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Abstract: The paper considers momentum operators on intrinsically curved manifolds. Given that
momentum operators are Killing vector fields whose integral curves are geodesics, the corresponding
manifold is flat or of the compact type with positive constant sectional curvature and dimensions
equal to 1, 3, or 7. Explicit representations of momentum operators and the associated Casimir element
are discussed for the 3-sphere S3. It is verified that the structural constants of the underlying Lie
algebra are proportional to 2 h̄/R, where R is the curvature radius of S3 and h̄ is the reduced Planck’s
constant. This results in a countable energy and momentum spectrum of freely moving particles in S3.
The maximal resolution of the possible momenta is given by the de Broglie wave length, λR = πR,
which is identical to the diameter of the manifold. The corresponding covariant position operators
are defined in terms of geodesic normal coordinates, and the associated commutator relations of
position and momentum are established.

Keywords: generalized uncertainty principle; curved spacetime; extended uncertainty principle;
quantization in curved space

1. Introduction

Every generalization of the ordinary momentum operator in quantum mechanics to
intrinsically curved manifolds strongly depends on the assumptions that are supposed to
be established. Those assumptions are mostly based on the rules of quantum mechanics in
Cartesian coordinates of the flat Euclidean space.

Let M be an n-dimensional smooth Riemannian manifold with metric g (occasionally
denoted by 〈·, ·〉). At every point p ∈ M, smooth manifolds admit a tangent space, Tp M,
which is an n-dimensional real vector space. For every smooth function f on M, consider
the action of differential form, d f . Since d f is a map on tangential space Tp M at point
p ∈ M, the gradient of f is defined, such that

d f (v) = 〈v, grad f 〉 (1)

for every smooth vector field v ∈ Tp M. From this definition, one can obtain the formal
expression of the gradient vector field by

grad f = (grad f )k∂k (2)

with contravariant components (grad f )i = gik∂k f , where gik are components of the inverse
metric g, {∂k} is the natural basis of Tp M, and the Latin letters denote the space indexes,
k = 1, 2, · · · , n. With this notation, the traditional momentum operator of Euclidean space
in Cartesian coordinates is given by covariant components, p̂k f = −ih̄(grad f )k, which are
commonly written as

p̂k = −ih̄∂k (3)
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in physics textbooks; here, h̄ is the reduced Planck’s constant. Following De Witt [1,2], for
intrinsically curved manifolds, one can obtain more general momentum operators that also
satisfy the canonical commutation relations:[

x̂j, p̂k

]
= ih̄δ

j
k, (4)[

p̂j, p̂k
]

=
[
x̂j, x̂k

]
= 0. (5)

This yields an enhanced quantization rule

p̂k = −ih̄
(

∂k + Γj
jk(x)

)
, (6)

where the curvature of the manifold is reflected by the contracted Christoffel symbols
Γj

jk(x). Compared to the Cartesian quantization rule in Euclidean space (3), the ordinary
partial derivative is replaced by the definition (6). An advantage of this quantization
rule is its applicability to a wide range of curved spaces and the validity of the canonical
commutator relations. However, in order to set up a quantum Hamiltonian, one has to
keep in mind that there is no unique prescription to quantize the classical curved space
Hamilton function. This is because of operator orderings of the kinetic energy term result
in different, inequivalent quantum corrections, such that the correct Hamiltonian can only
be confirmed empirically.

On the other hand, a particular property that is, in a sense, self-evident for the Cartesian
case is that the partial derivatives ∂k of the momentum representation in Equation (3) can be
understood as orthonormal Killing vectors whose isometries are “translations” in Euclidean
space. Strictly speaking, the integral curves of this Killing vectors (called Killing trajectories)
are geodesics, especially for a particle moving in a force-free surrounding. If this idea is
generalized, for instance, to a freely moving particle on the 3-sphere of radius R, then it
is already known that the (geodesic) Killing trajectories are the greater circles. Hence, the
structural coefficients of the underlying Lie algebra are proportional to the fraction h̄/R and
thereby different from zero; one is compelled to relax the form of canonical commutator
relations (4) and (5).

