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Abstract: Exactly soluble models can serve as excellent tools to explore conceptual issues in non-
perturbative quantum gravity. In perturbative approaches, it is only the two radiative modes of
the linearized gravitational field that are quantized. The goal of this investigation is to probe the
‘Coulombic’ aspects of quantum geometry that are governed entirely by matter sources. Since there are
no gravitational waves in three dimensions, 3-dimensional (3-d) gravity coupled to matter provides
an ideal arena for this task. The analysis presented here reveals novel aspects of quantum gravity that
bring out limitations of classical and semi-classical theories in unforeseen regimes: non-linearities of
general relativity can magnify small quantum fluctuations in the matter sector to large effects in the
gravitational sector. Finally, this analysis leads to thought experiments that bring out rather starkly
why understanding of the nature of physical reality depends sensitively on the theoretical lens with
which it is probed. As theories become richer, new scales emerge, triggering novel effects that could
not be imagined before. The model provides a concise realization of this well-known chain.

Keywords: non-perturbative quantum gravity; exactly soluble models; quantum nature of Coulombic
interaction; trans-Planckian frequencies

1. Introduction

This paper has several different motivations stemming from various aspects of quan-
tum gravity. A number of bold ideas have been put forward in 4-dimensional (4-d) quantum
gravity that appear to be plausible from one perspective but puzzling, and even unsettling,
from another. Exactly soluble models with local degrees of freedom (sometimes called
midi-superspace in the literature) can be used to examine these issues non-perturbatively.
Of course, one has to make simplifying assumptions to arrive at these models. Therefore,
one can miss important aspects of the full theory and has to exercise due caution in assess-
ing the conclusions reached. Nonetheless, these models can provide pointers and bring to
the forefront new conceptual issues in a crisp manner.

One such issue concerns the potential implications of ‘trans-Planckian modes’ asso-
ciated with extremely high frequency fields that arise, e.g., in the analysis of Hawking
radiation. Over the years, there have been suggestions that an adequate handling of these
modes may lead to novel physics by, e.g., having to abandon local Lorentz invariance (see,
e.g., [1]). Exactly soluble models provide a natural arena to analyze this issue. Models
discussed here, for example, have unforeseen effects induced by high frequency modes.
It is then natural to ask if they lead to a loss of local Lorentz invariance in the final non-
perturbative theory or if this symmetry is preserved by the new physics. Another example
comes from the widely held view that the usual counting of states in quantum field theory
becomes inadequate at high frequencies and the correct counting would lead to a holo-
graphic picture in which physics in the bulk is fully captured by states residing on the
boundary (see, e.g., [2–4] for early works and [5] for a recent review). Is this view supported
in exactly soluble models?

A third example comes from another commonly held view first introduced by Wheeler [6]
that there is a ‘space-time foam’ at the microscopic level because of the perpetual quantum
fluctuations of the gravitational field. In Wheeler’s paradigm, these fluctuations are to
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emerge as novel non-perturbative effects associated with the quantum nature of geometry,
rather than from the ultraviolet behavior of graviton-mediated interactions in perturbative
approaches. This view then leads one to visualize the ‘non-perturbative ground state’ of
full quantum gravity as having a very different micro-structure to that suggested by the
smooth, tame geometry of Minkowski space and the associated perturbative vacuum. Is
this idea borne out in exactly soluble models? If so, the standard positive energy theorem
of classical general relativity may not extend to non-perturbative quantum gravity; the
energy density in the ground state could well be Planck density with either sign. Is this
what happens?

Exactly soluble models can also be well-suited to probe an issue at the opposite corner
of the theory: semi-classical gravity. This is a mathematically well-defined theory in which
gravity/geometry is treated classically and matter fields quantum mechanically, and the
two are related by semi-classical Einstein’s equations in which the right-hand side is pro-
vided by the expectation value of stress-energy of quantum matter. It is generally assumed
that the theory would provide a good approximation to the predictions of quantum gravity
so long as the space-time curvature is low compared to the Planck scale. Exactly soluble
models can shed light on the validity of this conjecture. Can one arrive at this theory from
full quantum gravity in the appropriate regime? Are there potential surprises about its
domain of validity?

Another motivation for this work comes from the ongoing debate on whether quantum
matter can genuinely inject quantum information into the gravitational field or if it is only
the radiative, or ‘true’, degrees of the gravitational field that are quantum mechanical (see,
e.g., [7–10]). The soluble models discussed here can be thought of as three-dimensional
general relativity coupled to the Maxwell (or Klein–Gordon) fields. The three-dimensional
viewpoint provides a conceptually clean arena to probe this issue since the gravitational
field is now completely determined by matter; there are no gravitons (or gravitational
waves) in three dimensions. Nonetheless, quantum geometry does exhibit specific and
quintessentially quantum features. In fact, the nonlinear coupling between matter and grav-
ity can magnify small quantum fluctuations in the matter sector to large quantum effects in
space-time geometry, leading to consequences that could not have been foreseen classically.

Finally, these soluble models also suggest a thought experiment that yields more
general conceptual insights. The understanding of physical reality is deeply influenced
by the theoretical paradigm one chooses to work in. Indeed, possibilities envisaged and
experiments designed to test subsequent hypotheses are dictated in this paradigm. For the
specific models we discuss, two constants of nature play a fundamental role: Planck’s
constant, h̄, which dictates the size of quantum effects, and Newton’s constant, G, which
governs gravitational phenomena. We will find that ‘switching them on and off’ results in
drastic changes in our understanding of the underlying physical reality.

The material is organized as follows. Section 2 discusses the classical ‘midi-superspace
models’ and, Section 3, the unforeseen quantum gravity effects in these models. Section 4
summarizes the main results and puts them in a broader context. The key mathematical
results presented here were summarized in a letter [11] quite some time ago. The current
paper provides detailed derivations that have been been circulated only in private commu-
nications so far and examines the results from different angles, putting them in a broader
conceptual perspective. Since significant time has lapsed, the paper also discusses related
results in other that have appeared since (in particular, in [7–10,12–18]) as well as the above
mentioned thought experiment, which has not appeared in the literature.

In the main discussion, 2 + 1 dimensional general relativity coupled with a scalar or
Maxwell field is used. Space-time metric gab has the signature (−,+,+) and its derivative
operator is denoted by ∇, its Riemann tensor is defined by Rabc

dkd = 2∇[a∇b]kc, its Ricci
tensor by Rac = Rabc

b, its scalar curvature by R = gac Rac, and its Einstein tensor by
Gab. We set c = 1 but display the dependence of various quantities on G and h̄. For the
convenience of the reader, let us note that, in 3-d, Newton’s constant has dimensions
[G] ∼ M−1. Therefore, unlike in 4-d general relativity, there is a natural mass scale in the
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classical theory. However, one cannot associate a given mass M◦ with a length; there is no
notion of ‘Schwarzschild radius’ of M◦. It is also helpful to keep in mind the differences
that arise in quantum gravity from the more familiar 4-d situation. While there is a natural
notion of Planck length ([h̄G] ∼ L) and, therefore, of Planck frequency, there is no notion
of Planck mass that would be relevant to quantum gravity. Section 2 briefly discusses how
the 3-d models considered here arise from a symmetry reduction of 4-d general relativity,
à la Kaluza–Klein. There, the 4-dimensional fields explicitly carry a prefix of 4.

2. Exactly Soluble Models

In this Section, we first recall the model of primary interest, and then briefly discuss
other similar models that have been considered in the literature. These are often referred to
as ‘midi-superspace models’ because they result from a symmetry reduction of 4-d general
relativity but have an infinite number of true degrees of freedom (in contradistinction
with the ‘mini-superspace’ of homogeneous cosmological models, which have only a finite
number of degrees of freedom). While these models and their structure has been discussed
in the literature, their salient features are reviewed here because the paper is intended for a
broad audience. This discussion also enables us to fix the notation used.

