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Abstract: The Barbero–Immirzi parameter, (γ), is introduced in loop quantum gravity (LQG), whose
physical significance is still the biggest open question because of its profound traits. In some cases,
it is real valued, while it is complex valued in other cases. This parameter emerges in the process
of denoting a Lorentz connection with a non-compact group SO(3, 1) in the form of a complex
connection with values in a compact group of rotations, either SO(3) or SU(2). Initially, it appeared
in the Ashtekar variables. Fernando Barbero proposed its possibility for inclusion within formalism.
Its present value is fixed by counting micro states in loop quantum gravity and matching with the
semi-classical black hole entropy computed by Stephen Hawking. This parameter is used to count the
size of the quantum of area in Planck units. Until the discovery of the spectrum of the area operator
in LQG, its significance remained unknown. However, its complete physical significance is yet to be
explored. In the present paper, an introduction to the Barbero–Immirzi parameter in LQG, a timeline
of this research area, and various proposals regarding its physical significance are given.

Keywords: loop quantum gravity; Ashtekar variable; Barbero–Immirzi parameter; area operator;
black hole entropy

1. Introduction

Loop quantum gravity (LQG) is one of the supposed candidates of the theory of
quantum gravity. It can unify general relativity (GR) with quantum field theory (QFT). It
is a non-perturbative and background independent approach to quantum gravity theory.
LQG begins with GR; thereafter, it takes some conceptual basis from QFTs to deliver a
quantum theory of gravity. LQG is a theory of constraints, in which various constraints
such as Hamiltonian, diffeomorphism and Gauss constraints are converted into operators.
In the canonical quantization approach of LQG (ADM formalism), 3 + 1 decomposition
of spacetime is necessary to quantize gravity; however, the covariant approach (sum over
geometry) follows a different strategy. Here, due to limited space, basics of LQG are not
given. There are many classic texts [1–10] and papers [11–23] that explain LQG lucidly.

In 1986, Abhay Ashtekar [24] found new kind of variables (Ashtekar’s variable) in
classical and quantum gravity. In Ashtekar’s formulations, the constraints are simplified
by considering a complex valued form for the connection and tetrad variables, and these
are known as Ashtekar’s variables [1–5].

While dealing with the reality condition of the formalism of Ashtekar’s variable, Bar-
bero [25,26] firstly introduced a free parameter in the expression of Ashtekar’s variable and
then in the expression of constraints. Thereafter, Immirzi [27,28] used various possibilities
of this free parameter in the expression of LQG. This free parameter is nowadays known as
the Barbero–Immirzi (BI) parameter, γ. Given γ is complex or real, it provides a number of
results in LQG. In some cases, the real valued BI parameter is required, while in the other
cases, the complex valued BI parameter is necessary [1–5].

The physical significance of the area operator in LQG with the complex BI parameter
becomes ambiguous. The LQG kinematics, i.e., kinematical Hilbert space can only be
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comprehended if the γ is a real number. The SU(2) spin network of LQG can only be
created with the real value of the BI parameter [1–5].

With the complex value of the BI parameter (γ = i), the spatial connection can be seen
as spacetime connection, since it transforms under diffeomorphism in the right way. There
are also some cases that show that the complex valued BI parameter is also crucial in LQG
formalism. For instance, the form of Hamiltonian constraints becomes simpler if γ = i is
taken [1–5].

In the next Section, various proposals regarding the BI parameter are briefly reviewed
in which some proposals advocate the real valued BI parameter, while the other advocates
the complex valued BI parameter.

1.1. Ashtekar’s Formalism

Before the discovery of Ashtekar’s variables, the Palatini action, i.e., the first-order
formulation, was incomplete. However, Ashtekar formalism made it complete. In the
Palatini action, the tetrad, eµ

J , and the spin connection, ω JK
µ , are used as independent

variables. In GR, the Palatini action is written as [1–5]

SP =
∫

d4xeeµ
J eη

KΩJK
µη [ω], (1)

where e =
√−g, where g is the determinant of the 4-dimensional metric, gµν, and ΩJK

µη is
the curvature. The capital Latin letters are the internal indices, the Greek and lower-case
Latin letters denote the time (0) and space coordinates. The [ω] denotes the spin connection.
Using the Palatini action, the Einstein field equation could be derived, but the form of
equation of constraints within this formalism is mathematically complicated [1–5,12,15,17].
The generalization of the Palatini action is equivalent to the Ashtekar formalism, and it is
achieved by the Holst action [29].

In the Ashtekar formalism, by converting tetrads into triads, i.e., three-dimensional
hypersurfaces Σt, one gets eJ

µ → ej
c, where µ → c ∈ {1, 2, 3}, J → j ∈ {1, 2, 3} and

the spin connection is also transformed as Γj
c = ωcklε

klj, where εklj is the Levi-Civita
tensor [1–5,12,15,17].