One of the first attempts in this direction was proposed by Segal [3], and later de-
veloped by Śniatycki [4], Doebner, Tolar, and Nattermann [5,6]. Without going into any
detail (a review can be found in Ref. [7]), a generalized momentum operator is obtained by
projection onto a given smooth vector field X on M according to

PX = −ih̄
(
∇X +

1
2

divX
)

, (7)

where divX is the covariant divergence of vector field X. A straightforward computation
(that is here omitted) yields the general commutation relation,

[PX , PY ] = −ih̄P
[X,Y] , (8)

where [X, Y] denotes the commutator of two vector fields X and Y in the usual sense of the
theory of manifolds [3]. In the case of a linear manifold, this vanishes for two infinitesimal
translations, and Equation (8) specializes to the commutativity of the conventional linear
momenta.

Apparently, operator (6) of De Witt can be recovered for vector fields X of the special
form Xk = ∂k, with Γj

jk = ∂k log
√

g ≡ Γk. However, that means divXk = Γk 6= 0,
such that the vector fields Xk cannot be Killing vectors if the underlying manifold is
intrinsically curved.

The paper is organized as follows. In Section 2, the question of the hermiticity of
momentum operators (7) is discussed. This draws attention to the special importance of
Killing frame fields. A classification of manifolds with such a structure and the correspond-
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ing Lie algebra are discussed in Section 3. Possible examples S1, S3, and S7 are considered
in Section 4. In Section 5, a covariant position operator on S3 is defined in terms of geodesic
normal coordinates and the associated commutator relations of position and momentum
are established. Lastly, a summary and outlook are given in Section 6.

2. Hermitian Momentum Operators

Let us consider the Hilbert space of square integrable complex functions L2(U, µ) on a
compact subset, U ⊆ M, with smooth boundary ∂U endowed by the inner product,

( f , g) =
∫

U
dµ f ∗g, f , g ∈ L2(U, µ), (9)

where µ is the standard volume measure on U ⊆ M. The statement that momentum
operators are Hermitian with respect to an inner product is typically based on the assump-
tion that the boundary terms vanish after partial integration. Indeed, one cannot define a
momentum operator on a bounded domain without specifying boundary conditions. In
mathematical terms, choosing the boundary conditions amounts to choosing an appro-
priate domain for the operator. If one uses no boundary conditions, too many functions
are eigenvectors, so the spectrum of PX is the whole complex plane. On the other hand, if
Dirichlet boundary conditions are imposed, the situation is too restrictive, and one cannot
find an orthonormal basis. Thus, if functions f ∈ L2(U, µ) are smooth on U, but constant
functions at ∂U, finding a domain such that PX is self-adjoint is a compromise to obtain
an orthonormal basis of countable spectrum. In what follows, the focus is on the Hilbert
spacesHU ⊂ L2(M, µ), with

HU =
{

f ∈ C1(U) : f |∂U = const.
}

(10)

At this point, one must check whether momentum operator (7) still remains Hermitian
because the elements inHU are not supposed to vanish at the boundary.

Proposition 1. Let X be a smooth and divergenceless vector field on U ⊆ M. Then, PX is Hermitian
onHU .