As mentioned above, in most of this paper, we work primarily in three space-time
dimensions and with the signature (−,+,+). Let us denote this space-time by (M, gab). M
is assumed to be topologically R3 and the metric gab to be asymptotically flat both at null
and spatial infinity in the sense of Refs. [17–19], respectively. Matter fields are taken to
be either Maxwell fields, Fab or Klein–Gordon fields, Φ. In 3-d, there is a well-known
duality between the two. Maxwell’s equations imply that Fab satisfies Maxwell’s equations
if and only if its the dual ?Fa := 1

2 εa
bcFbc is exact, i.e., ?Fa =: ∇aΦ, where Φ satisfies the

Klein–Gordon equation, ∇a∇bΦ = 0, and εa
bc is the totally anti-symmetric, non-degerate

tensor field, defined by gab. (Here, the fact that the topology of M is trivial has been used.)
Interestingly, the dictionary ?Fa := ∇aΦ translates the Maxwell stress-energy tensor, TMax

ab ,
to the Klein–Gordon stress-energy, TKG

ab :

TMax
ab ≡ Fa

m Fbm −
1
4

gab FmnFmn = ?Fa
?Fb −

1
2
?Fm?Fm gab

= ∇aΦ∇bΦ− 1
2
∇mΦ∇mΦ gab ≡ TKG

ab . (1)

Therefore, the pair (gab, Φ) satisfies the coupled Klein–Gordon and Einstein’s equa-
tions if and only if the pair (gab, Fab) satisfies the Einstein–Maxwell equations. For nota-
tional simplicity, we work with a Klein–Gordon field Φ in calculations. However, conceptu-
ally, it is often more convenient to regard the source as a Maxwell field Fab and its quantum
excitations as photons.

Thus, the Klein–Gordon field Φ and the space-time metric satisfy the following coupled
set of equations:

�Φ = 0 and Gab = 8πG Tab ⇔ Rab = 8πG∇a∇bΦ . (2)

Hamiltonian analysis of this system has also been carried out in some detail else-
where [20]. However, because Equations (2) are rather complicated partial differential
equations, one still does not have good control on the detailed properties of their solutions.
However, it is known that equations simplify greatly if one restricts oneself to the axisym-
metric sector of this system consisting of solutions, in which gab admits a rotational Killing
field, ∂θ∂/∂θ, with a regular axis, and Φ is Lie-dragged by the Killing field. Then, one can
cast the space-time metric in the form

gab dxa dxb = eGΓ(R,T) (dT2 + dR2) + R2dθ2 , (3)

where T ∈ (−∞, ∞) and 0 ≤ R < ∞. The chart is unique up to the transformation
T → T + const, and, by inspection, R is the norm of the rotational Killing field. Note
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that if the metric coefficient, Γ(R, T) = 0, the metric becomes the Minkowski metric, g◦ab.
The second consequence of the assumption of axisymmetry is technically more powerful:
it is straightforward to check that a scalar field Φ satisfies the Klein–Gordon equation,
�Φ = 0, with respect to the metric gab if and only if it satisfies �̊Φ = 0 with respect
to the Minkowski metric g◦ab where �̊ is the d’Alembertian defined by the Minkowski
metric g◦ab. Therefore, the two equations in Equation (2) now decouple: one can just solve
the wave equation �̊Φ = 0 in Minkowski space, obtain a solution Φ, and then use it in
Rab = 8πG∇aΦ∇bΦ to determine the only unknown Γ(R, T) in the metric physical gab.
The final simplification is that this last equation can be readily solved to obtain

Γ(R, T) =
1
2

∫ R

0
dR̄ R̄ [ (∂TΦ)2 + (∂R̄Φ)2 ](R̄, T) . (4)

Note that the right side has a straightforward interpretation: it is just the energy of the
scalar field Φ with respect to the Minkowski metric on a disc of radius R at time T. Therefore,
in the axisymmetric case, there is a large class of asymptotically flat solutions on which one
has excellent control [17,18]. This is our midi-superspace.

To summarize, in the midi-superspace of interest, to solve field Equation (2), one
only needs an axisymmetric solution Φ(R, T) to the Klein–Gordon equation in Minkowski
space-time, (M, g◦ab). Given Φ, one can just write down the metric of Equation (3) such that
the pair (gab, Φ) solves the coupled Einstein–Klein–Gordon equations. This is the general
solution in the axisymmetric sector of 3-d gravity coupled to a Klein–Gordon (or Maxwell)
field. Finally, recall that a general solution, Φ of �̊Φ = 0 can be readily constructed by going
to the frequency domain: it is given as an expansion on the basis f+ω (R, T) := J0(ωR)e−iωT

of positive frequency solutions, where J0 is the zeroth order Bessel function of first kind:

Φ(R, T) =
∫ ∞

0
dω
[
φ(ω) f+ω (R, T) + φ̄(ω) ¯f+ω(R, T)

]
. (5)

This is the precise sense, in which the midi-superspace under consideration is an exactly
soluble sector of 3-d gravity (and, as discussed below, also of 4-d vacuum gravity). For each
choice of a regular function φ(ω), one obtains a solution Φ(R, T) to �̊Φ = 0, which then
determines the only unknown coefficient Γ(R, T) in the metric (3) such that (Φ, gab) satisfy
the coupled Einstein–Klein–Gordon system (2). This is a midi-superspace because the
system has one local degree of freedom that is neatly coded in the function φ(ω) in the
above formulation.

To make the conceptual considerations sharper, it is often convenient to focus on
solutions, in which Φ(R, T) has initial data of compact support on a Cauchy slice (although
this restriction can be relaxed by allowing the much milder fall-off specified in [19]). It then
follows that the Φ(R, T) vanishes outside some radius R = R◦(T) for each T. Denote by
M′ the complement of the support of the given solution Φ. In the region M′, one has

Γ(R, T) =
1
2

∫ ∞

0
dR R [(∂TΦ)2 + (∂RΦ)2](R, T)

=
∫ ∞

0
dω ω |φ(ω)|2 =: H◦(φ) , (6)

where, in the first step, the initial integral over the interval R ∈ (0, R◦(T)) could be
extended to that on R ∈ (0, ∞) because Φ(R, T) vanishes for R > R◦(T). Note that H◦(φ)
is a constant because it equals the total, conserved energy of the solution Φ with respect
to the Minkowski metric, g◦ab; H◦(φ) is independent of T. Therefore, on M′, the metric
assumes the form,

gab dxa dxb |M′ = eGH◦ (dT2 + dR2) + R2dθ2 , (7)
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showing that the metric gab is flat in this region. This also follows more directly from the fact
that the Ricci tensor Rab vanishes in the absence of sources and, in 3-d, Rabcd is determined
entirely by Rab. However, unless H◦ = 0—i.e., unless Φ vanishes identically—the physical
metric gab is not globally flat. Also, although it is smooth everywhere on all of M, it has a
‘conical structure with a deficit angle’ in M′. Note also that gab admits a time translation
Killing vector ∂/∂T on M′, in addition to the rotational Killing vector. The solution is
asymptotically flat both at spatial and null infinity [17–19].

Hamiltonian analysis of this midi-superspace [19,21] reveals a striking result: The
Hamiltonian H(g, Φ), i.e., the generator of the asymptotic time translation for the full
system, is not the energy H◦(φ) of the Klein–Gordon field in Minkowski space but is
non-polynomially related to it:

H(g, Φ) =
1

4G
(
1− e−4GH◦(φ)

)
. (8)

This is the physical energy of the system in the Einstein–Klein–Gordon theory; as with the
Arnowitt–Deser–Misner (ADM) energy in 4-d, it includes all contributions, including those
from gravity. (While the Hamiltonian analysis refers to spatial infinity, H is also the past
limit of the Bondi energy at null infinity [17].) H is manifestly positive and, in striking
contrast to H◦, it is bounded from above. This property is genuinely non-perturbative: if one
were to expand H in powers of G, to the leading order G 0, one would obtain H◦; if one
truncates the series to any finite order, the expression would again be unbounded from
above. It is only when one sums all the terms that one finds that H is bounded. For a
flat conic space-time, this result was obtained by Henneaux already in 1983 [22] and for
geometries sourced by N point particles, by Deser, Jackiw, and ’t Hooft [23] in 1984. But
note that positivity and boundedness of H is a general result in 3-d general relativity, so
long as the matter satisfies the positive energy condition, Tab ta

1 tb
2 ≥ 0, for all time-like

vectors ta
1, ta

2 [19]. Finally, note that the non-perturbative form (8) is possible because the
3-d Newton’s constant has physical dimensions of inverse mass.

