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Abstract: Quantum gravity theories rely on a minimal measurable length for their formulations,
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principle (GUP) from string theories and its various modifications. GUP and covariant formulations
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1. Introduction, General Relativity, Quantum Mechanics and the Problem of a
Minimal Length

General relativity (GR) and quantum mechanics (QM) constitute the two major pillars
of modern physics. So far, these two theories in their various formulations have survived
all experimental testing, which supports their role as fundamental theories of nature. While
classical GR is a geometric theory for gravitation, classical QM describes phenomena other
than gravitation at “Planck scales” by probability theory of states in Hilbert space. Owing
to their fundamentality, one would expect that these two theories could be combined in
a single, unified theory for quantum gravity. However, these two theories have major
incompatibilities starting from their different frameworks, formulations and principles,
which make their merging a daunting task. Nevertheless, attempts to unify these two
fundamental theories have given rise to well-developed quantum gravity theories such as
string theory and loop quantum gravity (LQG) [1,2].

GR is a Lorentz-covariant geometric theory for gravitation put forward by Albert
Einstein in 1916 [3] (see [4] for English translation), in which a radical conceptual change
was introduced to classical gravitation. In GR, the concept of classical gravitational force
disappears and is substituted by a dynamical space–time geometry given by a pseudo-
Riemannian manifold consisting of three spatial dimensions and a time dimension. The
space–time manifold in GR presents a Lorentzian (− + + +) signature and it is shaped
by energy–momentum densities from an energy–momentum tensor in Einstein’s field
equations [3]. GR is also a background independent theory in which the space–time metric
is the dynamical variable [5]. Space–time geometries are determined by mass, energy and
momentum densities, and particles follow geodesic trajectories in the space–time manifolds,
for which position and momentum are defined with absolute certainty. This is just not
allowed in QM.

QM was developed through a process of tackling several inconsistencies, mainly in
particle physics and thermodynamics, which could not be solved by classical principles of
physics. Its foundation as a consistent theory rested on a collection of postulates not directly
derived from first principles [6,7], and on three fundamental pillars: energy quantization;
the concept and interpretation of the wave function; and the uncertainty principle. For the
uncertainty principle, classical QM states that the position and momentum of a particle in a
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trajectory cannot be defined with absolute certainty, which is in direct contradiction with
GR. This principle is further completed by a similar statement on energy–time uncertainty.

Classical QM evolved into quantum field theory during the 1930s, and with it the
problem of ultraviolet divergences. These divergences were later taken care of by the
development of renormalization mathematical techniques [8,9]. However, before that,
in this context, the idea of a minimal measurable discrete length was put forward, with
Heisenberg being one of the main advocates [10]. His main argument was the necessity for
a discreet length to overcome the divergences in quantum field theories, and also for the
description of the range of elementary known particles. The proposals for a minimal mea-
surable length were met with skepticism because this concept was in direct contradiction
with Lorenz invariance and general relativity. A minimal discrete length would imply the
need of privileged reference frames. Snyder was the first to show that the two ideas—a
minimal length and Lorentz invariance—could be combined by modifying the canonical
commutators of position/momentum operators [11]. It was also realized relatively early
that quantum uncertainties would affect the background space–time, leading to the neces-
sity of its quantization in a quantum theory of gravity [12,13]. The proposal by Mead that
Planck length constituted such a fundamental minimal length [14] initially was received
with skepticism.

The classical uncertainty principle, one of the pillars of QM, is not restricted to a
minimal length or a minimal momentum if these are interpreted as uncertainties. Hence,
the uncertainty in position or momentum can be arbitrarily small, leading to troublesome
divergencies. Then, string theory came in the 1980s by deriving a generalized uncertainty
principle, which stated the impossibility of measuring an arbitrarily small length [15–17].
In the 1990s, a modification of the position/momentum commutator relations of space–
time to a Hopf algebra was introduced [18] and Kempf modified the commutator relations
to accommodate a minimal length in quantum field theories [19–21]. The generalized
uncertainty principle could be derived from these modifications [19]. This generalized
uncertainty principle with Planck length as a minimal measureable length was proposed
as a solution to ultraviolet divergencies in quantum gravity at Planck energies. However,
another drawback appeared when GR was found to be apparently nonrenormalizable when
formulated as a quantum field theory. The introduction of a Lorentz-covariant minimal
length could be a way forward to tackle this issue [9].