Proof. Let f , h ∈ HU . The divergence of product f X can be written as

div( f X) = f div(X) +∇x f . (11)

On the other hand, one has the decomposition

h∗∇x f = 〈h∗X, grad f 〉
= div( f h∗X)− f div(h∗X). (12)

This equation can be integrated with respect to the volume form dµ on U as follows:

(h,∇x f ) = −
∫

U
dµ f div(h∗X)

+
∫

∂U
dµ∂ f h∗〈X, ν〉. (13)

Here, Stokes’ theorem is applied, where dµ∂ is the volume measure with respect to the
boundary ∂U and ν is the non-negative outward normal on ∂U. Now, since f and h were
assumed to be constant at the boundary of U, they could be taken out of the integration
in (13), and one can apply Stokes’ theorem once more, such that the remaining boundary
integral on the right-hand side in (13) becomes∫

∂U
dµ∂〈X, ν〉 =

∫
U

dµdivX. (14)
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With the assumption divX = 0, it follows

(h,∇x f ) = −
∫

U
dµ f div(h∗X). (15)

Finally, Equation (11) is applied and one gets

(h,∇x f ) + (∇xh, f ) =−
∫

U
dµh∗f div(X). (16)

The term on the right-hand side can be absorbed into each term on the left-hand
side with a prefactor 1/2. By multiplication of the equation with −ih̄, and after applying
definition (7), one lastly obtains

(h, Px f ) = (Pxh, f ) (17)

for all f , h ∈ HU .

At this point, to emphasise is that the boundary term in Equation (14) is not necessarily
zero under more general conditions. This renders the divergence criterion of the vector
field X necessary to ensure hermiticity. The possible manifolds that are available under
these circumstances are discussed in the next Section.

3. Geodesic Momentum Operators

The classification of manifolds that are compatible to the conditions of Proposition 1
can be described with the following definition of Killing frames:

Definition 1. (Killing frame) [8]. A Riemannian manifold M has the Killing property if, in some
neighborhood of each point of M, there exists an orthonormal frame, X1, ..., Xn, such that each
Xi, i = 1, ..., n is a Killing vector field (local infinitesimal isometry). Such a frame is called a
Killing frame.

Since any linear combination with constant coefficients of Killing vector fields is again
a Killing vector field, a manifold has the Killing property if and only if it is always possible
to find frames consisting of Killing vector fields, such that 〈Xi, Xj〉 = const for each choice
of i and j. The normality condition of the definition implies that the integral curves of
the isometries are geodesics, since a necessary and sufficient condition for this is that the
Killing vector fields have constant length ([9], p. 349; [10], p. 50).

For instance, let x, y and r, ϕ denote Cartesian and polar coordinates on the Euclidean
plane R2 endowed with Euclidean metric. Then, the Killing vector fields corresponding
to translations and rotations are X1 = ∂x, X2 = ∂y and X3 = ∂ϕ. Their squared vector
norms are X2

1 = 1, X2
2 = 1 and X2

3 = r2. Killing vector fields X1 and X2 had a constant
length on the whole plane. Their trajectories are straight lines, which are geodesics. The
Killing trajectories corresponding to rotations X3 are concentric circles around the origin.
The length of X3 is constant along the circles, but nonconstant on the whole plane. The
corresponding Killing trajectories are circles that are not geodesics [11].

In the context given so far, one comes to the following.

Definition 2. (Momentum operator).
Let M be an n-dimensional Riemannian manifold with Killing frame X1, ..., Xn on M. The set

of operators defined by

PXk
= −ih̄Xk, (18)

k = 1, ..., n, are called (geodesic) momentum operators in the direction Xk on M.
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This definition is compatible with Equation (7), since every Killing vector field Xi is a
priori divergenceless, i.e., divXi = 0, i = 1, ..., n. Moreover, the Lie bracket of two Killing
fields is still a Killing field. The momentum operators (18) thus form a Lie subalgebra of
vector fields on M. If M is a complete manifold, this is the Lie algebra of the translation
group. In this case, the commutation relations of the Killing vector fields are given by

[Xi, Xj] = ck
ijXk , (19)

where structural coefficients, ck
ij, express the multiplication of pairs of vectors as a linear

combination. The corresponding commutator relations of the momenta are obtained by
multiplication with the physical units (−ih̄)2 on both sides of Equation (19) and subse-
quently applying the definition (18), i.e.,