In 4-d gravity, the ADM or the Bondi energy is expressible as a 2-surface ‘charge-
integral’ at infinity that involves only geometrical/gravitational fields. In the 3-d case, the
expression (8) of energy, on the other hand, involves H◦, which is a bulk integral involving
just the matter fields. However, since it measures the deficit angle of the metric gab in M′, it
has a geometric interpretation (see [23] for geometries sourced by point particles). Moreover,
as explained below, it can also be expressed as a line integral involving only geometry. Since
the isometry group in the tangent space of any point of (M, gab) is the 3-d Lorentz group,
there is a natural notion of SU(1, 1) spinors, λA, where the capital Latin letters indexes,
e.g., A, B, . . . , refer to the 2-dimensional spin space. Parallel transporting any λA at a point
p ∈ M along a closed curve (C) starting and ending at p yields another spinor λ′A at p,
related to the original λA via λ′A = U(C)

A
B (p) λB, where U(C)

A
B (p) is an SU(1, 1) rotation.

Now, the trace, Tr U(C) = U(C)
A

A(p), is independent of the choice of point p on the curve.
Furthermore, since the curvature of gab vanishes in M′, Tr U(C) is also independent of the
choice of the curve (C) that lies entirely in M′. Let us restrict to such curves. Then, the trace
is a function only of the total energy H(g, Φ) of the following system:

Tr U(C)(g) = 2 cos
[πH(g, φ)

4G

]
. (9)

Consequently, there is an elementary thought experiment that one can make in the asymp-
totic region to determine H and, therefore, also the metric coefficient, gRR (or GTT), in the
source-free region M′: transport particles with spin 1

2 around any closed loop C in M′,
measure the SU(1, 1) rotation UC(p) they undergo, and take the trace. Since Φ vanishes on
M′, this experiment can be carried out without reference to matter fields. This experiment will
be used again in Section 4.

Finally, there is another striking feature of 3-d gravity: the absence of gravitational
collapse leading to the formation of black holes. This is related to a fact noted above: in
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3-d, there is no analog of the Schwarzschild radius associated with a given mass M◦. In the
midi-superspace considered here, this feature is seen in detail: for regular initial data for Φ
(e.g., of compact support), no matter how densely one packs the scalar field is packed, one
obtains a non-singular solution gab on all of M = R3 without any horizons.

Let us conclude with a number of remarks addressed primarily to the general relativ-
ity community.

Remarks

1. An important difference in the asymptotic structure of 4-d and 3-d gravity is the
following. In 4-d, one can and does ask that all physical metrics gab of interest approach a
fixed Minkowski metric g◦ab asymptotically and the information about the mass is encoded
in the leading deviation. In 3-d, noted above, gab does not approach the fixed Minkowski
metric even to the zeroth order because of the factor involving H◦ that varies from one
space-time to another, depending on its energy content. This fact complicates the discussion
of the asymptotic symmetry group in both spatial [19] and null [17] regimes. In particular,
the notion of ‘time translation’ is now more subtle. This issue of time is discussed in [14,21].

2. The model presented here is a symmetry reduction of the celebrated Einstein–Rosen
waves of 4-d, vacuum general relativity [24,25]. These solutions have cylindrical symmetry,
i.e., two hypersurface orthogonal, commuting Killing vector fields; a spatial translation,
for example, along the z direction and a rotation around the z axis. The Kaluza–Klein
reduction is carried out for the translational Killing field with norm, e.g., eψ, and the 3-d
scalar field Φ is given by Φ = ψ/4πG [17]. The rotational Killing field of 4gab descends
from the 4-manifold 4M to the 3-manifold M and becomes a Killing field of the 3-metric gab.
Einstein’s vacuum equations 4Rab = 0 in 4-d are equivalent to the 3-d field in Equation (2).
For details, especially of the asymptotic analysis from a 4-d perspective, see Ref. [18]. In the
context of Einstein–Rosen waves, H◦ is called the ‘c-energy’ and is sometimes interpreted
as the energy ‘per unit length along the z-axis’ in these waves. Careful Hamiltonian
analysis [19,21] shows that it is more appropriate to assign this interpretation to H.

3. There is an interesting variation [12] of the midi-superspace of 4-d Einstein–Rosen
waves in which the space-time topology is R2 × T2 rather than R4 and, consequently,
the corresponding I+ has topology T2 × R. In the Kaluza–Klein reduction, the 3-d space-
time has topology R2 × S1, rather than R3. Locally, the structure of equations is the same
as the one discussed in this Section, but there are global differences. In particular, there
is a right and a left spatial infinity. This model has been analyzed from a Hamiltonian
perspective in detail and then used as a point of departure for non-perturbative quantization
in [15]. The canonical analysis follows the same lines as [21] but with interesting conceptual
differences that arise from the difference in boundary conditions. Another interesting
exactly soluble model is provided by Gowdy space-times, where the spatial topology is
that of a 3-torus T3. Here, the midi-superspace is significantly richer in that the 4-d Killing
vector used in the Kaluza–Klein reduction is not hypersurface orthogonal. Consequently,
there is an additional local degree of freedom in the 3-dimensional description. The phase
space and non-perturbative canonical quantization of this model is discussed in [14] in the
setting of 4-dimensional connection dynamics.

3. Non-Perturbative Quantum Theory

This Section is divided into three parts. In the first, the quantum framework is intro-
duced; the second part discusses the unforeseen results on the nature of quantum geometry
that follow from this framework; and the third part introduces a thought experiment that
brings out the deep interplay between our notion of physical reality and the theoretical
paradigm used to frame it.

3.1. The Framework

Classically, the model is exactly soluble because the matter field, Φ, and the dynamical
space-time metric, gab could be decoupled. This procedure led us to encode the uncon-
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strained degree of freedom of the total system in Φ satisfying �̊Φ = 0, or, equivalently,
in the freely specifiable function φ(ω). Therefore, a natural strategy is to first focus on Φ
and quantize it, and then investigate the nature of the quantum geometry ĝab it determines.
This procedure makes the underlying mathematical structure simpler since the first step
involves just quantum fields in 3-d Minkowski space-time (M, g◦ab).

Let us first collect the equations from the textbook quantization of the Klein–Gordon
field Φ(R, T) in the 3-d Minkowski space-time (M, g◦ab) that are needed. The positive and
negative frequency expansion (5) of the solution immediately leads to the ‘field operator’

Φ̂(R, T) =
∫ ∞

0
dω
[
φ+

ω (R, T) Â(ω) + φ+
ω(R, T) Â†(ω)

]
, (10)

where Â(ω) and Â†(ω) are the annihilation and creation operators satisfying [Â(ω), Â†(ω′)]
= h̄ δ(ω, ω′), where δ(x, y) is there Dirac distribution. These operators act the symmetric
Fock space, F , where the underlying 1-particle Hilbert space, H, is spanned by φ(ω) or,
equivalently, classical solutions, Φ(R, T), which have a finite norm:

||φ||2 :=
1
h̄

∫ ∞

0
dω |φ(ω)|2 . (11)

Note that while solutions Φ(R, T) and their ‘frequency components’ φ(ω) are classical
concepts that make no reference to h̄, the presence of h̄ is essential in expression (11)
since the norm has to be dimensionless; (11) is a quintessentially quantum expression.
The Hamiltonian operator Ĥ◦ has the standard expression,

Ĥ◦ =
∫ ∞

0
dω ωÂ†(ω) Â(ω) . (12)

(There is no explicit factor of h̄ because [Â(ω), Â†(ω′)] = h̄ δ(ω, ω′)). Now, in the free
field theory, coherent states play a key role in the discussion of the relation of quantum
and classical theories: Given a classical solution Φ̊(R, T), or equivalently, φ̊(ω), one has a
normalized coherent state |Ψφ̊〉:

|Ψφ̊〉 = N e
1
h̄
∫

dω φ̊(ω)Â†(ω) |0〉 ,

where N = e
1

2h̄
∫

dω |φ̊(ω)|2 is the normalization constant. (13)

Recall that the expectation values of Φ̂(R, T) and Ĥ in this state just yield the classical
solution Φ̊(R, T) and its energy:

〈Ψφ̊|Φ̂(R, T)|Ψφ̊〉 = Φ◦(R, T) and 〈Ψφ̊|Ĥ◦(R, T)|Ψφ̊〉 = H◦(φ̊) . (14)

Furthermore, the state |Ψφ̊〉 is sharply peaked at the classical solution Φ◦(R, T) in the sense
that the uncertainty in the field and its momentum is saturated and equally distributed in
the appropriate sense at all times T. The uncertainty in the Hamiltonian H◦ is given by

(
∆Ĥ◦

)2
= h̄

∫ ∞

0
dω ω2 |φ̊(ω)|2 and

(
∆Ĥ◦

)(
〈Ĥ〉

) ≈ 1( 1
h̄

∫ ∞
0 dω |φ̊|2(ω)

) 1
2

=
1

〈N̂ 〉 1
2

. (15)

In the second equation, it is assumed that the profile φ̊(ω) is sharply peaked at some fixed
frequency to bring out the physical meaning of the right side and denoted the number
operator on the Fock space, F , by N̂ . Thus, the relative uncertainty is proportional to
the inverse of the square root of the expected number of ‘photons’ in the coherent state
under consideration. The more intense the classical beam φ̊(ω)—i.e., the greater the
value of

∫
dω |φ̊|2(ω) relative to h̄—the less the relative uncertainty in the quantum state

and more trustworthy are the classical results vis a vis the correct quantum answer. Note
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that the frequency, at which φ̊(ω) is peaked is irrelevant in this consideration; the classical
approximation will continue to be excellent one even if the peak is shifted to arbitrarily high
frequencies as long as

∫ ∞
0 dω |φ̊|2(ω) � h̄. This is a standard result in quantum optics.