The Hamiltonian constraint is a complicated non-polynomial function in Palatini
formulation; thus, canonical quantization is not easy within this formalism. In Palatini
formulation, the variables of phase space are (ej

c, Γj
c), where ej

c is the intrinsic metric of the
spacelike manifold Σ and Γj

c is a function of its extrinsic curvature [1–5,12,15,17].
In the Ashtekar’s formalism, complex valued connection Γj

c replaces the real connec-
tion ω JK

µ with duality (either self (+1) or anti-self (−1)) [1–5,12,15,17],

Ẽc
j →

1
i

Ẽc
j , K j

c → Aj
c = Γj

c − iK j
c , (2)

where Ẽc
j is the scalar density or triad electric field, Aj

c is the Ashtekar–Barbero connection

or spatial connection, K j
c = kcdedj with kcd the extrinsic curvature of Σ. Thus, there are two

phase space variables, i.e., Aj
c and Ẽc

j [1–5,12,15,17].

Since the Ashtekar’s connection formulation variables, i.e., Aj
c and Ẽc

j , follow rotation
of SU(2) symmetry with respect to the internal indices, the Ashtekar’s formalism plays the
role of SU(2) gauge theory, and this SU(2) group is a subgroup of SL(2,C) [1–5,12,15,17].

All three constraints are simplified in Ashtekar’s variables, and their expressions are
[1–5,12,15,17]:

Gj = DcẼc
j , (3)

Cc = Ẽd
j Fj

cd − Aj
cGj , (4)
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H = ε
jk
l Ẽc

j Ẽd
k Fl

cd . (5)

Here, Dc is the covariant derivative.
Equations (3), (4), and (5) are Gauss, diffeomorphism, and Hamiltonian constraints,

respectively. In Ashtekar’s formalism, the Einstein–Hilbert–Ashtekar (EHA) Hamiltonian
of GR reads [1–5,12,15,17]:

HEHA = NcCc + NH+ T jGj = 0 (6)

where Cc,H,Gj, Nc, and N are the vector constraint, the scalar constraint, the Gauss con-
straints, the shift, and the lapse, respectively. The T j is a Lie algebra valued function over
spatial surface [1–5,12,15,17].

The unit imaginary, i.e., i =
√
−1, which appears in Equation (2), makes the formalism

complex valued. Therefore, some restrictions in terms of reality conditional on the possi-
ble solutions of the theory must be applied to achieve tangible physical results relevant
to a metric valued in R instead of in C [1–5,12,15,17].

For example, if Ż is used to represent the time derivative of Z, then the reality condition
and constraints, i.e., Gj = DcẼc

j must be satisfied by solutions. In this case, there are two
reality conditions, and the second condition is the time derivative of the first condition;
thus [1–5,12,15,17],

Ẽc
j Ẽd

k δjk ∈ R, (7)

{Ẽc
j Ẽd

k δjk}• ∈ R. (8)

with δjk being the Kronecker delta.
In a standard form, the Ashtekar variables are given as [1–5,12,15,17]

Ẽc
j →

1
γ

Ẽc
j , K j

c → Aj
c = Γj

c − γK j
c . (9)

If γ = i, then the equation takes the original form.
The Poisson brackets are written as [1–5,12,15,17]

{K j
c(x), Ẽd

k (y)} = {Aj
c(x), Ẽd

k (y)} = kδ
j
kδd

c δ(x, y), (10)

where k = 8πGγ with G the gravitational constant.
In a standard form [1–5,12,15,17],

{Aj
c(x), Ẽd

k (y)} = 8πGγδ
j
kδd

c δ3(x, y). (11)

The reality condition is not necessary for a real value, and as a result, new variables
and constraints are also real [1–5,12,15,17].

The form of the Hamiltonian constraint becomes complicated with the real value of
the γ, i.e.,

H = ε
jk
l Ẽc

j Ẽd
k Fl

cd − 2(1 + γ2)Ẽ[c
j Ẽd]

k K j
cKk

d ≈ 0. (12)

If, γ = i; then the form of Hamitonian constraints simplifies [1–5,12,15,17].

1.2. Why the BI Parameter Was Introduced in LQG?

As mentioned, the complex valued Ashtakar’s variables simplified constraints of
quantum gravity based on canonical quantization, i.e., LQG. Thereafter, Barbero [25,26]
came up with a new strategy to tackle Ashtekar’s variable with real value for Lorentzian
signature space-times. In [25,26] Barbero wrote down Ashtekar’s variable with a free
parameter (Equation (9)); namely, γ (denoted β there). Ashtekar used SU(2) and SL(2,C)
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groups of Yang–Mill theory to deliver complex valued constraints, i.e., Ashtekar’s variables.
Meanwhile, Barbero showed that one can use SO(3) Yang–Mill phase space to expressthe
modified Hamiltonian constraint with Lorentz signatures without complex variables to
elaborate space-times without losing the features of Ashtekar’s variables [1–5,25].

Barbero [25,26] also showed that for simple forms of a Hamiltonian constraint, complex
variable is required, while for a complicated form, this constraint could be written with real
variables; for instance, a loop variable of LQG. Barbero derived a Hamiltonian constraint
with γ2 = 1 (real valued and Euclidean signature). Meanwhile, the Lorentzian signature
again yields a complex valued form of the equation. Barbero also derived a Hamiltonian
constraint with γ = −1. The Hamiltonian constraint could also be written with real
Ashtekar variables for Lorentzian general relativity with SO(3) ADM formalism [25].

Thereafter, Immirzi [27,28] further clarified on the importance of this parameter. In
these papers, Immirzi explained canonical quantization of gravity, i.e., LQG with the Regge
calculus. In Immirzi elaborated the basics of LQG with the discussion on the γ. Immirzi
discussed various possibilities of the value of the γ and named this arbitrariness of the γ
the γ crisis [27,28].

