second equation of motion, Equation (1), then uses the smoothed electric field as:

vn+1
p = vn

p +
qp∆t
mp

(
ESM

p + vp × Bn
p

)
, (24)

where Bn
p is still computed as above.

From Equation (24), one can again compute the current as

Jsg = Ĵsg +
βs

Vg
∑
g′

Ms,gg′E
SM
g′ . (25)

The energy exchange term for the particles then becomes

1
2 ∑

p

(
mp(vn+1

p )2 − (vn
p)

2
)
= ∆t ∑

s
∑
g

Ĵsg +
βs

Vg
∑
g′

Ms,gg′E
SM
g′

 · ESM
g . (26)

Applying smoothing to the source term of the second of the Maxwell Equation (16),
one obtains:

∇g × Bn+θ − 1
c

En+1
g − En

g

∆t
=

4π

c ∑
s

∑
g′
Sgg′

Ĵsg′ +
βs

Vg
∑
g′′

Ms,g′g′′E
SM
g′′

 , (27)

where the last term is expressed from Equation (25).
For the fields, the energy integral then becomes:

∑
g

(Bn+1
g )2 − (Bn

g)
2

4π
+ ∑

g

(En+1
g )2 − (En

g)
2

4π
− c∆t

4π ∑
g
∇g · (Eg × Bg)

= ∆t ∑
s

∑
g

∑
g′
Sgg′

Ĵsg′ +
βs

Vg′
∑
g′′

Ms,g′g′′E
SM
g′′

 · Eg .

(28)

For the two energy integrals to be the same, the exchange term seen by the particles
must be equal to that seen by the fields. The right-hand sides of Equation (26) must then
equal that of Equation (28):

∑
g

∑
g′
Sgg′

Ĵsg′ +
βs

Vg′
∑
g′′

Ms,g′g′′E
SM
g′′

 · Eg

= ∑
g

Ĵsg +
βs

Vg
∑
g′′

Ms,gg′′E
SM
g′′

 ·∑
g′
Sgg′Eg′ .

(29)



Physics 2023, 5 79

Switching g with g′ (just names) in the right-hand side, the equivalence above holds
when the smoothing operator is symmetric (i.e., the matrix repenting it is symmetric),
a common property shared by many smoothing operators [3].

Note that the electric field is smoothed but not the magnetic field, which tends to be
less noisy by its nature.

4. Sub-Cycling with the Mass Matrix Formulation

A mass matrix can also be defined in the presence of sub-cycling or orbit-averaging
movers. The velocity update of ECsim can be reformulated for sub-cycling as

vν+1
p = vν

p +
qp∆tν

mp

(
En+θ(xν

p) +
vν+1

p + vν
p

2
× Bn(xν

p)

)
. (30)

It is assumed assume that the time step ∆t between field updates is subdivided into
Nν, not necessarily equal sub-steps ∆tν.

The positions for the field evaluations, xν
p, during the sub-cycle can be computed in

different ways. The simplest is to assume a straight orbit within ∆t, similar to the leap-frog
approach:

xν
p = xn−1/2

p + vn
p

ν′=ν

∑
ν′=0

∆tν′ , (31)

which can all be computed at once since the same velocity is used for all points along the
trajectory. The first step starts from the old position xν=0

p = xn
x and old velocity vν=0

p = vn
x ,

and the last step leads to the final position xν=Nν
p = xn+1

p and final velocity vν=Nν
p = vn+1

p .
The fields are assumed to be those computed at the time level θ within the field update
time step ∆t.

Another promising approach is to recall that most often in plasma physics, particles
are not moving in straight lines, but rather they are frozen into the field lines, moving in
cyclotron orbits with drifts due to the inhomogeneity of the fields. In the spirit of gyro-
averaging, certain applications of the implicit method might need to step over the gyration
time scale, and the positions of the particles used in Equation (30) would then be chosen to
achieve accurate gyro-averaging, for example taking Nν positions along the gyro-orbit of a
particle [30] to compute an average force on the particle’s center of gyration.