All these considerations referred only to the matter sector—either a scalar field Φ, or a
Maxwell field, Fab = εabc∇cΦ—which, thanks to the integrability of the model, could be
analyzed without knowing the physical metric gab. Now, in the classical theory, the physical
metric gab is determined completely by Einstein’s equations for any given matter field
Φ̊(R, T). In the quantum theory, one can let the true degree of freedom reside in Φ̂(R, T),
represented as an operator (10) on F . Therefore, the metric coefficient gRR = −gTT in the
asymptotic region, namely, eGH◦ of Equation (7), also becomes an operator on F :

ĝRR |asym := eGĤ◦ = eG
∫ ∞

0 dω ω Â†(ω) Â(ω) . (16)

Similarly, the non-perturbative Hamiltonian H of the total system—matter and gravity—
becomes the operator,

Ĥ :=
1

4G
(
1− e−4GĤ◦

)
(17)

on F . These operators encode the non-perturbative information contained in gravity–
matter interactions.

Generally, non-trivial models are exactly soluble because they can be mapped to a
trivial model. In the case under consideration, the Einstein–Klein–Gordon (or Einstein–
Maxwell) system (gab, Φ) could be mapped to a free field, Φ(R, T), in Minkowski space.
Non-triviality is then transferred to the map that relates the two models.The relation is
now given by Equations (7) and (8) in the classical theory and Equations (16) and (17) in
the quantum theory. As shown in Section 3.2, these equations have certain unforeseen
consequences that bring out the non-triviality of the original Einstein-matter system.

Remarks

1. While defining various operators, one encounters the issue of factor ordering.
For the free Hamiltonian Ĥ◦ of the scalar field Φ̂ in Minkowski space, there is an unambigu-
ous answer: normal ordering used in Equation (12). Relation (7) between the classical H◦
and metric coefficients gRR = −gTT and relation (8) between H◦ and the Hamiltonian H of
the full system led us to define quantum operators ĝRR|asym and Ĥ. However, it is natural
to ask whether one could also use other choices. For example, could one not have normal
ordered the operator after exponentiation and used Ĥ′ = : Ĥ : instead? The operator Ĥ′

shares several attractive properties with Ĥ. In particular, it annihilates the vacuum state
|0〉 ∈ F and its expectation value in coherent states |Ψφ̊〉 also yields the value of the classical
Hamiltonian H(φ̊). However, in sharp contrast to Ĥ, the spectrum of Ĥ′ is the entire real
line. Given that the classical observable H takes values only in the finite interval [0, 1

4G ],
Ĥ′ is an inadmissible choice for the corresponding quantum observable. The choice made
in Equations (16) and (17) is free of such drawbacks. In particular, the spectrum of Ĥ is
precisely [0, 1

4G ].
2. The ‘field operator’ Φ̂(R, T) of Equation (10) is actually an operator-valued distribu-

tion. Consequently, there are technical subtleties in giving precise mathematical meaning to
ĝRR = −ĝTT in full space-time (discussed, e.g., in Ref. [21]). However, for conceptual issues
that are at the forefront of the current analysis, one could bypass this issue by focusing only
on the asymptotic region, where the classical matter fields Φ◦(R, T), at which the coherent
states |Ψφ̊〉 are peaked, vanish. More precisely, careful treatment yields the same results as
those obtained in this Section by restricting the discussion to the asymptotic region from
the beginning.

3. In the present framework, the true degree of freedom lies in the scalar field Φ(R, T).
Therefore, it was natural to construct the Hilbert space of states for this field and represent
geometric observables by appropriate operators thereon. However, one might be concerned
that this procedure is somewhat unnatural from the perspective of general relativity and
only the physical metric gab should be used in the quantization procedure. This is indeed
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possible using a canonical quantization procedure, which refers only to the physical metric
as was first discussed in the 4-d context of cylindrically symmetric waves in a remarkably
early work by Kuchař [26], and later in the 3-d context in [27] (albeit, without realizing
that the second is a Kaluza–Klein reduction of the first). However, these investigations
overlooked subtle issues related to boundary conditions and the distinction between
diffeomorphisms representing gauge and the true dynamics they imply. Careful handling
of these issues is needed to put the Hamiltonian theory and the canonical quantization
procedure on a firm footing. When this is done, the framework also brings out subtleties
associated with the issue of time. Finally, the Hilbert space of quantum states can also be
selected without having to introduce the Minkowski metric g◦ab. For details on both of these
points, see [21].

3.2. Unforeseen Quantum Gravity Effects

The Hilbert space of quantum states is the Fock space F , constructed entirely from the
matter sector. As shown above, if one uses observables—such as Φ̂ and Ĥ◦—that refer only
to the matter sector, then the classical theory is an excellent approximation if the system
is in a coherent state |Ψφ̊〉. In these states, the expectation values of quantum observables
equal values of their classical counterparts and their quantum fluctuations are negligible
provided that the expected number of ‘photons’, 〈Ψφ̊|N̂ |Ψφ̊〉, is large, irrespective of the
choice of φ̊. Now, observables—such as ĝRR that encodes the quantum metric and Ĥ that
represents the Hamiltonian Ĥ of the full system, including gravity—are also represented
by operators on F . In the classical theory, values of these observables can be computed
using the matter sector alone. Therefore, one’s first expectation would be that the classical
theory would again provide an excellent approximation for these observables if the system
is in a coherent state |Ψφ̊〉. However, as shown in this Subsection, this expectation is not
borne out. Even though geometry is completely determined by matter and coherent states
|Ψφ̊〉 are sharply peaked on classical configurations φ̊, quantum properties of gravitational
observables in these states can be very different from their classical analogs. For brevity,
from now on, the suffix ‘asym’ in gRR |asym is dropped since the subsequent discussion
refers only to the asymptotic metric.

Let us begin with the action of the operator ĝRR = eGĤ◦ on coherent states:

eGĤ◦ |Ψφ̊〉 = N eGĤ◦ e
1
h̄
∫ ∞

0 dω φ̊(ω) Â†(ω) |0〉

= N eGĤ◦
∞

∑
n=0

1
h̄n n!

∫ ∞

0
dω1 . . . dωn φ̊(ω1) . . . φ(ωn) |ω1, . . . ωn〉

= N
∞

∑
n=0

1
h̄n n!

∫ ∞

0
dω1 . . . dωn φ̊(ω1) . . . φ(ωn) eGh̄(ω1+...+ωn) |ω1, . . . ωn〉

= N
∞

∑
n=0

1
h̄n n!