Here, we review the uncertainty principle and its main modifications for adaptation
to a minimal length element and to Lorentz covariance.

2. The Uncertainty Principle

The uncertainty principle originally proposed by Heisenberg is a general property of
wave systems, and as such it is considered a fundamental law of nature. Heisenberg put
forward this principle for the canonical conjugated variables of momentum and position
in 1927 [22], which was later generalized as an inequality by Kennard for any arbitrary
wave function [23]. In 1945, Mandelshtam and Tamm derived a similar nonrelativistic
uncertainty principle between energy and time in the form of the Mandelshtam–Tamm
inequality [24]. In this latter inequality, time still remains as an independent privileged
variable. The current classical uncertainty principle thus consists of two inequalities:

|∆p||∆x| ≥ }
2

, |∆E||∆t| ≥ }
2

, (1)

where ∆p denotes the change in magnitude of momentum parametrized by coordinate
time, ∆x is the change in magnitude of the position vector, ∆E and ∆t denote the change in
magnitude of energy and time, respectively, and h̄ is the reduced Plank constant.

The uncertainty relations (1) are considered a fundamental principle in nature be-
hind many quantum phenomena [25–27]. Although Heisenberg utilized the “observer
effect” as an intuitive interpretation, this principle is fundamentally intrinsic to any wave
system [27–29]. The momentum/position classical uncertainty principle is conveniently
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represented by the Heisenberg commutator algebra, which is a reflection of the noncom-
mutability of momentum and position operators:[

p̂i, x̂j
]
= −i}δij, (2)

where the indices, denoted by Latin letters, take on the values 1, 2 and 3; p̂i, x̂j represent
momentum and position operators, and δij, is the Kronecker delta.

The momentum/position commutator and the classical inequalities of the uncertainty
principle were reinterpreted as standard deviations in momentum and position (σp, σx) by
Kennard for any wave function [23,30]:

σpσx ≥
}
2

. (3)

One key consequence of the uncertainty relations in QM is that momentum–position
phase space is quantized. However, this does not directly imply the existence of a minimal
length since in inequalities (1) and (3), the actual uncertainty in position is unrestricted
(Figure 1A). Uncertainty in position can be arbitrarily small, also leading to divergence
in momentum, which is highly problematic. This was soon shown to be in conflict with
quantum gravity theories such as string theories [31] and LQG [1,32]. Their formulations
require a minimal length proportional to Planck length, `p [33–35]:

`p =

√
}G
c3 , (4)

where G and c denote the universal gravitational constant and the speed of light, respectively.
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Figure 1. Classical uncertainty principle and generalized uncertainty principle (GUP). (A): Plot of the
classical uncertainty momentum–position inequality (shown on top), indicating the allowed region.
Uncertainties in position and momentum diverge to infinity. (B): Graph plot of a GUP representation
of the uncertainty principle (shown on top). A minimum in the function is reached representing
a minimal measurable length, |∆x|min. The allowed region by the inequality is shown. Plots are
represented in relative units. See text for details.

For string theories, `p is a fundamental length element for string particles [2,15,36].
LQG is a quantum theory for gravitation that starts from classical GR in its Arnovitt–
Deser–Misner (ADM) formalism, in which space–time is foliated and then space lattice
quantization is introduced [37]. As a consequence, this lattice quantization leads to a
minimum length, and for example, LQG area and volume operators are quantized and pro-
portional to `p