The example of the two strategies above for computing the intermediate positions
can be made in a single explicit step that generates all positions at once: in this case, each
substep contribution to the mass matrix and the moments can be computed in parallel,
greatly improving the parallel performance. In practice, the Nν operations required by
the substepping algorithm can all be done in parallel in an embarrassingly parallel ap-
proach that scales ideally on supercomputers: no communication between the particles and
between the substeps is needed.

Equation (30) can be inverted with the same vector manipulations used for Equation (1)
to obtain:

vν+1
p + vν

p

2
= v̂ν

p + βsÊν
p , (32)

where hatted quantities have been rotated by the magnetic field computed at the location xν
p:

v̂ν
p = αν

pvν
p ,

Êν
p = αν

pEn+θ(xν
p) ,

(33)
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via a rotation matrix, αn
p, defined as in the case of a singe step, but with the magnetic field

computed at the last substep position:

αν
p =

1
1 + (βsBn(xν

p))
2

(
I− βsI× Bn(xν

p) + β2
s Bn(xν

p)B
n(xν

p)
)

. (34)

From Equation (32), one can obtain directly from its definition (6) the mean current
over all sub-steps without any further approximation or linearization:

Jsg =
1

Vg
∑
p

qp ∑
ν

∆tν

∆t

(
v̂ν

p + βsÊν
p

)
Wν

pg , (35)

where Wν
pg = W(xν

p − xg). Using now the definitions of the hatted quantities, Equation (33),
one can cast the mean current in the same form as in the single step formulation:

Jsg = Ĵsg +
βs

Vg
∑
g′

Ms,gg′E
n+θ
g′ , (36)

but with the new definition for

Ĵsg =
1

Vg
∑
p

qp ∑
ν

∆tν

∆t
v̂ν

pWν
pg . (37)

and the mass matrix for a sub-cycled trajectory defined by

Mij
s,gg′ = ∑

p
qp ∑

ν

∆tν

∆t
α

ij,ν
p Wν

pg′W
ν
pg . (38)

Note that the definition of the sub-cycled mass matrix (Equation (38)) and the sub-
cycled hatted current (Equation (37)) treats each sub-interval for each particle as if they
were independent: the equations see each sub-interval as a particle. It is as if the system
has NpNν particles made by each particle for each sub-interval ∆ν. This feature lends itself
to a simpler computing implementation where each particle is spawned into Nν treated as
independent particles in the interpolation, mass matrix computation and current gathering
step. This is a valuable approach in parallel and vectorized computer architectures, such
as GPUs.

Regardless of how the positions for the particles during the sybcycling are chosen,
if the current defined in Equation (36) is computed with the mass matrices defined in
Equation (38), energy is conserved. In fact, the term ∑g Jg · Eg is again identical when
computed from the equations for the particles and for the fields.

5. Simplification of the Mass Matrix: The Limit of the Implicit Moment Method

There is a specific case where the mass matrix formulation takes a much simplified
form: in the case of the interpolation of the nearest grid point (NGP). In that case, the inter-
polation function Wpg is simple: 1 for the nearest grid point, which is labeled here as gp,
and 0 for everywhere else:

Wpg = δgpg , (39)

where δab is the Kronecker delta.
In this case, the mass matrix becomes

Mij
s,gg′ = ∑

p
qpα

ij,n
p δgpg′δgpg . (40)



Physics 2023, 5 81

When substituted in the expression for the current, this leads to

Jsg = Ĵsg +
βs

Vg
∑
p

∑
g′

qpαn
pEn+θ

g′ δgpg′δgpg . (41)

Given the properties of Kronecker delta, the summation over g′ can be done first:

∑
g′

En+θ
g′ δgpg′ = En+θ

gp , (42)

and substituting:

Jsg = Ĵsg +
βs

Vg
∑
p

qpαn
gp En+θ

gp δgpg , (43)

where the point that the αs are computed using the magnetic fields of the nearest grid point
is used, consistent with the NGP interpolation. Using again the properties of Kronecker
delta, the summation over the particles can be done directly:

1
Vg

∑
p

qp = ρsg , (44)

to obtain
Jsg = Ĵsg + βsρsgαn

gEn+θ
g . (45)

This is the same expression that links the electric field and the current in the implicit
moment method [31] used in Venus2D [9], in Celeste3D [23] and iPic3D [24]. It is then worth
considering this limit expression for the mass matrix formulation. Most often, the NGP
cannot be used in practice for its well known excessive noise, but the expression (45) still
can be used even in the presence of other interpolation schemes.