∫ ∞

0
dω1 . . . dωn ϕ̊(ω1) . . . ϕ̊(ωn) |ω1, . . . ωn〉 , (18)

where, as before, N = e
1

2h̄
∫

dω |φ̊(ω)|2 is the normalization constant for the coherent state,
and ϕ̊(ω) in the last step is given by ϕ̊(ω) = eGh̄ω φ̊(ω). Using the definition of the
normalized coherent state |Ψϕ̊〉, one can express the result as

eGĤ◦ |Ψφ̊〉 = e
1

2h̄
∫ ∞

0 dω |φ̊(ω)|2(e2Gh̄ω−1) |Ψϕ̊〉 . (19)

Thus, the action shifts the peak of the coherent state from φ̊ to ϕ̊ and multiplies it by a
constant. Note that the shift rescales φ̊(ω) by a factor that is exponential in Gh̄ω. Finally,
since the inner-product between these two coherent states is given by

〈Ψφ̊|Ψϕ̊〉 = e−
1

2h̄
∫ ∞

0 dω|φ̊(ω)|2(1+e2Gh̄ω−2eGh̄ω) , (20)
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the expectation value of ĝRR|asym is given by

〈Ψφ̊| ĝRR |Ψφ̊〉 = e
1
h̄
∫ ∞

0 dω |φ̊(ω)|2 (eGh̄ω−1) , (21)

in contrast to the classical value,

gRR = eG
∫ ∞

0 dω ω |φ̊(ω)|2 . (22)

There are several notable differences between the expectation value (21) and the
classical value (22). First, even though the expectation value is evaluated in a coherent
state, it depends explicitly on h̄. Thus, unlike 〈Ψφ̊|Φ̂(R, T)|Ψφ̊〉 or 〈Ψφ̊|Ĥ◦|Ψφ̊〉 in the
matter sector, in the geometric sector, the expectation value (21) itself carries a signature of
quantum effects. Second, since the matter sector knows only about h̄ and c, one does not
have a preferred frequency scale; with the availability of both G and h̄ one does, and the
Planck frequency is given by ωPl = (Gh̄)−1. Therefore, one can examine the expectation
value in various limits by assuming that φ̊(ω) is sharply peaked at various frequencies ω̊.

Let us first consider the low frequency limit, Gh̄ω̊ � 1. Then, the expectation value
(21) can be approximated as

〈Ψφ̊| ĝRR |Ψφ̊〉 ≈ eG
∫ ∞

0 dω ω |φ̊(ω)|2 (1 +N (Gh̄ω̊)2) . (23)

where, as before, N is the expected number of ‘photons’ in the state |Ψφ̊〉. Thus, the
classical value of gRR is recoverd provided the frequency is low enough that N Gh̄ω̊ � 1.
Interestingly, while in the matter sector the classical approximation becomes better as
N increases, for geometry, it becomes worse as N increases even when ω̊ is in the low-
frequency regime. (I thank Don Marolf for pointing out that, in hindsight, this second
condition can be understood by first noting the relation gRR = eGH◦ and then using the
form (15) of fluctuations in Ĥ◦. Although the result refers only to to the expectation value
of ĝRR and not to fluctuations, the argument makes the disagreement between classical
expectations and exact quantum results plausible.)

In the high-frequency regime, Gh̄ω̊ � 1, there is always a huge disagreement between
the expectation value and the classical expression:

〈Ψφ̊| ĝRR |Ψφ̊〉 ≈ eN (eGh̄ω̊) so that
〈Ψφ̊| ĝRR |Ψφ̊〉

gRR
≈ eN (eGh̄ω̊ −Gh̄ω̊) . (24)

In this regime, h̄ does not disappear; in fact, terms involving h̄ swamp the classical
term since, in the numerator, Gh̄ω̊ appears exponentially in the exponent itself. Further,
again, the larger the expected number of ‘photons’ in the source, the larger the disagreement
between the quantum and the classical results.

One can also calculate the quantum fluctuations. In the matter sector, these are very
small provided N � 1, irrespective of the frequency at which φ̊(ω) is concentrated.
The situation is again quite different for quantum geometry. Since Ĝ2

RR = e2GĤ◦ , the same
calculation that was used to evaluate 〈Ψφ̊| ĝRR |Ψφ̊〉 yields

〈Ψφ̊| ĝ
2
RR |Ψφ̊〉 = e

1
h̄
∫ ∞

0 dω |φ̊(ω)|2 (e2Gh̄ω−1) , (25)

whence the relative uncertainty is given by(
4ĝRR
〈ĝRR〉

)2
= [e

1
h̄
∫

dω |φ̊(ω)|2(1−eGh̄ω)2 − 1] . (26)
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Again, this exact expression can be simplified using φ̊(ω), which is sharply peaked at
some frequency ω̊. Then, in the low-frequency regime with Gh̄ω̊ � 1, one has(

4ĝRR
〈ĝRR〉

)2
≈ eN (Gh̄ω̊)2 − 1 . (27)

Note, again that the uncertainties in geometry grow with the number N of ‘photons’.
Thus, there is an interesting tension: to reduce quantum fluctuations in the matter sector,
one needs a large number N of ‘photons’ in the coherent state |Ψφ̊〉. However, for a fixed
ω̊, the larger the value of N—i.e., the more intense the beam—the larger its influence on
gravity. In quantum theory, this gives rise to larger relative uncertainties. The qualitative
nature of this effect is not surprising. Nonetheless, it is pleasing to see it appear in a sharp,
precise, and quantitative form. This is possible because the model is exactly soluble.

In the high-frequency regime, as one would expect from the above results on expecta-
tion values, quantum fluctuations in geometry(

4ĝRR
〈ĝRR〉

)2
≈ eN (e2Gh̄ωo ) , (28)

are huge since Gh̄ω � 1 and appears exponentially in the first exponent. Again, these effects
refer to the asymptotic form of the metric in a region in which the classical profile φ̊ can be
vanishingly small. In the classical theory, the metric in this region is as tame as it can be
since the curvature vanishes. Yet, quantum geometry exhibits very large, quintessentially
quantum mechanical effects even though it has no degrees of freedom of its own and is
completely determined by the matter sector.

Finally, for the total Hamiltonian Ĥ of the matter–gravity system, the analysis can
be carried out using the same techniques. For completeness, let us list the final results.
The expectation value of Ĥ is given by

〈Ψφ̊|Ĥ|Ψφ̊〉 =
1

4G
[
1− e

1
h̄
∫ ∞

0 dω |φ̊(ω)|2(e−4Gh̄ω−1)] , (29)

while the value of the classical Hamiltonian H(φ̊) is

H(φ̊) =
1

4G
(
1− e−4G

∫ ∞
0 dω|φ̊(ω)|2) . (30)

In the low-frequency regime, Gh̄ω̊ � 1, one has

〈Ψφ̊|Ĥ|Ψφ̊〉 ≈ H(φ̊)− 4
G
N (Gh̄ω̊)2e−4GHo(φ̊) , (31)

while in the high-frequency limit, Gh̄ω̊ � 1:

〈Ψφ̊|Ĥ|Ψφ̊〉 ≈
1

4G
(
1− e−

H◦(φ̊)
h̄ω̊
)

, (32)

which is quite different from H◦(φ̊). The uncertainties can also be calculated exactly.
However, the significance of quantum effects is now overshadowed by the fact that the
spectrum of Ĥ is bounded in the finite interval [0, 1

4G ].
Let us summarize. One of the primary motivations here was to analyze the quan-

tum effects on geometry induced by quantum matter. Therefore, one is naturally led to
the following question: can matter induce interesting quantum effects on the geometri-
cal/gravitational sectors, even when it is itself in ‘tame’ quantum states? This question led
us to focus on standard coherent states in the matter sector because they provide canonical
‘quantum representations of classical matter fields’. The analysis showed that the quantum
effects induced on geometry/gravity can be very large even when quantum fluctuations
in the matter sector are small. This unforeseen behavior arises because of the non-linear
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structure that is specific to Einstein dynamics: these non-linearities can magnify small
fluctuations in the matter sector to huge quantum effects on geometry/gravity. Unsurpris-
ingly, the effect is very pronounced when the classical configuration φ̊(ω) is peaked at a
trans-Planckian frequency ω̊ � ωPl =

1
h̄G . Then, the expectation value 〈Ψφ̊| ĝRR |Ψφ̊〉 is

wildly different from the classical gRR(φ̊), even in the asymptotic region where φ̊ vanishes.
However, there are interesting effects also in the ‘tame’ sub-Planckian frequency regime
Gh̄ω̊ � 1, because what enters in the explicit expressions of quantum effects in the gravita-
tional sector is

√
N × Gh̄ω̊—rather than just Gh̄ω̊—where N is the expected number of

‘photons’ in the coherent state |Ψφ̊〉. In the matter sector, classical theory provides better

and better approximation to the full quantum theory as
√
N increases. Therefore, it is

also natural to consider the limit in which Gh̄ω̊ � 1 but
√
N (Gh̄ω̊) > 1. In this regime,

the matter sector is extremely well approximated by the classical theory. However, Equa-
tion (23) implies that 〈Ψφ̊| ĝRR |Ψφ̊〉will not be well approximated by the gRR of the classical
solution. Furthermore, Equation (27) implies that in this regime quantum fluctuations will
also be small in the geometrical sector. Thus, the state |Ψφ̊〉 will be peaked on a classical

geometry but different from the one determined by the classical source φ̊(ω) ∼ Φ̊(R, T).
Finally, since ĝRR is a (positive definite) self-adjoint operator on F , one can use its

spectral decomposition to construct states in F that are sharply peaked at a classical value
gRR(φ̊). What happens to the surprising quantum effects in these states? This interesting
issue is discussed in Ref. [13]. It turns out that the large quantum effects are then transferred
to the matter sector. In this work the focus is on |Ψφ̊〉 quantum effects on geometry induced
by matter. Since matter observables have tame behavior in states |Ψφ̊〉, these states are best
suited to bring out the unforeseen effects induced on quantum geometry.