Since Barbero introduced this free parameter and Immirzi used it to explain the
canonical quantization method along with Regge calculus, the γ is known as the Barbero–
Immirzi parameter. In short, Barbero used one-parameter scale transformation to generalize
the Ashtekar canonical transformation to a U(γ). Meanwhile, Immirzi observed that such
a transformation modifies the spectra of geometrical quantities of LQG [1–5,27,28].

1.3. The Holst Action and the BI Parameter

Today, there are two types of version for the connection variables: SL(2,C) with a self
duality of Yang–Mills type of connection i.e., the Ashtekar connection, and the connection
with a real SU(2) the Barbero connection. In the latter type of connection, the issue of the
reality condition is not present. With the aid of the Holst action, both of the connections
can be obtained. The γ is introduced in the Holst action as a multiplicative constant that
governs the strength of the dual curvature correction.

The Holst action generalizes the Hilbert–Palatini action using the γ. The Holst action
can be derived in the following way using the Einstein–Hilbert action (EH). In GR, the EH
action is written as [1–5,15,29]

SEH(gµν) =
1

16πG

∫
d4x
√
−ggµνRµν, (13)

where Rµν is the Ricci tensor.
If e =

√−g and 8πG = 1 are taken; then [1–5,15,29],

SEH(gµν(e)) =
∫

d4xeeµ
J eνJ Rµνητeη

KeτK

=
∫

d4xeeµ
J eη

KF JK
µη (ω(e)),

where F JK
µη (ω(e)) = eJµeηKRµνητ(e),

SEH(gµν(e)) =
∫

d4x
1
4

εJKLMεµηαβeL
α eM

β F JK
µη (ω(e)).

Hence, as a functional of a densitized triad, the Einstein–Hilbert action takes the
form [1–5,15,29],

∴ S
(

eJ
µ, ω JK

µ

)
=

1
2

εJKLM

∫
eJ ∧ eK ∧ FLM(ω). (14)

By considering the Palatini identity, i.e., δω = FLM(ω) = dωδLM
ω where dω denotes

derivative with respect to ω, and taking the variation of Equation (14), one gets [1–5,15,29]:

δωS
(

eJ
µ, ω JK

µ

)
=

1
2

εJKLM

∫
eJ ∧ eKdωδLM

ω ,
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∴ δωS
(

eJ
µ, ω JK

µ

)
= −1

2
εJKLM

∫
dω

(
eJ ∧ eK

)
∧ δLM

ω . (15)

If the coupling constant, 1/γ, is added in Equation (14), then one gets the Holst
action [1–5,15,29], i.e,

S(e, ω) =

(
1
2

εJKLM +
1
γ

δJKLM

) ∫
eJ ∧ eK ∧ FLM(ω). (16)

The Holst action is equivalent to the Ashtekar Hamiltonian if γ = i is set in
Equation (16) [1–5,15,29].

In general, the Holst action is written as [1–5,15,29]

S[e, A] =
1

8πG

(∫
d4xeeµ

J eν
KF JK

µν −
1
γ

∫
d4xeeµ

J eν
K ∗ F JK

µν

)
(17)

where the symbol “∗“ denotes the self-duality in Equation (17) in the presence of the BI
parameter.

2. Various Proposals on the Physical Significance of the BI Parameter

In this Section, the historical time line of the research in the BI parameter and various
proposals on the physical significance of the BI parameter are briefly discussed. After
introducing each of the proposals, pros and cons of a proposal are given and the role of the
BI parameter is explained. Here, all proposals are explained only in the context of the BI
parameter to an extent relevant to the necessary mathematical treatment.

2.1. Historical Timeline

Table 1 shows the historical timeline of research on the BI parameter in LQG in a
chronological order. The table lists the enriched literature of the BI parameter and clarifies
on the importance of the study of the BI parameter in LQG. The listing implies that the BI
parameter is itself a crucial research area in LQG.

Table 1. Timeline of research on the Barbero–Immirzi parameter.

Year Research on the BI Parameter and Its Significance

1986 Discovery of the Ashtekar variables
1995 Real Ashtekar variables for Lorentzian signature space–times
1996 Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action
1996 Black hole entropy from loop quantum gravity
1996 From Euclidean to Lorentzian general relativity: the real way
1996 Real and complex connections for canonical gravity
1997 Quantum gravity and Regge calculus
1997 Counting surface states in loop quantum gravity (LQG)
1997 Immirzi parameter in quantum general relativity
1997 On the constant that fixes the area spectrum in canonical quantum gravity
1998 Quantum geometry and black hole entropy
2000 Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity?
2001 Comment on “Immirzi parameter in quantum general relativity“
2003 Quasinormal modes, the area spectrum, and black hole entropy
2004 Black-hole entropy in loop quantum gravity
2004 Black-hole entropy from quantum geometry
2005 Origin of the Immirzi parameter
2005 Physical effects of the Immirzi parameter
2005 On choice of connection in LQG
2007 On a covariant formulation of the Barbero–Immirzi connection
2007 Renormalization and black hole entropy in Loop Quantum Gravity

2008 From the Einstein–Cartan to the Ashtekar–Barbero canonical constraints, passing through
the Nieh–Yan functional

2008 The Barbero–Immirzi parameter as a scalar field: K-inflation from LQG?
2008 Topological interpretation of Barbero–Immirzi parameter
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Table 1. Cont.