Equation (45) is exact only for the NGP scheme where it still leads to exact energy
conservation. When, instead, other orders of interpolation are used, energy conservation is
lost, but it still provides a meaningful link between the current and electric field: it is, in fact,
the same used for decades by the implicit moment method. If Equation (45) is used, ECsim
becomes more similar to the implicit moment method, but it still differs in one key aspect:
the interpolations are computed using the position provided by the leap-frog algorithm for
the particle position. This is known explicitly and does not require any iteration. In the
implicit moment method, the mover requires to iterate between the velocity update and
position update using a predictor-corrector scheme. This is not required in ECsim, where
the particle position is known explicitly from the previous time step.

6. Results
6.1. Effects of Sub-Cycling

To check how the innovations described above perform in practice, let us first consider
the effect of sub-cycling. The goal is twofold. First, one needsto verify that the energy
is indeed conserved and sub-cycling does not break the energy conservation. Second,
one tests on a specific case how far one can push the sub-cycling before the correctness
of the results deteriorates. The first task above is just a confirmation of the rigorously
exact calculations above, and it is merely a verification test for the code implemented
here. The second task is only an illustration because the usefulness of sub-cycling is highly
problem-dependent.

A two-stream instability was initiated by considering a domain of L/de = 2π divided
into 64 cells with 10,000 particles. A mini-app was useful to readily study implementations
in different computer architectures: it was intended merely as a test, not as a real world
problem. Space was normalized in electron skin depth, de = c/ωpe, and time was normal-
ized in electron plasma frequency, ωpet. The ions were kept immobile, while the electrons
had a thermal speed of vthe/c = 0.02 (with c denoting the speed of light), and the two
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beams had a net speed of V0/c = ±0.1. The reference case without sub-cycling (Nν = 1)
has a CFL (Courant–Friedrichs–Lewy) condition Courant number, C = V0∆t/∆x = 0.1.
We then proceeded to carry out 10 runs with Nν = 1–10, and ∆t was increased by the
same factor. That is, the particle ∆t was kept fixed and the ∆t of the field was increased.
As the number of sub-cycles increased, the ∆t increased, but the total time remains the
same: ωpet = 50. A perturbation of the particle velocity was added with mode number,
m = 5:

up = up + V1 sin
(

2πmxp

L

)
; (46)

with an amplitude V1 = V0/10.
Here, a MATLAB implementation was used that was tested on a MAC OSX 10.14.6

with an Intel Core i7 2,6GHz processor complemented with 16GB DDR3 1600 MHz memory.
The results of the study are summarized in Table 1 and in Figures 1 and 2.
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Figure 1. Particle velocity distribution at the end of 10 different simulations of same total duration
varying the number of sub-cycles, Nν = 1 (top), 2, 3 to 10 (bottom), and correspondingly increasing
time step, ∆t, by the same factor. See text for details.
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Figure 2. Scatter plot of the phase space for the particles at the end of 10 different simulations
of same total duration varying the number of sub-cycles, Nν = 1 (top), 2, 3 to 10 (bottom), and
correspondingly increasing ∆t by the same factor. See text for details.
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Table 1. Effect of sub-cycling on a two-stream instability run. Values attained while varying the
number Nν of sub-cycles, from 1 to 10 and correspondingly increasing the duration of the simulation
in seconds, the seconds spent per the time step, ∆t, and the energy error, ∆E, by the same factor ∆t
are reported.