[PXi
, PXj

] = −ih̄ck
ijPXk

, (20)

which is compatible with the general expression (8). The associated Casimir element of this
Lie algebra is given by [8]:

Proposition 2. Let M be an n-dimensional manifold and X1, ..., Xn be a Killing frame on M. There
is a decomposition of the Laplace–Beltrami operator, such that

n

∑
j=1

P2
Xj

= −h̄2∆. (21)

Proof. Vector fields, Xj, can be expressed as a linear combination of the coordinate vector
fields, ∂α = ∂/∂xα, with the Greek letters denoting indices of the local chart, such that

Xi = ξα
i ∂α , (22)

where each ξα
i is a function. For every smooth f on M, one can write

∑
j

X2
j f = ∂α(gαβ∂β f )− δij(∂αξα

i )ξ
β
j ∂β f , (23)

which was obtained by the product rule of differentiation. On the other hand, the Laplace–
Beltrami operator in the natural frame is

∆ f = ∂α(gαβ∂β f ) +
1
√

g
(
√

g),α gαβ∂β f . (24)

Now, it follows that expression (23) is equal to Equation (24) for every f if it can be
shown that

1
√

g
(
√

g),α gαβ + δij(∂αξα
i )ξ

β
j = 0. (25)

Using the basic property,∇g = 0, of the Levi-Civita connection together with δijξα
i ξ

β
j =

gαβ, one obtains the following condition:

δij(∇Xi
ξα

j ) = 0. (26)
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This identity can be confirmed as follows:

0 = ∇
∂l

glk

= δij∇
∂l
(ξ l

i ξ
k
j )

= δij
(

divXiξ
k
j +∇Xi

ξk
j

)
= δij∇Xi

ξk
j (27)

and thus,

∑
j

X2
j f = ∆ f . (28)

With Definition (18), in physical units, one obtains statement (21).

According to this decomposition of the covariant Laplacian, there is no ambiguity con-
cerning operator orderings of the kinetic energy term. Decomposition (21) is independent
of the particular choice of the orthonormal basis [12]. Moreover, the commutator of ∆ with
the elements Xj of Lie algebra (19) is given by

[Xj, ∆] = 0. (29)

From a mathematical point of view, the Casimir element has a meaning only for the
theory of representations, but not as an element of the Lie algebra, since the product in
Equation (21) is not defined for the algebra itself. However, from linear algebra we know
that the eigenvectors of a linear operator always form a basis for the vector space in ques-
tion. In addition, for any Lie group, one or more of the generators can be simultaneously
diagonalized using similarity transformations. The set of generators that can be diagonal-
ized simultaneously are called Cartan generators. Thus, a suggestive and particularly easy
basis for the vector space of each representation is given by the eigenvectors of the Cartan
generators (see below).

The scope of the concept given so far asks for a mathematical classification of manifolds
with Killing property. A Riemannian manifold having the Killing property must be locally
symmetric [8]. Thus, each point of a connected Riemannian manifold having the Killing
property has an open neighbourhood that is isometric to an open neighbourhood in a
simply connected Riemannian symmetric space M. Then, M also has the Killing property
and global Killing frames. Actually, a local Killing frame exists on M because of the given
local isometry and can be extended uniquely to give a global Killing frame. The extension
of each Killing vector field to a global Killing vector field is possible since the symmetry
implies completeness. This extension remains orthonormal, since the Riemannian structure
on M is subordinate to a real analytic Riemannian structure (cf. [13], p. 240; [14], p. 187).
A simply connected Riemannian symmetric space is said to be irreducible if it is not the
product of two or more Riemannian symmetric spaces. It can then be shown that any simply
connected Riemannian symmetric space is a Riemannian product of irreducible ones.