Year Research on the BI Parameter and Its Significance

2009 Peccei–Quinn mechanism in gravity and the nature of the Barbero–Immirzi parameter
2010 A relation between the Barbero–Immirzi parameter and the standard model
2011 Complex Ashtekar variables, the Kodama state and spinfoam gravity
2012 The quantum gravity Immirzi parameter—A general physical and topological interpretation
2012 Complex Ashtekar variables and realitycConditions for Holst’s action
2013 Black Hole Entropy from complex Ashtekar variables
2014 Geometric temperature and entropy of quantum isolated horizons
2014 A Correction to the Immirizi Parameter of SU(2) Spin Networks

2014 The Microcanonical Entropy of quantum isolated horizon, “quantum hair” N and the
Barbero–Immirzi parameter fixation

2015 The holographic principle and the Immirzi parameter of loop quantum gravity

2017 Immirzi parameter without Immirzi ambiguity: conformal loop quantization of
scalar-tensor gravity

2018 Horizon entropy with loop quantum gravity methods
2018 Generalizing the Kodama state. I: construction
2018 Generalizing the Kodama state. II: properties and physical interpretation
2018 Chiral vacuum fluctuations in quantum gravity
2018 Black hole entropy from the SU(2)-invariant formulation of Type I isolated horizons
2018 Black hole entropy and SU(2) Chern–Simons theory
2020 On the value of the Immirzi parameter and the horizon entropy

2.2. The Area Operator and the BI Parameter

In LQG, the loop states as a graph or network Θ with edges ei denoted by elements of
some gauge group. In general, this gauge group can be SU(2) or SL(2,C) [1–5,12,15,17],

ψΘ = ψ(g1, g2, . . . , gk), (18)

where k = 0, 1, 2, . . . , n and gk is the holonomy (group element) of connection A on the
kth edge; see Figure 1. In LQG, the spin network is used to describe these loop states.
Penrose [30,31] gave the notion of the spin network. In the spin network, the combinatorial
principle of angular momentum is used, and it defines the space–time in discrete way. In
LQG, the spin network is essential for representing the loop state [1–5,12,15,17].

Figure 1. A diagram of spin network. See text for details.

The area of a two-dimensional (2D) surface, S, that is embedded in any manifold, Σ, is
defined as [1–5,12,15,17]

AS =
∫

d2x
√

(2)m, (19)

where (2)m is the determinant of the metric (2)mEF. The area is 2D; hence, the components
of the 2D metric (2)mEF can be denoted as the dyad basis, eJ

E, and E, F ∈ {x, y} here are
spatial indices
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2mEF = eJ
EeK

F δJK. (20)

The determinant of 2mEF can be written as [1–5,12,15,17]

det
(

2mEF

)
= m11m22 −m12m21 = ~ez ·~ez. (21)

Hence, Equation (19) becomes [1–5,12,15,17]:

AS =
∫

d2x
√
~ez ·~ez. (22)

In LQG, the frame field ek
E and the connection AE

k are conjugates. For instance, ek
E →

−ih̄ δ
δAE

k
, where h̄ is the reduced Planck’s constant. Inserting the latter into Equation (22)

[1–5,12,15,17],

ÂS =
∫

d2x

√
δJK

δ

δAz
J

δ

δAz
K

. (23)

In LQG, eJ
EeK

F = δ
δAE

J

δ
δAF

K
= nEnF J J JK. For SO(3) group, the generator is the angular

momentum operator, J J . Here, nE and nF are unit tangent vectors. Therefore, the equation
of the area operator becomes [1–5,12,15,17]

ÂS = Σp

√
δJKnEnF J J JK = Σp

√
δJK ĴJ ĴKΨΘ(∵ ncnc = 1), (24)

∴ ÂS = Σp
√

J2. (25)

However, the quantum state of J is J2|j〉 = h̄2 j(j + 1)|j〉, where j represents the value
of the quantum spin; hence, the equation is [1–5,12,15,17]:

ÂSΨΘ = l2
PΣp

√
jp(jp + 1)ΨΘ, (26)

where l2
P = Gh̄/c3 is the Planck area with c the speed of light.

In LQG, lines of the spin network can intersect. Any surface Σ acquires area through
the puncture of these lines [1–5,12,15,17]; see Figure 2.

Figure 2. A diagram of surface puncture. See text for details.

In standard form, the area operator with the γ can also be written as [1–5,12,15,17]

∴ ÂS = γl2
PΣp

√
jp(jp + 1). (27)

The proportionality coefficient in the formula of area operator in LQG includes the
γ [1–5,23]. In 1998, Krasnov [32] found that the multiplicative factor of the area operator is
8πγ. Hence, the equation is [1–5,12,15,17]
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A = 8πγl2
P

√
j(j + 1). (28)

Similar to the area operator, the BI parameter also appears in the volume operator.
The spectrum of volume operator can only be understood; if the γ is real valued [1–5].

Pros and Cons of the Area Operator and the BI Parameter

The spectrum of the area and the volume operator and its eigenvalue can only be
understood with the real valued γ. As mentioned, the complex valued γ makes these
operators complex valued and the significance of these complex valued operators is am-
biguous. Is there any valid significance of the area operator and the volume operator with
the complex valued γ? This question is still unresolved.