Remark

The point of departure of the current analysis was the standard description of general
relativity in terms of the metric. Now, in the asymptotically flat context, there exists in the
literature an alternate formulation of Einstein’s equations where the basic variable is not
a metric gab but a so-called ‘cut-function’, Z, that, at the end of the analysis, determines
gab. In the final picture, Z specifies intersections of light cones, emanating from space-time
points, with future null infinity, I+ [28]. The underlying idea was to pass to quantum
general relativity via an appropriate quantization of Z, rather than gab, with the hope that
in the final theory, space-time points themselves would become fuzzy [29,30]. In the 2 + 1
theory under consideration, the metric gab(R, T) is replaced by a single function Z(ξ; R, T),
where (u, ξ) label points of I+ and, in the final picture, the 3-parameter family of ‘cuts’
defined by space-time points is given by u = Z. In the 3 + 1 theory, it has not been possible
to implement this idea beyond linearized approximation. However, it could be carried
out non-perturbatively in the 2 + 1 theory using the framework outlined in this Section
as the point of departure [16]. Interestingly, it was found that, even though there are
large quantum fluctuations in the metric, fluctuations in Ẑ are strongly damped. In this
framework, there are dynamical variables that correspond to space-time points and their
fluctuations are similar to those of ĝRR. In this sense, the idea of ‘fuzzy points’ is realized in
an interesting manner: space-time points can have large fluctuations but fluctuations of the
intersections of their light cones with I+ are highly suppressed.

3.3. Lessons from a Thought Experiment

As explained in Section 1, exactly soluble models are often well suited to sharpen
conceptual issues. One such issue is how does one’s description of physical reality change
when one passes from a less accurate theory to a more accurate one? General relativity,
for example, opened entirely new classes of phenomena and possibilities that could not
be envisaged in Newtonian gravity. These arise because, with both G and the velocity of
light c at one’s disposal, a new scale arises. One can now associate a length with a mass,
namely the Schwarzschild radius, RSch = 2GM/c2, which is not available in the Newtonian
theory which knows only about G. This new scale then unleashes an entirely new class of



Physics 2022, 4 1396

phenomena. Similarly, in the quantum theory, Planck’s constant, h̄, provides new scales,
dramatically changing our understanding of the atomic world and leading to a plethora
of unforeseen phenomena that have shaped the physics of the micro-world. In quantum
gravity, one has access to all three of these fundamental constants and there have been
speculations, dating back to Planck himself, on the nature of new physics that would arise
from Planck length, Planck frequency, and Planck density. Exactly soluble models provide
a clean-cut platform to discuss the nature of this new physics. In this Subsection, the idea
is to leave c as in special relativity but switch on and off h̄ and G, and examine how the
nature of physical reality changes.

Consider a trivial thought experiment in a 3-dimensional space-time: Switch on a
beam of laser light and then switch it off after some time. (The laser beam would be
naturally axisymmetric. The focus will be just on the light beam and not on the details
of the source that produced it. Therefore, the relevant source-free solution of Maxwell’s
equations is obtained as the retarded minus the advanced solution produced by the source.)
The task is is to describe what ‘really’ happens in the space-time around us when this is
done. Interestingly, there are four quite different answers to this question: (i) A description
of a classical physicist, who ignores both general relativity (GR) and quantum field theory
(QFT) and sees only a Maxwell field propagating in flat space-time, setting h̄ = G = 0;
(ii) that of a quantum field theorist, who knows of h̄ and describes the laser beam as a coherent
state of photons but sets G = 0; (iii) that of a general relativist, who ignores h̄ but knows that
the beam curves space-time with surprising consequences in the non-perturbative regime;
finally, (iv) that of a quantum gravity theorist, who knows about both G and h̄. As the
discussion of the last two Subsections shows, the fourth description of physical reality has
both subtle and truly novel elements.

Let us begin with the first description. The physical system of interest for the classical
physicists is the Maxwell field, F̊ab = εabc∇cΦ̊, that propagates in a 3-d Minkowski (M, g◦ab).
The Maxwell field has initial data of compact support on every Cauchy surface and,
therefore, vanishes in a finite neighborhood of spatial infinity, i◦. The total energy in the
system is entirely from the Maxwell field and equals H◦(F̊), which can also be read-off
at I (for detailed expressions, see Ref. [18]). This energy is unbounded from above and
increases linearly with the frequency and intensity (i.e., |φ̊(ω)|2) of the beam. With only
the velocity of light, c, at one’s disposal, there is no frequency (nor energy) scale in the
theory. Therefore, one cannot speak of low or high frequency (nor of low or high energy)
fields and the general description holds for any frequency or intensity of the laser beam.
The second description is that of a quantum field theorists. With availability also of h̄, the
quantum theorists can regard the beam as consisting of photons. They would point out
that what the classical physicist referred to as a classical Maxwell field F̊ab ∼ Φ̊ is in fact a
coherent state |Ψφ̊〉 and calculate the expected number N = 1

h̄

∫ ∞
0 dω |φ̊|2 of photons in it.

They now point out that although the expectation value 〈Ψφ̊| F̂ab(R, T) |Ψφ̊〉 of the Maxwell

field operator agrees with that of the classical physicist’s F̊ab(R, T), there are quantum
fluctuations that the classical physicist missed and these would become measurable if N
were small, decaying as 1/

√
N . However, in this description, since G = 0, the physical

space-time is again Minkowski space (M, g◦ab).
The third description is that of the general relativists, who have access to G and

Einstein’s equations but not to h̄. Therefore, the general relativists continue to describe the
light beam using the classical Maxwell field. Their description of physical reality is quite
different from that of the classical physicist. Now, the physical metric is gab rather than
g◦ab. This metric is dynamical within the support of the beam. More interestingly, although
gab is flat outside the support, if one parallel transports a test spinning particle around a
closed curve C lying entirely in this region, one would find that its state changes when it
returns to the starting point. The change is encoded in the non-trivial holonomy U(C) of
(9). Thus, by performing experiments with probes that never interact with the light beam,
the general relativists can determine H◦—and hence, the non-trivial metric components
gRR (= −gTT)—and know that space-time is not described by the Minkowski metric g◦ab
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even in the asymptotic region. Perhaps the most startling discovery they would make is
that the total energy H of the system, including the gravitational contributions, is bounded
from above, irrespective of how high the frequency of the intensity of the laser beam is.
This qualitatively new phenomenon occurs because G−1 has dimensions of mass that set
the scale for the upper limit. Furthermore, the general relativist would discover that this
interesting fact about nature cannot be captured using a perturbative expansion in G, no
matter how high an order n in (GM)n is used in the truncation of the theory.

Finally, let us introduce the quantum gravity experts. With both G and h̄ available,
they can introduce a new notion of Planck frequency ωPl = 1

Gh̄ . With this new scale
available, not only can they design new experiments to probe aspects of physical reality
that have remained unexplored, but they can also solve some mysteries that the classic
al physicists, quantum field theorist and general relativists were left with. The quantum
gravity experts can design experiments to probe the quantum nature of geometry in the
asymptotic region where there are no photons at all. Furthermore, since there are no
gravitons—or radiative degrees of freedom—in the gravitational field, these are ‘clean’
tests of the nature of quantum information in geometry induced entirely by the quantum
properties of matter. If the quantum gravity experts could create laser beams peaked at
a trans-Planckian frequency ω̊ > 1/Gh̄, they would discover that even in the asymptotic
regions, 〈Ψφ̊| ĝRR |Ψφ̊〉 is very different from gRR predicted by the classical theory. Much
to the surprise of the general relativist, this can occur even when the amplitude of φ̊(ω)
is chosen to be sufficiently small for the space-time curvature computed using classical
Einstein’s equations to be quite small everywhere. A second regime would surprise the
quantum field theorist. Consider the case when the intensity of the beam is so high that
N � 1. Then, the quantum fluctuations in the matter sector are small and the quantum
field theorist would expect the induced quantum fluctuations in the geometry to be at least
as small, if not much smaller. As shown in Section 3.2, this is not the case; as N increases,
the relative quantum uncertainties in ĝRR grow both in the low- and high-frequency regimes
(see Equations (27) and (28), respectively).