Nν Time (s) Seconds/∆t ∆E

1.0 42.73 0.08395 1.75 × 10−16

2.0 20.94 0.08244 1.1 × 10−16

3.0 14.63 0.08657 1.015 × 10−16

4.0 10.88 0.08567 7.388 × 10−17

5.0 8.97 0.08881 6.764 × 10−17

6.0 7.36 0.08762 8.342 × 10−17

7.0 6.46 0.08972 7.988 × 10−17

8.0 5.74 0.09111 8.492 × 10−17

9.0 5.27 0.09411 8.14 × 10−17

10.0 4.79 0.0958 8.61 × 10−17

Table 1 reports the reduction of the cost of the simulation as the number of sub-cycles
increased. The MATLAB implementation is well vectorized and efficient in handling the
particle projections, so much so that as the number of sub-cycles is increased, the cost per ∆t
hardly increases at all. If one compares the cost of a time step without sub-cyclig (0.08395 s)
with that with 10 sub-cycles (0.0958 s), the increase is minimal even though particles have
been moved and projected to the moments and the construction of the mass matrix 10 times
more. While this result is specific to the vectorization done via MATLAB, other forms of
vectorization are also possible on GPUs using OpenACC [32] and CUDA [33] programs
opening up a similar opportunity for this type of optminization in other implementations.

As required by the theoretical derivations above, energy should be conserved in all
cases. This is indeed the case in Table 1, a confirmation that the MATLAB implementation
used is bug-free.

However, if sub-cycling is beneficial in reducing the cost of the simulation, it introduces
a degradation in the physics sense. Particles are moved with the same time step in each sub-
cycle regardless of Nν, but as Nν increases, the overall time step ∆t for the field recalculation
is increased. In a number of problems, it is still beneficial to accept this compromise.
Figures 1 and 2 show the degradation of the results with Nν. Unfortunately, the instability
modeled is a complex non-linear process, and the linear phase is not important: an easy
quantitative metric of accuracy is not available. The study was already started from a
significant perturbation. If not added then several modes develop at the same time, and
still, the linear phase is muddied by the interaction of many modes. There is no single
metric that can easily summarize the quality of the evolution. One has to rely on qualitative
visual comparison. For this reason, let us look carefully at the velocity space distribution
(Figure 1) and phase space (Figure 2). As Nν is increased, the correct physics description is
progressively lost.

The most characteristic feature of the two-stream instability is the formation of a flat top
distribution, a distribution where, for a range of velocities, the distribution remains flat. This
feature is prominent without sub-cycling, and it is still reasonably well represented at higher
sub-cycling numbers. However, the tail of higher-energy particles is reduced when sub-cycling
is increased, a reflection of the fact that the electric field responsible for particle acceleration [34]
is less accurately computed. These are non-physical artifacts of excessive sub-cycling.

The same conclusion is reached by analysing phase space. In this case, the most
important feature is the formation of electron holes, regions of phase space depleted of
electrons and in fact completely void of them. These features, which are also observed in
experimental measurements, are distorted and expelled to the edge of the velocity range as
Nν is increased.
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Sub-cycling is compatible with the mass matrix formulation, retaining the property
of exact energy conservation. It can be implemented effectively enough, only minimally
increasing the cost of the computational cycle despite the increase in the number of particle
operations while reducing the number of time steps for the same total time. However, it
must be used with care because not updating the fields after the particles are moved in a
sub-cycle introduces physical errors even though energy is still exactly conserved.

6.2. Effects of Smoothing

To test the effects of smoothing, let us consider another type of streaming instability: the
transverse electromagnetic instability driven by counter streaming beams [? ]. Again, a 1D
plasma (x is the only spatial variable) is considered, but now, all three components of the
particle velocity are taken into account. The two counter-streaming beams are directed along
y. Using the speed of light for normalization, a case with the beams having vthe/c = 0.01
counter-streaming with speed v0y/c = 0.2 to be considered. No initial perturbation is added
and the natural noise is let to initiate the instability. The transverse electromagnetic streaming
instability is common is often used in the context of understanding how magnetic fields can be
generated in the universe [36] a form of dynamo. A setup similar to that reported by Innocenti
et al. [37] is used. A characteristic of this instability is that it segregates in phase space particles
with opposite signs of vy, initially residing in the two different beams.

Figure 3 shows the evolution of the phase space cross-section (x, vx): the red particles have
vy < 0 and the blue particles have vy > 0. The evolution initially retains their separation, but
in time, phase-space mixing takes over. More details of the physics of this simulation can be
found by Innocenti et al. [37]. Let us focus here on comparing the normal ECsim case without
smoothing with one where the smoothing kernel, S = [1/4, 1/2, 1/4], is applied by convolution
3 times. Figure 3 compares the smoothed and non-smoothed case. Smoothing does not alter the
evolution in any profound ways, but it affects it. Since the simulation is started from its natural
noise, no two simulations will be identical, and of course, the smoothed simulation will have
less noise. The locations of the islands formed in phase space are not the same, but the overall
features are similar.