In short, there are two difficulties for the complex valued γ for these geometrical
operators. (1) The physical significance of the complex valued geometrical operators such
as the area and the volume operator is yet to be found. (2) The mathematical structure of
the complex valued geometrical operators is not yet clear and complete.

2.3. The BI Parameter and Black Hole Entropy Calculation in LQG

The expression of entropy of a black hole in Planck units calculated semi-classically by
Hawking is written as [1–5,23]

S = A/4. (29)

In 1996, Rovelli [33] calculated black hole entropy within LQG using the statistical frame-
work.

In LQG, any surface obtains area when the link of the spin network punctures that
surface. One can allot micro states to each surface puncture. Thus, the micro states are
associated with the discrete pieces of the surface, which provide the value of area spectrum
by puncturing. So, the entropy, S, is proportional to the log of the number of ways in which
the sphere can be punctured that provides an area within each macroscopic interval (see
Figure 3) [33].

Figure 3. The black hole entropy through puncture in the surface of the event horizon. The rectangles
show micro states.

If the eigenvalue, Ap, of the area operator is expressed via the jp of the form mp/2
(mp ∈ Z), then [33]

Ap = 4πγl2
P

√
mp(mp + 2). (30)

For an interval [A + δA, A − δA], where δA is some small interval (δA/A � 1),
A is a macroscopic value of area. The allowed number N(M) of sequences of integers
{mp, . . . , mN}, p = 1, 2, 3, . . . , N, is determined by the number N of edges that puncture
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the surface, so that the determined value for the total area lies within the given interval,
M = A/(4πγl2

P) [33].
The number of sequences N(M), in which each sequence is {mp}, can be given as [33]

M =
A

4πγl2
P
= Σp

√
mp(mp + 2). (31)

The number of sequences is indicated by N+(M), such that Σpmp = M and the
number of sequences is indicated by N−(M), such that Σp(mp + 1) = M. Hence, the given
set of inequalities implies that [33]

N−(M) < N(M) < N+(M). (32)

From calculation, ln N+(M) = ln 2, ln N−(M) = ln 1+
√

5
2 and ln N(M) = dM. From

Equation (32), the inequalities are now given as [33]

ln 1+
√

5
2 < d < ln 2,

0.48 < d < 0.69.
(33)

By taking M = A/(8πh̄G), one gets

ln N(A) = d A
8πh̄G ,

S(A) = k ln N(A),
(34)

∴ S(A) = c
k

h̄G
A, (35)

where c = d/(8π) = 1/4 is constant.
In 1997, Ashtekar et al. [34] showed that spin networks explains spacetime geometry

outside a black hole. Some edges of this spin network puncture the event horizon and
provide the value of area through this contribution. The U(1) Chern–Simons theory
explains the quantum geometry of the horizon. In this formalism, the rotation of SO(2)
describes 2D geometry, which is isomorphic to U(1). The entropy of a black hole is
calculated by counting the spin network states relevant to an event horizon. Thus, the
expression of black hole entropy in LQG is [1–5,34],

S =
γ0 A
4γ

. (36)

There are two possibilities for the value of γ0 [1–5,34], i.e.,

γ0 =
ln 2√

3π
(37)

or
γ0 =

ln 3√
8π

. (38)

The value of γ0 relies on the choice of the gauge group. By taking γ0 = γ, one gets
actual black hole entropy formula, calculated by Hawking [1–5,34], i.e.,

S =
γ0 A
4γ0

=
A
4

. (39)

This calculation is true for each sort of black hole. The black hole entropy calculation
in LQG is a quite enriched research area. The value of the γ and black hole entropy formula
in LQG is a topic whose implications are far-reaching [1–5,34].

In 2002, Dreyer [35] fixed the value of the γ using classical quasinormal mode spectrum
of a black hole and gave black hole entropy formula in LQG with SO(3) group instead of
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SU(2). Instead of jmin = 1/2, the value of jmin = 1 is taken in the expression of the area
operator, i.e.,

∆A = A(jmin) = 8πγl2
P

√
jmin(jmin + 1). (40)

In this case, the change in the mass due to the frequency of the quasinormal modes
(QNM) is [35]

∆M = h̄ωQNM =
h̄ ln 3
8πM

. (41)

For a Schwarzschild black hole, the area and the mass are related to each other by
the relation A = 16πM2. A change in the area corresponding to the mass change is given
as [35]

∆A = 4 ln 3 l2
P. (42)

The expression for the γ is obtained through comparison between Equations (40)
and (42) [35],

γ =
ln 3

2π
√

jmin(jmin + 1)
. (43)

If jmin = 1 is taken in Equation (43), then the fixed value of the BI parameter is [35]

γ =
ln 3

2π
√

2
. (44)

Thereafter, Meissner [36] fixed the value of the area in LQG by fixing γM and γ by com-
paring the Bekenstein–Hawking entropy formula with the derived formula. The Bekenstein–
Hawking entropy formula reads:

S =
1
4

A
l2
P

. (45)

In [36], the derived expression of the black hole entropy formula is:

S = ln N(a) =
γM
4γ

A
l2
P
+O(ln A). (46)

Here, by comparing the derived black hole entropy Formula (46) with the Bekenstein–
Hawking Formula (45), one gets [1–5,36].