Next, consider the regime where Gh̄ω̊ � 1 but N × Gh̄ω̊ > 1, discussed at the end
of Section 3.2. Neither the quantum field theorist nor the general relativist would have
a reason to suspect their descriptions because they would see nothing unusual in the
matter sector. The quantum field theorist would only see a coherent state with a large
number of photons, which is therefore well-approximated by a smooth, classical Maxwell
field F̊ab, and the general relativist would see the gravitational field F̊ab sources. Yet, both
descriptions are inadequate. Had the general relativist carried out a careful measure of
gRR, they would have found that their theoretical prediction is significantly different from
the observed value. This would have been regarded as an anomaly by the community,
analogous to that in the perihelion shift of mercury before the discovery of general relativity.
Had the quantum field theorist carried out a careful measurement of gRR and constructed a
statistical distribution, they would have been puzzled that an irreducible minimum persists
in the relative uncertainty, no matter how accurately they measure this (to them) ‘classical
quantity’; this is somewhat like the puzzle experienced by Penzias and Wilson before they
knew about the cosmic microwave background. Thus, the quantum gravity expert would
be able to resolve the uncomfortable puzzles that the general relativity and quantum field
theory communities had encountered by confronting their detailed theoretical calculations
with careful measurements in specific regimes.

4. Discussion

Let us now explore the lessons offered by the discussion of the last two Sections of
an exactly soluble sector of non-perturbative quantum gravity in 2 + 1 dimensions. Recall
that there are a number of paradigms and conjectures in (3 + 1)-d quantum gravity. Are
they realized in the soluble sector? Do results on the (2 + 1)-d model offer hints on the
validity of these paradigms? Do they bring out subtleties that were missed in the (3 + 1)-d
investigations?
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Let us begin with the list of illustrative examples of proposals from Section 1. The first
proposal pertains the possibility of violation of the local Lorentz invariance due to trans-
Planckian quantum effects. Thanks to the underlying simplicity of the (2 + 1)-d sector, it
was possible to carry out explicit calculations. They brought to the forefront the surprising
role of trans-Planckian frequencies. If the matter profile, φ̊(ω), at which the coherent
state |Ψφ̊〉 is peaked has even a small ‘blip’ at a frequency ω̊ > ωPl, the induced quantum
effects on the space-time geometry become large; even in the asymptotic region away
from the support of the matter source, the classical value gRR is a poor approximation
to the expectation value 〈Ψφ̊| ĜRR |Ψφ̊〉 and the relative quantum fluctuations in ĝRR are
large (recall that, starting from Section 3, the suffix ‘asym’ has been dropped in ĝRR|asym).
Thus, the intuition that trans-Planckian frequencies may change the paradigm suggested
by classical GR and standard QFT is indeed borne out in a precise sense. Do these effects,
then, lead to the violation of local Lorentz invariance? The frequency ω̊ does refer to the
asymptotic time-translation Killing field ∂/∂T. However, the dynamics do not break local
Lorentz invariance. The field equation satisfied by Φ̂(R, T), for example, is fully covariant.
In particular, there is no quantum-gravity-induced vector field in dynamical equations that
can be the source of such a breakdown. Next, let us consider the status of ‘holography’ in
this model. As in 3 + 1 dimensions, neither general relativity nor quantum field theory have
a built-in length scale to define an ultraviolet regime. Quantum gravity does and theory
departs radically from classical GR and QFT in the ultraviolet regime ω > ωPl =

1
Gh̄ . Do

these effects, then, force one to adopt a holographic view in the non-perturbative quantum
description? In the classical theory, in the (2+1)-theory the true degrees of freedom are
encoded in the matter field that resides in the 3-manifold M. As the discussion of Section
3 showed, the situation is the same in non-perturbative quantum theory; the quantum
scalar field continues to reside in the bulk as in any standard quantum field theory. Bulk
degrees of freedom are not replaced by ‘surface degrees of freedom’. Thus, even though the
model exhibits novel features in the Planck regime, these features arise from the standard
bulk degrees of freedom of quantum field theory. Now, one can construct the quantum
Hilbert space F using just null infinity I+ [17,21] which serves as the future boundary
of space-time. However, this is not what is meant by ‘holography’. Indeed, one can also
construct the standard Fock space of photons in 3 + 1 dimensions using just I+.

Next, recall that quantum geometry also has novel features already in the low-frequency
regime. In particular, many ‘seemingly tame’ classical solutions turned out to be physically
‘spurious’. Consider, for simplicity, solutions (Φ̊, gab), for which φ̊ is sharply peaked at a
frequency ω̊ � ωPl. It would seem natural to assume that such solutions are ‘tame’ and
should arise in the classical limit of the full quantum theory. That is, one would have
expected the quantum theory to admit states |Ψφ̊〉 that are sharply peaked at such solutions.
However, the discussion of Section 3 showed that, for this to occur, two inequalities have to
be satisfied: N � 1 and N (Gh̄ω̊)2 � 1. The first is required to ensure that |Ψφ̊〉 is sharply

peaked at Φ̊ but the second inequality is surprising in that it requires that N cannot be ‘too
large’. Why is it needed? Suppose N is large as per the first inequality and N (Gh̄ω̊)2 = K.
Then, 〈Ψφ̊|ĝRR|Ψφ̊〉 ≈ e

K
2 gRR. Thus, the classical answer would not be a good approx-

imation even at the expectation value level unless K � 1. Consequently, a large class
of apparently ‘tame’ classical solutions are simply not realized as approximations to the
quantum theory; from the more complete perspective of quantum gravity, they are spurious.
This surprising limitation seems to point in the same direction as Wheeler’s ‘space-time
foam’ idea that the quantum vacuum state would also be quite different from the pertur-
bative vacuum that is peaked at Minkowski space. Is this expectation borne out? Recall
that the perturbative vacuum |0〉 is the coherent state |Ψφ̊〉 with φ̊ = 0, and is annihilated
by the matter Hamiltonian Ĥ◦. Now, the full Hamiltonian Ĥ and the asymptotic metric
operator ĝRR are both self-adjoint and well-defined functions of Ĥ◦. Therefore, |0〉 is an
eigenstate of both, with eigenvalue 0 for Ĥ and 1 for ĝRR. Thus, the perturbative vacuum
|0〉 is in fact an eigenstate of the quantum metric operator with the Minkowski metric g◦ab
as its eigenvalue. Contrary to one’s first expectation, there is nothing unruly about the
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ground state. Finally, as noted in Section 2, there is a positive energy theorem in classical
2 + 1 dimensional general relativity [19]. It goes over to the quantum theory since Ĥ is a
non-negative self-adjoint operator and the vacuum |0〉 is the unique state that is annihilated
by it. Thus, again one finds that, while several aspects of proposals for novel physics in
quantum gravity are realized, closely related aspects that were assumed to follow are not.

These considerations have implications also on semi-classical gravity, an approxima-
tion in which gravity is treated classically but matter quantum mechanically and the effect
of quantum matter on the classical metric is computed using semi-classical Einstein’s equa-
tions, Gab = 8πG 〈 T̂ab 〉, in which the left side refers to a classical metric tensor gab and the
right side to the expectation value of the (renormalized) stress-energy tensor of quantum
matter that propagates on the classical geometry defined by gab. It is often assumed that
this theory would serve as an excellent approximation to full quantum gravity away from
the Planck regime. In 3 + 1 dimensions, exact solutions to semi-classical gravity are difficult
to come by. Even for those available, it has not been possible to check if these solutions
are good approximations because one does not have full quantum gravity. Let us examine
this issue through the lens of the model discussed here, since one can work out predictions
of full quantum gravity and compare them with the semi-classical theory. A solution to
semi-classical gravity consists in specifying a classical metric gab and a quantum state of
matter |Ψ〉 such that the quantum field Φ̂ satisfies its field equation with respect to gab
and the pair (gab, |Ψ〉) satisfies the semi-classical Einstein’s equation. Choose a classical
solution (gab, Φ) in the (2+1)-d model. Then, it follows that in the asymptotic region the
pair (gab, |Ψφ̊〉) solves semi-classical equations exactly. Thus, now, there is an infinite
class of solutions to semi-classical gravity. However, as results of Section 3 show, there
are regimes—i.e., choices of φ̊(ω)—for which gab is a poor approximation to full quantum
geometry. This occurs even in the asymptotic region where curvature vanishes identically.
This suggests that the domain of validity of the semi-classical approximation can be quite
subtle; it may not be dictated just by space-time curvature.