Therefore, the calculations furthermore are restricted to the irreducible, simply con-
nected Riemannian symmetric spaces. Any simply connected Riemannian symmetric space
M is of one of the following three types: (i) Euclidean type: M has a vanishing curvature
and is thereby isometric to a Euclidean space. (ii) Compact type: M has a non-negative (but
not identically zero) sectional curvature. (iii) Noncompact type: M has a nonpositive (but
not identically zero) sectional curvature. Strictly negatively curved manifolds imply that
there are no nontrivial (real valued) orthonormal Killing fields.

Manifolds of constant positive curvature [8] have the Killing property only if the
dimension of M is equal to 1, 3, or 7. For the spheres S1, S3 and S7, actually, there is a global
Killing frame. The construction depends essentially on the existence of a multiplication in
R2 (complex numbers), R4 (quaternions), and R8 (Cayley numbers).
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4. Applications

From the discussion of the previous Section and the particular role of Killing frames,
it is straightforward to consider the designated cases of constant curvature manifolds S1,
S3 and S7 in more detail. Let us begin with the "trivial" case S1.

4.1. Circle

For the circle, one can take X1 to be the unit tangent vector field pointing, say, in the
counterclockwise direction. More precisely, consider the situation of a compact subset
M ⊂ S1 embedded in R2. The general solution of the Killing equation LX1 g = 0 on S1,
with metric ds2 = ρ2dϕ2 is given by X1 = ξϕ∂ϕ, for ξϕ ∈ R. Let ξ ϕ = 1/ρ, where ρ is the
constant (hyper-)radius of the circle; then, we have X2

1 = 1, and the Killing trajectory is a
geodesic. The associated momentum operator is

Pϕ = −ih̄
1
ρ

∂

∂ϕ
. (30)

This operator is symmetric on any compact set M ⊂ S1, with f = const. on the
boundary. In Ref. [15], it is reported that, in quantum mechanics on a circle with stan-
dard commutation relation for ϕ and pϕ, the uncertainty relation cannot be stronger than
σpσϕ ≥ 0, where σϕ and σp are the standard deviations of position and momentum. Indeed,
this inequality is not informative at all, since a product of two nonnegative values cannot be
negative. Alternatively, one is referred to the approach in Ref. [16], which is not affected by
difficulties arising in defining a proper measure of position uncertainty on manifolds men-
tioned in Ref. [17]. By applying the substitution r = ρϕ that corresponds to the arc-length
on S1, the uncertainty principle of Ref. [16] is given by

σp∆r ≥ πh̄, (31)

where ∆r is the measure (length) of a compact domain on S1.
Before turning over to the case of S3, let us briefly mention that indeed each single

component, L1, L2, and L3 of the ordinary textbook angular momentum operator L is a
Killing vector on S2 and moreover, L2 = L2

1 + L2
2 + L2

3 actually corresponds to the Laplace–
Beltrami operator on S2. Although this seems quite promising, these vector fields are not
normalizable. All vector fields on the 2-sphere are actually inappropriate for this purpose
because of the hairy-ball theorem of differential topology that states that there is generally
no nonvanishing continuous tangent vector field on even-dimensional n-spheres. This
hinders thinking about what kind of vector fields should be appropriate for an adequate
description of momentum operators on S2. The discussion in the literature regarding
which momentum operators on S2 might be considered to be appropriate extends up to the
present day.

4.2. 3-Sphere

The 3-sphere of radius R > 0 can be understood as the three-dimensional hypersurface
in the four-dimensional Euclidean space. This can be naturally described by the standard
spherical coordinates of R4 given by [18]

x1 = R cos χ,

x2 = R sin χ cos θ,

x3 = R sin χ sin θ cos ϕ,

x4 = R sin χ sin θ sin ϕ.
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In order to cover all points of the 3-sphere with both positive and negative values of
the coordinates xi, it is necessary that 0 ≤ χ, θ ≤ π, 0 ≤ ϕ < 2π. In these coordinates, the
metric of S3 takes the form:

ds2 = R2(dχ2 + sin2χ(dθ2 + sin2θdϕ2)
)
. (32)