2 and `p
3, respectively. However, this concept of a fixed, measurable minimal

length not only clashes with the original formulation of Heisenberg’s uncertainty princi-
ple, but also with Lorentz covariance. Nevertheless, the uncertainty principle provides a
means to introduce a minimal length in relativity. As the gravitational field in classical GR
depends on energy and momentum densities, the uncertainty principle would be expected
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to alter the background space–time geometry and introduce constraints to the classical
space–time metric. Indeed, these constraints could be identified with a minimal length in
quantum gravity. The starting point constitutes the extension of the position/momentum
commutator relation from inequality (2) to the background Minkowski space–time. These
modified commutator relations introduce a Lorentzian signature in the commutator, and
are valid as a local projection of momentum and position operators on asymptotically
noncurved tangent space [38]:

[ p̂µ, x̂ν] = −i}ηµν, (5)

where the indices denoted by Greek letters take on the values 0 (time), 1, 2 and 3 (space)
following standard tensor notation; ηµν represents Minkowski space–time metric.

Hence, one of the first issues was to reconcile the classical uncertainty principle with
the necessity for a measurable minimal length in quantum gravity theories. This gave rise
to the generalized uncertainty principle and its variants.

3. Generalized Uncertainty Principle (GUP) and Its Modifications

The uncertainty principle inequalities as originally formulated (inequality (1)) imply
a quantized momentum–position phase space, and subsequently, a quantized space, as
discussed above. However, the momentum–position uncertainty relation as shown in
Inequality (1) is not constrained to a minimal length (if considered as a nonzero uncertainty
in position) and thus subject to ultraviolet divergences (Figure 1A). In this classical for-
mulation, the space length represented as the uncertainty in position can asymptotically
approach zero, making momentum diverge to infinity. This uncertainty relation is therefore
unbound both in position and momentum uncertainties. This is in direct contrast with
the need for a minimal length element, which is a common feature of gravity theories
including string theory [1,15,31,36,39], LQG [2,32] and doubly special relativity in the
Amelino–Camelia formulation [40].

Collisions of strings at Planckian energies also required a minimal length, lead-
ing to a modification of the classical uncertainty inequalities into what is known as
GUP [15–17,41–44]. GUP formulations included boundaries to both momentum and po-
sition [15,45]. However, the first forms of GUP led to corrections in inequality (1) that
bounded only uncertainties in position by adding quadratic forms of momentum [20,45]:

|∆p||∆x| ≥ }
2
+

}
2

β∆p2 +
}
2

γ, (6)

where β and γ represent the functions dependent on the expectation value of momentum
and position [19]. This reformulation of the uncertainty principle presents a minimum of
uncertainty in position, below which the uncertainty relation is not allowed (Figure 1B).
By modeling string collisions at Planck energies, an explicit quadratic-momentum GUP
formulation arises with expressions dependent on a fundamental quadratic length on
Planck scale, δ`p

2 [14,41–43,46]:

|∆x| ≥ }
2∆p

+
αG
c3 ∆p, |∆x| ≥ }

2∆p
+ δ`p

2∆p, (7)

where α and δ are constants.
An uncertainty relation in the framework of quantum geometry theory can be derived

for any accelerating particle in the absence of a gravitational field. The uncertainty relation
perturbs the background Minkowski space–time through acceleration, and the particle
experiences gravitation via a perturbation over the background Minkowski metric [38].
This perturbation can be reflected by local quantum deviations from the background flat
space at high-energy collisions, for example:

gµν = ηµν + hµν =

(
1 + c4

..
xα ..

xα

A2

)
, (8)
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where gµν and hµν represent the covariant pseudo-Riemannian metric tensor and a metric
perturbation, respectively,

..
xα and

..
xα represent, respectively, contravariant and covariant

components of acceleration, and A denotes maximal acceleration. By incorporating the
perturbed metric from Equation (8) into the canonical position–momentum commutator
in Minkowski space, GUP in the momentum-quadratic form is recovered as a function
of the particle mass, m, the maximal proper acceleration, A, and the quadratic form of a
space–time length element, δs [38]:

|∆x| ≥ }
2∆p

+
}c2

m2 A2δs2 ∆p, (9)

This reformulation of the uncertainty principle is equivalent to GUP, as shown by
inequality (7), by equating δs to the particle’s Compton length [38].