γ = γM. (47)

The calculated value of γM is [36]

γM = 0.2375 . . . (48)

or
γM = 0.2739 . . . (49)

In 2004, Domagala and Lewandowski [37] defined microscopic degrees of freedom to
count the black-hole entropy. On the basis of a ratio, i.e., ln(N(a))/a, for large a, the value
of entropy (the eigen value of area operator is equal to or less than a that is a number; for
quantum states of black holes) is

ln 2
4πγl2

P
a ≤ ln N(a) ≤ ln 3

4πγl2
P

a. (50)

Hence, the upper and lower bounds value for γ are [37]
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ln 2
π
≤ γ ≤ ln 3

π
. (51)

Since the spin greater than 1/2 also contributes to the entropy, this contribution is also
considered here [37].

In 2007, Jacobson [38] studied the renormalization and the black hole entropy in
LQG. For black holes, he found that the microscopic state counting is related to Newton’s
universal constant

G:

SLQG =
b
γ

A
h̄G

, (52)

where b is a numerical constant. In LQG, from Equation (52), one can see that the entropy
is related to the area of the horizon A (SLQG ∝ A) and the gravitational constant G
(SLQG ∝ 1/G) [38].

Jacobson found that one should compare this formula with the actual Bekenstein–
Hawking entropy formula after accounting the scale dependence of Newton’s constant and
area. For any value of the γ, if some property of the renormalization is followed, then one
can compare both entropy formulas. The BI parameter to be γ = 4b to match the black hole
entropy in LQG with the Bekenstein–Hawking Formula (45) [38].

In 2013, Frodden et al. [39] found that by taking complex valued Ashtekar variables,
the black hole entropy formula is achieved in certain conditions. In this case, the BI
parameter can be complex valued (γ = ±i). Ref. [39] shows that the number of micro
states NΓ(A, γ→ ±i) acts as exp

(
A/(4l2

P)
)

for certain case, i.e., for large area A in the
large spin semi-classical limit. With respect to the complex self-dual Ashtekar connections,
NΓ(A,±i) is the number of states for a theory to be defined.

The SU(2) Chern–Simons theory is related to the study of the black hole entropy in
LQG. From SU(2) to SL(2,C) representation, the formula for the Hilbert space of SU(2)
Chern–Simons theory follows a specific analytic continuation with constraints of self-
duality. The complex formulation (with the Ashtekar variables) within this proposal gives
the derivation of the black hole entropy within LQG formalism for a large spin asymptotic
domain which is semi classical in nature [39]. Hence,

log(NΓ(A,±i)) ∼ A
4 l2

P
. (53)

One can list more papers on black hole entropy in LQG [40–48].

Pros and Cons of the BI Parameter and Black Hole Entropy Calculation in LQG

On the basis of the black hole entropy calculation in LQG, one gets various expressions
for the real valued γ, such as γ0 = ln 2√

3π
, γ0 = ln 3√

8π
and γ = ln 3

2π
√

2
. The numerical value

for the γ is either 0.2375 . . . or 0.2739 . . . based on the calculation. The BI parameter is also
expressed in terms of a numerical constant b, i.e., γ = 4b. With the complex valued γ, the
black hole entropy can also be calculated using SU(2) Chern–Simons theory. Whether it
is the real valued or the complex valued γ; the black hole entropy can be calculated in
LQG. However, the interpretation of the complex valued BI parameter within the black
hole entropy formula in LQG is difficult to comprehend.

One criticism for the black hole entropy calculation in LQG is regarding the different
value of the γ. However, this criticism is easy to address, because a value of the real valued
γ can be applied to all kinds of black holes. The γ is a free parameter; its same value is
applied to all kinds of black hole.

2.4. The BI Parameter as Immirzi Ambiguity

In LQG, the geometrical observables, such as the area and the volume, are quantized
and exhibit a discrete spectrum. In 1996, Immirzi noticed that LQG does not determine
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the complete scale of these spectra [27]. Immrizi also observed that one can have different
spectra for the same geometrical quantities, if starting with the scaled elementary variables.
The algebra of holonomy relies on a free parameter that gives the family of one parameter
of quantum theories with inequivalence. The γ represents this family of one parameter [49].

There is a certain symmetry under study, according to which classical theory is identi-
fied as a canonical transformation; however, one cannot identify it as a unitary transforma-
tion of quantum theory. Since the holonomy is the operator of LQG and because of weird
sort of representation of LQG, one has to consider the γ as an ambiguity [49].

In LQG, there are two connections, i.e., A and Γ. Therefore, one has to create the
γ-scaled connection, namely, Aγ, via interpolation between different connections. Thus,
the elementary excitation of LQG—namely the Wilson loop of Aγ—has different results for
various value of the γ. Therefore, some physical spectrum of quantity of LQG relies on the
γ [49].