The corresponding Killing equation is solved for the unit sphere (R = 1) and the
following orthonormal Killing frame is selected :

X1 = sin θ cos ϕ∂χ (33)

+ (cot χ cos θ cos ϕ− sin ϕ)∂θ

− (cot χ csc θ sin ϕ + cot θ cos ϕ)∂ϕ,

X2 = sin θ sin ϕ∂χ (34)

+ (cot χ cos θ sin ϕ + cos ϕ)∂θ

+ (cot χ csc θ cos ϕ− cot θ sin ϕ)∂ϕ,

X3 = cos θ∂χ − cot χ sin θ∂θ + ∂ϕ. (35)

Case R 6= 1 can be obtained by dividing the right-hand side by R. The orthonormality
relation g(Xi, Xj) = δij is straightforwardly verified. The corresponding representation
in Cartesian coordinates, p = (x1, x2, x3, x4), of the Euclidean embedding space R4 is also
determined and given by

X1(p) = (−x4,−x3, x2, x1), (36)

X2(p) = ( x3,−x4,−x1, x2), (37)

X3(p) = (−x2, x1,−x4, x3), (38)

which satisfies Xi(p) ·Xj(p) = δij with respect to the Euclidean scalar product. One can also
check that the Lie algebra generated by {X1, X2, X3} is given by the following commutation
relations,

[Xi, Xj] = −
2
R

εijkXk, (39)

where εijk is the Levi-Civita symbol in three dimensions. In physical units, this can be
rewritten as

[PXi
, PXj

] =
2ih̄
R

εijkPXk
. (40)

The corresponding Hamilton operator, H, of a free particle is given by

H =
1

2m

3

∑
i=1

P2
Xi

= − h̄2

2m
∆, (41)

which is equal to the Casimir element of Proposition 2 in three dimensions. Thus, it
follows that

[H, PXi
] = 0 (42)

for i = 1, 2, and 3.
Alternative decompositions of the Laplacian in Equation (41) by using six (nonorthonor-

mal) Killing vector fields instead of three were proposed in Santander et al. [19]. One
essential point of the approach in Ref. [19] is that the structural coefficients of the associated
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commutator relations are not constants, such that the Hamiltonian cannot be considered
as a Casimir element of the operator algebra. This makes the analysis of the eigenvalues
and the corresponding eigenspaces quite complicated. There seems to be no reason why
one should regard a decomposition of the free Hamiltonian in terms of additional angular
momenta whose integral curves are not geodesics.

Another interesting approach is the momentum-space quantization of a particle mov-
ing on the SU(2) group manifold by Guerrero et al. [20]. Their algorithm also exhibits a
proper and unambiguous realization of the basic operators and of the Hamiltonian, which
also turns out to be the Laplace–Beltrami operator on S3. Although the right-invariant
generators (62) in Ref. [20] are different from the Killing frame fields Xi introduced above,
they are compatible with the algebra given in (39). However, the question whether the
generators in Ref. [20] also form a Killing frame was not explicitly discussed.

The eigenvalues of H can be obtained by the hyperspherical harmonics on S3, which
were discussed as part of investigations of a variety of gravitational physics problems in
spaces with the topology of the 3-sphere [21,22]. According to Ref. [22], these hyperspher-
ical harmonics on S3 are denoted by Ynlm. The integers n, l and m with n ≥ l ≥ 0 and
l ≥ m ≥ −l indicate the order of the harmonic. These harmonics are eigenfunctions of the
covariant Laplacian according to

∆Ynlm = −n(n + 2)
R2 Ynlm. (43)

The corresponding energy eigenvalues En of H are given by

En =
h̄2

2m
n(n + 2)

R2 . (44)

for n = 0, 1, ...
Now let us consider the corresponding eigenvalue spectrum of the momentum op-

erators. Although PXi
and H are commuting Hermitian operators, it is not necessarily

given that each eigenbasis of H is also an eigenbasis of PXi
. Indeed, most of the functions