Interaction between quantum gravity and quantum information communities has
increased over the last 5 years or so, giving rise to a healthy exchange of ideas. As mentioned
in Section 1, this dialog has sparked interest in manifestation of quantum gravity effects
that do not involve the ‘radiative degrees of freedom’ of gravity but are instead induced
by the quantum nature of matter sources (see, e.g., Refs. [7–10]). These effects involve the
‘Coulombic’ part of the gravitational field. As discussed in Section 2, (2 + 1)-gravity is
especially well suited to analyze these quantum effects because the gravitational field does
not carry any radiative degrees of freedom—it is determined entirely by matter: while there
is an infinite number of degrees of freedom, in our analysis they all reside in the matter
sector. Therefore, all quantum properties of geometry/gravity are induced by the quantum
properties of matter. Nonetheless, in quantum theory, the space-time metric has a number
of quintessentially quantum properties. If the quantum state of matter |Ψφ̊〉 is sharply

peaked on a classical field, Φ̊(R, T), we are in a regime that is tame from the perspective of
quantum matter. Yet, the expectation value of ĝRR can differ significantly from that of the
classical solution determined by Φ̊(R, T). The difference is entirely due to non-perturbative
quantum effects, and of course goes to zero in the h̄ → 0 limit. There is also a trans-
Planckian regime in which matter continues to behaves in a tame manner—i.e., its quantum
state |Ψφ̊〉 is sharply peaked at a classical field Φ̊(R, T) ∼ φ̊(ω) with small fluctuations—but
the quantum metric experiences large quantum fluctuations. In both these regimes, one can
carry out thought experiments. One can use spinning test particles in the asymptotic region
where Φ(R, T) vanishes: there is no direct interaction between quantum matter that sources
the gravitational field and test particles. One can parallel propagate the spinning particles
around a closed loop C and measure the change in its spin. This results in a measurement
of the holonomy U(C) of the gravitational spin connection. Although the curvature of
the physical metric vanishes everywhere along C, the holonomy is non-trivial; this is
the gravitational analog of the well-known Aharonov–Bohm effect in electromagnetism.
Measurement of this holonomy determines the non-trivial metric component, gRR = −gTT ,
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as well as the Hamiltonian/energy of the total matter plus gravity system. One can carry out
repeated measurements and determine the expectation values and quantum uncertainties
in these observables. Since these experiments are carried out entirely in the gravitational
sector, they provide an unambiguous test of the quantum nature of geometry/gravity that
is induced entirely by matter. As the discussion in Section 3 showed, the specific non-
linear coupling between matter and geometry of general relativity can enhance the small
quantum fluctuations in the matter sector to produce large quantum effects in geometry.
These effects are non-perturbative, and not considered in current discussions where gravity
is treated perturbatively and, furthermore, matter is generally modeled by non-relativistic
particles rather than quantum fields. The frmework used in this paper is free of both these
limitations. It provides a proof of principle that quantum information can be transferred to
the gravitational sector from the matter sector through Coulombic interaction without any
reference to gravitons or radiative modes.

It is natural to ask if the effects that were uncovered by our analysis are specific to
gravity or if they would also arise in electromagnetism. (I thank Norbert Straumann for
raising this question. The calculation summarized below resulted from that inquiry.) Are
there interesting quantum effects on the non-radiative, Coulombic aspects of the Maxwell
field by the charged quantum fields that source them? Now, as the discussion in Section 2
showed, in 2 + 1 dimensions, Maxwell fields are dual to scalar fields and, even with the
axis-symmetric restriction, they carry radiative degrees of freedom. Therefore, (2 + 1)-d
electromagnetic theory, the Maxwell field would not be determined entirely by charged
sources; it would have its own radiative degree of freedom. A better candidate is provided
by the spherically symmetric sector of (3 + 1)-d system consisting of Maxwell and charged
Klein–Gordon fields. In this sector, there are no photons, just as in the current gravitational
(2 + 1)-d model there are no gravitons. Therefore the quantum Maxwell field, F̂ab, is
represented as an operator on the Hilbert space of Φ̂, just as the quantum metric ĝab was an
operator on the matter Fock space in Section 3. Thus, any quantum features one encounters
in the Maxwell field F̂ab are induced by the quantum Klein–Gordon field via Coulombic
interaction. It turns out that this model is also exactly soluble in Minkowski space-time.
Spherical symmetry singles out a time-translation Killing field ta, which one can use to
decompose Fab into its electric and magnetic parts and introduce a canonical notion of
frequency for the Klein–Gordon field. In the asymptotic region, one can express the only
non-trivial component Er of the electric field in terms of the total charge Q of the Klein–
Gordon field, just as gRR = −gTT could be expressed in terms of the total (Minkowski)
energy H◦ of matter sources in the gravitational case. Again, one can introduce coherent
states |Ψφ̊〉 in the charged Klein–Gordon sector, where (for simplicity) Φ̊ has compact
support on every Cauchy slice, and calculate expectation values and fluctuations of Êr

in the asymptotic region. These are again non-zero. However, whereas the sophisticated
non-linearities of Einstein dynamics in the (2 + 1)-d theory imply the relation gRR = eGH◦ ,
the (3 + 1)-d Maxwell theory implies that the relation between Er and Q is linear: Er = Q/r2.
Therefore, while quantum fluctuations in the Klein–Gordon sector do induce quantum
effects in the Maxwell sector even in the absence of photons, they are not exponentially
magnified as in the gravitational case. Indeed, the expressions one obtains in the Maxwell
case resemble those in the weak field approximation of our (2 + 1)-d gravitational analysis.
(In general relativity, the gravitational interaction ‘dresses’ the bare mass to yield surprising
results also in 3 + 1 dimensions. These are genuinely non-perturbative effects that are
lost if one expands the result in powers of Newton’s constant; for a discussion of this
phenomenon, see Chapter 1 of Ref. [31].)

These concrete insights on a number of conceptual issues could be reached because
the model is exactly soluble. However, the very reasons that make it exactly soluble also
limit its reach. As explained in Section 2, from a 4-d perspective, the model represents
Einstein–Rosen waves, which have cylindrical symmetry. These symmetries make it totally
unsuitable for the laboratory experiments being considered. Nonetheless, the analysis
brought to light a number of unforeseen effects and conceptual subtleties in 3-d quantum
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gravity coupled to matter. To what extent can one take them over to four dimensions?
An obvious strategy would be to consider general relativity coupled to scalar fields in
4-d but restrict oneself to the spherically symmetric sector. Then again, one would have
an infinite dimensional midi-superspace where again there are no ‘radiative degrees of
freedom’ in the gravitational field. The metric would be determined entirely by matter and
one can investigate quantum gravity effects that are induced by quantum matter, just as
in the present case. However, now, the analysis becomes significantly more complicated
mathematically because one cannot decouple the scalar field dynamics from that of the
metric. From a physical perspective, in 4-d is now the possibility of a gravitational collapse
leading to a black hole. While this is a rich sector, it has its own deep puzzles associated
with Hawking evaporation and, therefore, it is not directly useful to extract clean insights
of the type that our 3-d model provided. However, one can focus just on ‘sub-critical’ initial
data sets so that the scalar waves come in from infinity and scatter off to infinity. This
restriction would prevent us from addressing interesting issues such as the Bekenstein
bound [2] and related conjectures [3,4] that led to the idea of holography. However, one
could still probe the status of other issues discussed in this section. That analysis will
have to take into account another key difference between the 3-d and 4-d general relativity.
In 2 + 1 dimensions, the metric is flat outside sources, while in the 4-d context, it only
approaches the flat metric as 1/r as one recedes from the matter sources. Therefore,
in 4-d asymptotically flat situations, the effects found here—such as those due to the
presence of trans-Planckian frequencies—will decay as one moves away from sources and
the fluctuations will be non-negligible only near the sources. However, this limitation is
present also in the experiments that are currently contemplated. Thus, while the most
striking predictions of the 3-d model will not carry over to 4-d situations, the subtleties
illuminated by the analysis may provide useful guidance. At a conceptual level, its detailed
analysis unearthed directions in which one can look for novel effects; at a mathematical
level, it suggests strategies to represent matter sources by quantum fields, rather than
non-relativistic particles, and to beyond perturbation theory in the gravitational sector.
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