Additionally, the metric information resides in the E (conjugate variable). Since E is a
conjugate for connection, in quantum formalism, it is written as a derivative operator that
acts on functions over the group. Over the group manifold, any geometrical quantity that
is a function of E behaves as an elliptic operator that results in the discrete spectrum. Such
elliptic operators possess non-vanishing scalar dimension relative to the affine scaling of the
connection. Hence, in the elliptic geometric operators spectrum, ambiguity is introduced,
i.e., the Immirzi ambiguity. This ambiguity influences the discreteness of the space in LQG.
In [49], the The authors also described that various interpretations regarding the γ are
incorrect in context with the Immirzi ambiguity. The authors also gave various models such
as harmonic oscillator with no Immirzi ambiguity, a particle on a circle with no Immirzi
ambiguity, and a simple model with γ as a free parameter. Due to lack of space, here, only
the cause of the Immirzi ambiguity and its effect in LQG are given [49].

In the year 2001, Samual [50] commented that interpretations of the Immirzi ambiguity
are unclear and do not give any agreement on its origin and significance. All interpretations
of the BI parameter as Immirzi ambiguity seem unclear, and do not give any satisfactory
explanation about the origin and significance of it. Moreover, the examples of the Immirzi
ambiguity are not real, but are artificially generated through the compactification of the
configuration space.

In 2017, Veraguth and Wang [51] gave a proposal in which they explained LQG
without Immirzi ambiguity using conformal LQG. The conformal LQG provides a way to
achieve loop quantization through a conformally equivalent class of metrics. The conformal
geometry gives an extended symmetry to permit a reformulated BI parameter. In scalar–
tensor gravity, this can be achieved via conformal frame transformations. In this proposal,
the authors showed that the LQG, along with a conformally transformed Einstein metric
which has dissimilar values of the relevant BI parameter, are connected by a conformal
frame with global change. The conformal LQG is free from the Immirzi ambiguity. They
defined the Ashtekar variables in the following way [51]:

A
′ j
c = Γj

c + γκK j
c,

1
γκ

Ej
c. (54)

Pros and Cons of the BI Parameter as Immirzi Ambiguity

Research on the Immirzi ambiguity is still incomplete. As mentioned, there is a
specific symmetry under study, according to which classical theory is identified as a
canonical transformation, but one cannot identify it as a unitary transformation of quantum
theory. This is the reason behind the Immirzi ambiguity. One-parameter family of the BI
parameter is another reason. The γ-scaled connection, namely Aγ for various values of
the BI parameter, is also different. The elliptic nature of the geometric operator due to the
frame field E that is a conjugate to the connection A is also responsible for the Immirzi
ambiguity. However, the conformal formalism of LQG may remove the Immirzi ambiguity.

The BI parameter was added into the LQG framework to remove mathematical com-
plexities (in the connection formalism, constraints equations, geometrical operators equa-
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tions and many other important equations); however, it emerged as ambiguity because of
the above-mentioned causes.

2.5. Origin of the BI Parameter

In 2005, Chou et al. [52] found a technique, through which a ratio which equals the γ
is obtained. They used quadratic spinor techniques, in which the physical significance and
effect of the γ become obvious in GR. The authors also inferred that without other matter
fields in GR, the γ as a observable is a physical property of the sector of gravity.

Firstly, the Holst action is defined in a novel way [52], i.e.,

S[e, ω] = α
∫
∗
(

ec ∧ ed
)
∧ Rcd(ω) + γ

(
ec ∧ ed

)
∧ Rcd(ω), (55)

where the γ is a ratio, i.e., γ = α/β, c, d, . . . = 0, 1, 2, 3, and “∗“ denotes duality. Thereafter,
the authors compared the Equation (55) with the quadratic spinor Lagrangian [52], i.e.,

Lψ = 2D(ψ̄e)γ5D(ψe) , (56)

where ψ is auxiliary spinor field, e is e = ecγc, D is the covariant derivative, and γc is the
Dirac gamma matrix.

By defining the spinor curvature identity [52],

2D(ψ̄e)γ5D(eψ) = ψ̄ψRcd ∧ ∗
(

ec ∧ ed
)

+ ψ̄γ5ψRcd ∧ ec ∧ ed + d[D(ψ̄e)γ5eψ + ψ̄eγ5D(eψ)].
(57)

For ω[e], the equation of motion is [52]:

D[ψ̄ψ ∗
(

ec ∧ ed
)
+ ψ̄γ5ψ

(
ec ∧ ed

)
] = 0. (58)

It was found that the γ can be written as a ratio of scalar and pseudoscalar contribu-
tions in the theory [52], i.e.,

γ =
〈ψ̄ψ〉
〈ψ̄γ5ψ〉 . (59)

If ψ̄ψ = 1 and ψ̄γ5ψ = 0, then γ = ∞. The BI parameter γ = i corresponds to Ashtekar
formalism with self duality; meanwhile, γ = 1 satisfies the action of the Hamiltonian given
by Barbero. Therefore, the γ implies that Einstein gravity can be distinguished from the
other gravitation theories via general covariance. In other words, this ratio the ratio (59)
can be seen as a measure of how gravity differs from covariant gravity. Such a technique
permits the renormalization scale, µ, regarding the γ via spinor’s expectation value in
quantization process (∴ 〈ψ̄ψ〉µ, 〈ψ̄γ5ψ〉µ). Here, ψ̄γ5ψ is not a real function. To get ψ̄γ5ψ to
be real, one has to use an anti-commuting spinor to achieve the real Ashtekar variables [52].

Pros and Cons of Origin of the BI Parameter

This proposal gives the origin of the γ using quadratic spinor techniques in which
a ratio of scalar and pseudoscalar contributions is defined as the γ. In essence, in this
proposal, the γ can be real as well as complex valued under different condition. The
anti-commuting spinor is necessary to get real valued ψ̄γ5ψ and the Ashtekar variables.