Ynlm given in Equation (43) are not eigenfunctions of the momentum operator PX3
. A

simultaneous eigenbasis can be obtained by applying the standard textbook formalism, but
on the basis of the specific algebra given by Equation (40). Rather then working with the
operators PX1

and PX2
, it is convenient to work with the non-Hermitian linear combinations:

P± = PX1
± iPX2

, (45)

where by definition (P−)
† = P+ . Using (40) and (42), it is straightforward to show that

[P+ , P− ] = 4
h̄
R

PX3
, (46)[

PX3
, Pk
±

]
= ±2k

h̄
R

Pk
± (47)

for k = 0, 1, 2, . . . Certainly, one also has[
H, Pk

±

]
= 0. (48)

In order to obtain a simultaneous eigenbasis of H and PX3
for every fixed n ∈ N, let us

consider the set of orthogonal states {ψnk
± }

n
k=0 given by applying the "ladder" operators P±

according to

ψnk
± = Pk

±Ynn(∓n), (49)
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where k = 0, 1, ..., n. From this definition it follows that P∓ψn0
± = 0. By applying the

general commutator rule (47), all of these states are eigenstates of the momentum operator,
such that

PX3
ψnk
± = ±pnkψnk

± , (50)

pnk = (k− n
2
)

2h̄
R

(51)

for k = 0, 1, ..., n. The physical interpretation becomes straightforward by recalling that the
diameter of the 3-sphere is, by definition, the maximal possible geodesic distance (πR) be-
tween two points on S3. If one applies the original definition of Planck’s constant h̄ = h/2π,
the maximal resolution ∆pnk = pnk+1 − pnk of the possible momenta in Equation (51) is
given by

∆pnk =
h

πR
. (52)

This unit of momentum corresponds to the de Broglie wavelength,

λR = πR, (53)

which is identical to the diameter of the manifold. It is hard to think of higher resolutions
than this.

On the other hand, the energy eigenvalues can be verified by applying commuta-
tor (48), such that we obtain the following eigenvalue equations:

Hψnk
± = Enψnk

± , (54)

where En is given in Equation (44). For numerical purposes, it is helpful to know the explicit
form of the initial functions ψn0

± , which are given by

ψn0
± = Cn sinnχ sinnθe∓inϕ, (55)

and the normalization constant is

Cn =

√
22n−1(n + 1)

π

n!(2n− 1)!!
(2n)!

. (56)

The representation of operators PX1
and PX2

can be obtained by inverting relation (45)
in order to express them in terms of the ladder operators. This completes the brief analysis
of momentum operators on S3.

4.3. 7-Sphere

Physical applications involving higher-dimensional spheres can be found almost
exclusively in the context of N = 1 supergravity in 11 dimensions, which is beyond
the scope of this study. Therefore, let us discuss (for information only) some aspects
regarding the approach given so far. The sphere S7, considered to be a Riemannian
manifold embedded in R8 in the usual way, is also designated to have the Killing property.
Explicitly, writing points p in R8 as column vectors and identifying the tangent spaces to S7

with hyperplanes, the vector fields Xi(p), for i = 1, ..., 7, are expressed in Table 1 below [8].
Since p · Xi(p) = 0 and Xi(p) · Xj(p) = δij, this gives a global orthonormal frame on S7,
which is also a Killing frame. If R4 is embedded in R8 as a subset x5 = x6 = x7 = x8 = 0,
the restrictions of X1, X2, X3 yield a Killing frame on S3 corresponding to the previous
Section (up to sign conventions).
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Table 1. Orthonormal Killing vector representation at point p on S7 embedded in R8.