The inequality formulations for GUP can be expressed as commutator relationships
between momentum and position operators by introducing functions of quadratic momen-

tum, f
(→

p
)2

, as follows:

[
p̂i, x̂j

]
= −i}δij

(
1 + f

(→
p
)2
)

, (10)

If one considers the commutator (10) as an example, where the quadratic momentum
is multiplied by a function β, then the smallest uncertainty in position that could be related
to a minimum length, ∆xmin, is given by [18,19][

p̂i, x̂j
]
= −i}δij

(
1 + β

(→
p
)2
)

, ∆xmin = }
√

β. (11)

This minimal length can then be related to quadratic length elements on the order of
Planck length, as shown in inequality (7).

4. Relativistic Formulations of GUP

The second main issue to be solved was the apparent incompatibility between a
minimal measurable length and Lorentz covariance. However, it had already been shown
by Snyder that quantizing space–time does not necessarily imply the breaking of Lorentz
covariance [11].

One way to obtain relativistic, Lorentz-covariant formulations implies modifications
of the commutator relations in Minkowski space–time (Equation (5)). One first step is its
generalization to curved space through a differential local perturbation over the Minkowski
metric [38],

[ p̂µ, x̂ν] = −i}gµν, gµν = ηµν + hµν. (12)

Such perturbation approaches have been used in semiclassical quantum gravity. For
example, by defining a metric tensor operator decomposed into a pseudo-Riemannian
metric tensor plus a fluctuating tensor operator of quantum origin, δĝµν, that can be
identified with a classical energy–momentum tensor, Tµν [47]:

ĝµν = gµν + δĝµν,
〈
δĝµν

〉
≡ Tµν . (13)

The necessity for a fixed, measurable minimal space–time length in quantum grav-
ity theories clashes with Lorentz covariance, an inherent property of relativity [48,49]
(see English translation [50] of Ref. [49]). Quantum gravity theories thus operate under
a privileged frame of reference, which have restricted the application of GUP mainly to
nonrelativistic problems. Whereas in some instances, the minimal length in LQG can be
considered a free parameter subject to Lorentz covariance [51,52], the need for a covari-
ant formulation for GUP has led to correcting its canonical commutator for Minkowski
space [52]. For example, Quesne and Tkachuk generalized Kempf’s deformed commutator
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algebra in D-dimensions [19,53] to make it Lorentz-covariant [54]. In this procedure, the
quadratic forms of momentum and products of momentum and position were replaced by
their contracted tensor formulations. The resulting commutator algebra is invariant under
classical Lorentz transformations, and used to solve the relativistic Dirac oscillator [54,55]:

[ p̂µ, x̂ν] = i}[(1− βpα pα)gµν − β′pµ pν],
[x̂µ, x̂ν] = i}(pµ pν − pν pµ)

2β−β′−(2β+β′)βpα pα
1−βpα pα

,
[ p̂µ, p̂ν] = 0.

(14)

where in the context of these equations, β, β′ correspond to non-negative deforming parameters.
In this modified relativistic GUP, the smallest uncertainty in position is given by

(
∆xi
)

min
= }

√
(Dβ + β′)

[
1− β

〈
(P0)

2
〉]

. (15)

A similar strategy was undertaken by Todorinov et al. to comply with Lorentz covari-
ance in Minkowski space–time [25,52]:

[ p̂µ, x̂ν] = −i}
(

1 + (ε− α)λ2 pρ pρ

)
ηµν − i}(β + 2ξ)λ2 pµ pν, (16)

where in the context of this equation, α, β, ε and ξ are dimensionless parameters to be
adjusted to the specific problem, and λ a parameter with dimensions of inverse momentum.
This formulation was applied to three relativistic systems: the Klein–Gordon equation for
the hydrogen atom; the Schrödinger equation for a particle in a box and a linear harmonic
oscillator; and the Dirac equation [52]. For these examples, GUP corrections were obtained
only for the Schrödinger equation.