No smoothing Smoothing
(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Evolution of the phase space section (x, vx) in the transverse counter-streaming instability.
The red particles have vy < 0, and the blue particles have vy > 0. Three times are shown, and the left
(right) panels report the non-smoothed (smoothed) run: ωpet = 6.35 (a,b), 25 (c,d), 43.75 (e,f), and
62.5 (g,h). See text for details.
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The energy exchange is also similar in the smoothed and non-smoothed runs, as shown
in Figure 4. In particular, the kinetic energy is lost primarily to produce magnetic energy.
The transverse counter-streaming instability is a form of magnetic dynamo that sponta-
neously creates a magnetic field by using the kinetic energy of the counter-streaming beams.
The total energy is conserved to machine precision in both runs. Smoothing, as shown in
Section 3 theoretically, indeed conserves energy exactly.

No smoothing Smoothing
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Figure 4. Evolution of the energy in the transverse counter-streaming instability without smoothing
(left) and with smoothing (right) with the exchange between kinetic and magnetic energy, with
a minority contribution going to the electric field energy (top) and the total energy conservation
(bottom).

The main effect of smoothing is to eliminate the high-frequency part of the spectrum.
Figures 5 and 6 compare the k–ω spectrum of selected fields. The noise at high values
of k is reduced. The spectrum identifies the low k part of the spectrum as dominant.
The characteristic arch of the electromagnetic waves (light waves) is also prominent.

Figure 5. Transverse counter-streaming instability in absence of smoothing for Ex (left,) Ez (middle),
and By (right) in the spatiotemporal plane (x, t) (top) and in the spectral plane (k, ω) (bottom). See
text for details.
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Figure 6. Transverse counter-streaming instability in presence of smoothing. Three fields are shown
from left to right: Ex, Ez and By. The top row shows the spatiotemporal plane (x, t), and the bottom
row shows the spectral plane (k, ω). Ex (left), Ez (middle), and By (right) in the spatiotemporal plane
(x, t) (top) and in the spectral plane (k, ω) (bottom).

7. Discussion

The ECsim method allows to make a PIC simulation within a semi-implicit approach
that conserves energy exactly. This feature, besides having its own intrinsic value, also
leads to improved stability, allowing, for example, to consider realistic plasma conditions
in the heliosphere, including the colder solar wind where the Debye length is very small
compared with the scales of interest.

This paper reports on three new developments.
First, a method for smoothing the electric field in an algorithm that preserves en-

ergy conservation is introduced. When it can be avoided, smoothing should be avoided,
but when there is a need for it, the algorithm presented here achieves smoothing without
breaking energy conservation. This can be, for example, the case when excessive noise
alters the correct transport properties of a plasma, an issue of great importance, for example,
in fusion energy studies [38].

Second, a method for computing the mass matrix in the presence of particle sub-cycling
is introduced. Sub-cycling can be useful in a number of situations. Most often, if it can be
avoided, it should be avoided because particles and fields move together, with the frozen-in
condition being a cardinal property of plasmas. However, frozen-in properties are valid
at the large scales typical of MHD. There are many situations where the fields evolve
slowly while particles move quickly. For example, in gyro motion. Sub-cycling can be used
together with gyroaveraging. The method presented here allows us to use sub-cycling
while constructing a mass matrix that continues to preserve the exact energy conservation.

Finally, a limit case when the mass matrix calculation becomes especially simple is
discussed and it is shown that, in this limit, the plasma particle response in the ECsim
method becomes identical to that of the implicit moment method (IMM). This has two
implications. First, it allows us to use the same code either in the full energy-conserving
ECsim mode or in the less expensive IMM mode. Comparisons can then be made more
readily. Second, the derivation clarifies the theoretical links between ECsim and IMM,
revealing in what limit the two become identical.

These three new steps have both a theoretical significance and practical value, bringing
understanding of the properties of ECsim and broadening its range of applications.
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