p X1(p) X2(p) X3(p) X4(p) X5(p) X6(p) X7(p)

x1 x2 x3 x4 x5 x6 x7 x8

x2 −x1 −x4 x3 −x6 x5 −x8 x7

x3 x4 −x1 −x2 −x7 x8 x5 −x6

x4 −x3 x2 −x1 x8 x7 −x6 −x5

x5 x6 x7 −x8 −x1 −x2 −x3 x4

x6 −x5 −x8 −x7 x2 −x1 x4 x3

x7 x8 −x5 x6 x3 −x4 −x1 −x2

x8 −x7 x6 x5 −x4 −x3 x2 −x1

According to this representation, the Killing vector fields Xi of the frame bundle
and their associated momentum operators PXi

on S7 can be well expressed in terms of
hyperspherical coordinates. Moreover, the calculation of eigenvectors and eigenvalues of
the corresponding Laplace–Beltrami operator on S7 is straightforward and can be obtained
by projecting harmonic fields in Euclidean R8 onto the unit sphere.

5. Covariant Position Operator on S3

Lastly, some remarks concerning the notion of position operators. Segal defines [3] the
position operator Q as follows: if f is a general function on M, then Qf is defined as the
operation of multiplication by f . For real f , g, operators Qf and Qg are Hermitian, such that
there is no difficulty in verifying the commutation relations:[

Q f , PX

]
= ih̄QXf , (57)[

Q f , Qg

]
= 0. (58)

In order to define a covariant position operator on S3, it is straight to consider the
notion of geodesic distance. Since no point of S3 is particularly distinguished, without
loss of generality, the origin in hyperspherical coordinates is chosen by the "North Pole"
p = (R, 0, 0, 0) ∈ R4. Geodesic normal coordinates, q = (q1, q2, q3), around this origin are
such that every element of S3 can be reached by the exponential map

expp : TpS3 −→ S3; (59)

expp(X) = p cos
( s

R
)
+ R sin

( s
R
) X(p)
||X(p)|| , (60)

with X = qiXi ∈ TpS3 and the geodesic distance function,

s : q −→ s = ||q||, (61)

where || · || is the Euclidean norm in TpS3. Let

Xq = q̂kXk (62)

be the corresponding tangent vector field in the unit direction, q̂ = q/s. Then, applying the
smooth transition map from the hyperspherical chart to geodesic coordinates,

q1 = Rχ sin θ cos ϕ,

q2 = Rχ sin θ sin ϕ,

q3 = Rχ cos θ,
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it follows via straightforward computation that Xq can be expressed by

Xq =
∂

∂s
. (63)

Accordingly, a geodesic position operator on S3 is defined by Qs, and commutator (57)
can be expressed by

[Qs, PXq
] = ih̄. (64)

A covariant uncertainty relation of position and momentum that is compatible with
this approach and was applied to S3 can be found in Refs. [23,24]. A further generalization
to the case of S7 is also possible, but it is left to further considerations.

6. Summary and Outlook

The description of momentum operators by Killing vector fields is a long-established
concept in momentum-space quantization on differentiable manifolds. On the other hand,
from classical general relativity, the fundamental importance of geodesic trajectories as a
key concept of the theory is also known.

If one wishes to unify these two concepts together in the approach of momentum-
space quantization, this leads to the notion of Killing frames on manifolds. These special
frames are implicitly part of the classical Cartan formalism. However, the orthonormal
frame fields in the Cartan approach are usually not provided as Killing vector fields. A
fundamental principle in the Cartanian approach is to chose the moving frames most
suitable to the particular problem. Some consequences for the possible manifolds arising
from the additional Killing frame property were discussed.

The present study is mainly focused on irreducible, simply connected Riemannian
manifolds. However, many product manifolds can be constructed out of these irreducible
components which also possess the Killing frame property. A straightforward example
would be the temporally infinite but spatially finite case R× S3. A further generalization
is the case of 11-dimensional supergravity with R× S3 × S7. Such possibilities and the
extended analysis of the associated spin connections are the subject of further investigations.
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