Recently, an approximation towards a GUP formulation in pseudo-Riemannian curved
spaces has been proposed using normal coordinates defined in tangent space [56]:

[xa, p̂b] = i}(αKa
b − uaub), (17)

where xa denotes normal coordinates, α is a constant, Ka
b represents components of the

extrinsic curvature tensor associated with the equigeodesics, and ua and ub denote,
respectively, the contravariant and covariant components of the proper velocity 4-vector.

5. Covariant Reformulation of the Classical Uncertainty Principle

The uncertainty principle arises as a fundamental property of wave functions, and in
truth, there is no objective reason why it should be constrained to a minimal length and/or
minimal momentum. GUP was developed from most quantum gravity theories, which
do have a minimal noncovariant length in their mathematical framework. Hence, if one
decides that a minimal length is a “sine qua non” condition for a quantum gravity theory,
then there is some basis to justify the modification of the uncertainty principle. However,
this modification may not be a requirement for quantum gravity theories, as it is the case of
doubly special relativity with de Sitter invariance [57–60]. It could be possible that there is
no a need to restrict the uncertainty principle to minimal lengths and momentums.

Hence, we [61] recently reformulated the uncertainty principle in a covariant form,
but without introducing restrictions to minimal lengths and/or momenta such as those
in GUP. This approach would make the uncertainty principle compatible with GR as well.
To achieve this, we tried a generalization of the classical uncertainty principle inequalities
strictly from covariant tensor formulations. We assumed that the following (or modified)
statement as a starting point: ∣∣∆Pµ∆xµ

∣∣ ≥ f (}), (18)

where f (}) represents a function of the reduced Planck constant. Such a formulation would
introduce a Lorentz-covariant constraint through a contraction of the change in relativistic
momentum and position 4-vectors. However, it turned out that such formulation did
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not recover the two classical inequalities. Hence, we decided to re-express the classical
inequalities in a covariant form, allowing for its application as a mathematical constraint
over GR geodesics [61,62]. This formulation extended the uncertainty inequality to a
differential length of relativistic proper space–time line element, dτ2, as a function of Planck
length, `p, and a geodesic-related scalar, Ggeo :∣∣∣Ggeo dτ2

∣∣∣ ≥ (1 + γ)`2
p, (19)

where the gamma factor, γ, and Ggeo are defined in terms of the total energy, E, of the
particle, its mass, m, and Christoffel connectors, Γ µ

αβ, in units of c set to 1:

γ = dt
dτ ≡

E
m ,

Ggeo ≡ 2Gm
∣∣∣u0Γ 0

αβ uαuβ
∣∣∣+ 2Gm

∣∣∣ujΓ
j
αβ uαuβ

∣∣∣. (20)

This covariant reformulation of the classical uncertainty principle sets a length limit for
the quadratic proper space–time line element. Its application as a constraint to Minkowski
space requires the introduction of a time-dependent differential perturbation, ε, to the g00
component of the metric [61,62]:

g00 = η00 + h00 = −1− ε(t). (21)

This correction to the metric establishes a limit to the space–time quadratic distance in
terms of energy fluctuations,

.
E = dE/dt, arising from the uncertainty principle as follows:

∣∣∣dτ2
∣∣∣ ≥ 2c5`2

p

G
∣∣∣ .
E
∣∣∣ , (22)

When applied to the metric of an expanding universe, as represented by the Friedmann–
Robertrson–Walker (FRW) metric [63–65], the quadratic space–time line element was calcu-
lated in terms of two functions [62]. The first one derived from energy fluctuations from the
uncertainty principle, Eun, and the second from the expansion rate, Hex, of the universe:

Eun ≡ u0uo
.
ε, Hex ≡ 6u1u1H,∣∣dτ2

∣∣ ≥ (1 + γ)
`2

p
Gp0|Hex−Eun|

,
(23)

where
.
ε represents energy fluctuations of quantum origin, and H is Hubble’s function.

One can test whether a covariant formulation without restrictions to minimal
lengths/momenta is sufficient to calculate a minimal covariant length at the point-
like singularity from the Schwarzschild solution. Therefore, this covariant expression
was applied to Schwarzschild’s metric [66] (for English translation, see [67]) for a point
mass as it contains a singularity at radial position 0 [64,68,69]. The imposition of the
covariant formulation of the classical uncertainty principle defined an exclusion zone
around the singularity at R = 0 below, at which no GR geodesic is allowed [61]. This con-
dition ensured a minimal nonzero uncertainty in radial distance right at the singularity,
which corresponded to

dR2 =
2Mc
mu1 `2

p, (24)

where M is the mass of the black hole. Therefore, it turns out that unrestricted covariant for-
mulations of the uncertainty principle prevent a point-like singularity in the Schwarzschild
solution. Hence, there would be no need to restrict the uncertainty principle to obtain
solutions with minimal, covariant length elements. If interpreted as a standard devia-
tion, the average R coordinate position of a particle at the singularity will still be 0, but
allowing for a radius of uncertainty that would counteract the information paradox at the
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singularity [31,70]. A calculation of this minimal uncertainty of dR for a stellar mass black
hole provides a value within the range of 10−15 to 10−16 cm. The uncertainty principle
had been previously proposed to be the source of a repulsion force that prevents particles
from reaching the singularity within the framework of LGQ and string theory. Both these
theories rely on a minimal measurable length in their formulations. The matter contained
within a black hole would form a “fuzzball” [71] or a “Planck star” [72]. The repulsion
force by the uncertainty principle as described by LQG would occur when reaching Planck
density [73], and this leads to the radius of a Planck star:

R ∼
(

M
mp

)n
`p, (25)

where in the context of this equation, M corresponds to the mass of the Planck star and mp
to Planck mass. Considering scenarios where n = 1/3 or 1, the radius of a Planck star would
comprise between 10−10 to 10−14 cm [72], close to our calculations [61] for a minimal radial
uncertainty at the singularity.

6. Conclusions

As discussed above, most (but not all) quantum gravity theories rely on a minimal
measurable length element that clashes with both the uncertainty principle, and Lorentz
covariance. To solve this issue, the classical uncertainty relations have been modified
to include length and momentum restrictions leading to GUP. Most GUP formulations
consider a restriction only in minimal length but not in momentum. Considering that the
uncertainty principle derives from fundamental properties of wave functions, it seems a
rather arbitrary decision to modify it to comply with current quantum gravity theories.
An alternative consideration would be to derive uncertainty relations with covariant
formulations that will nevertheless lead to minimal covariant length elements.

Thanks to their formulations, gravity theories such as string theory and LQG predict
Lorentz invariance violations (LIVs) due to the discreet nature of space–time and a minimal
“noncovariant” measurable length. This is the rationale behind the experiments attempting
to detect LIVs such as in vacuo dispersion of photons and neutrinos, or deviations of
polarization over astronomical distances [1,15,74–79]. The experimental detection of LIVs
and the energy scales in which LIVs might be detected (if indeed they are detected) could
help to either confirm the existence of minimal noncovariant length elements in the space–
time structure, or at least discard scenarios incompatible with the experimental data [74].
Detection (or not) of LIVs could help with lattice quantization in LQG, the time problem and
the choice for privileged reference frames [8,32,80,81]. If proven, LIVs could demonstrate
space–time quantization and set up the proper length scales and energies for quantum
gravity with a minimal measureable length [79]. However, the experimental detection
of LIV is controversial. Several studies have attempted to quantify upper limits to LIV
constraints [75–78]. Measurement of energy and helicity-dependent photon propagation
velocities over astronomical distances could uncover quantum gravity effects such as space
quantization [72]. By measuring deviations of GRB 041219A gamma ray burst photons,
an upper limit on the vacuum birefringence of 1.1 10−14 was estimated, which would
correspond to spatial volume units of less than 10−42 m3 [77]. While a number of recent
studies are reporting LIV violations at different energy orders, other studies estimate
stringent constraints, or even fail to detect LIVs [74,76,77,82,83]. These experimental results
may reinforce the idea that space–time quantization can be compatible with Lorentz-
covariant length elements without restrictions to minimal lengths or momenta, as shown by
other covariant formulations such as de Sitter symmetries in doubly special relativity [58]
and the recent formulations by us [61,62].
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