2.6. On a Covariant Formulation of the BI Connection

In 2007, Fatibene et al. [53] gave a proposal on covariant formulation of the BI connec-
tion in which they defined a global covariant SU(2)-connection over whole spacetime that
limits generalizations of the Barbero–Immirzi connection on a given slice of space. The BI
connection is a collective SU(2) gauge connection on a 3D surface S ⊂M in 4D spacetime
M. On the basis of groups and spacetime involved in the theory, the BI connection is



Physics 2022, 4 1107

global. However, the SU(2) principal bundles +Σ over one 3D base S should be trivial.
In this paper, the global aspects of the BI connection, the covariant formulation of the BI
connection with its spacetime interpretation and the Lorentzian case are investigated. Here,
the point of study is the BI connection. The γ is less emphasized in this study. Thus, this
investigation is covered with the necessary details.

Pros and Cons of a Covariant Formulation of the BI Connection

This proposal advocates the usual interpretation of the γ (real valued) on the basis of
the black hole entropy calculation in LQG. In this proposal, the complex valued γ is also
less emphasized due to its obscured significance.

2.7. The BI Parameter as a Scalar Field

In 2008, Taveras and Yunes [54] (see also [55]) gave a proposal on the γ as a scalar field.
They studied the LQG-based generalization of GR, in which they modified the Holst action
was modifeid.

The authors scalarized the γ in the Holst action. This meant that the γ was promoted
as a field under the integral of the dual curvature term. In this formalism, the γ acts as a
dynamical scalar field. This formalism gives a non-zero torsion tensor which modifies the
field equations through quadratic first derivatives of the BI field. Such a modification is
similar to the general theory of relativity with non-trivial kinetic energy in the presence of
a scalar field [54].

Before promoting the the authors firstly modified the Holst action [54], i.e.,

S =
1

4κ

∫
εJKLMeJ ∧ eK ∧ FLM +

1
2κ

∫
γ̄eJ ∧ eK ∧ FLM + Smat , (60)

where κ = 8πG, the coupling field γ̄ is γ̄ = 1/γ, andSmat is the action for additional matter
degrees of freedom. To introduce torsion and contorsion in Equation (60) one can simplify
the Holst action as follows [54]:

S = 1
4κ

∫
εJKLMeJ ∧ eK ∧ eQ ∧ eR 1

2 FLM
QR + 1

2κ

∫
γ̄eJ ∧ eK ∧ eL ∧ eM 1

2 FJKLM + Smat

= 1
8κ

∫
εJKLM(−σ̃)εJKQRFLM

QR + 1
4κ

∫
γ̄(−σ̃)εJKLMFJKLM + Smat.

(61)

Through simplification, one gets [54]

∴ S =
1

2κ

∫
σ̃

[
δ
[QR]
LM FLM

QR −
γ̄

2
εJKLMFJKLM

]
+ Smat , (62)

where σ̃ = d4xe = d4x
√−g, and eJ ∧ eK ∧ eL ∧ eM = −σ̃εJKLM.

In the simpler form, the modified form of the Holst action is [54]

S =
1

2κ

∫
d4xepJK

LMeµ
J eν

KFLM
µν (63)

where pJK
LM = δ

[L
J δ

M]
K −

γ̄
2 εLM

JK .
Thereafter, the authors gave field equations with the modified Holst action and its

solutions. They also gave effective action and the inflation with the γ as a dynamical scalar
field [54].

In 2009, Calcagni and Mercuri [54] also promoted the γ as a field in the canonical
formalism of pure gravity. In this paper, the authors investigated the parity properties of
the field of the γ by performing the decomposition of torsion into irreducible components.
Under a local Lorentz group, they suggested that the γ ought to be pseudoscalar to conserve
the transformation properties of these components.

To understand the Riemann–Cartan space–time, one has to generalize the Holst for-
malism. This can be achieved by adding a torsion part in the Holst action. It gives net
coupling with the γ, which gives rise to Nieh–Yan density [54].
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The field of the γ is a real canonical pseudoscalar field for γ = γ(x) coupled with the
Nieh–Yan invariant. The γ is pseudoscalar in nature because of the axial component of
torsion, which is proportional to the partial derivative of the In the absence of matter, the
field of the was studied in the first-order Hamiltonian formalism. Here, the derivation of
the action in the Lagrangian formalism is avoided, since the subject of study is the field of
the BI parameter in the Hamiltonian formalism (canonical). The authors also compared the
Holst case with the Nieh–Yan case. The total Hamiltonian in the form of the action in the
Holst case is expressed as [54]

HD =
∫

d3x
(

ΛjRj + NβHβ + NH
)

, (64)

where Λj, Nβ and N are Lagrange-undetermined multipliers. Rj, Hβ andH are the rotation,
super momentum and super Hamiltonian constraints, respectively.

The expression of all constraints is written as [54],

Rj ≡ εl
jkKk

βEβ
l , (65)

Hβ ≡ Eη
j D[βK j

η]
+ Π∂βγ ≈ 0 , (66)

H ≡ − 1
2e

Eβ
j Eη

k

(
ε

jk
l Rl

βη + 2K j
[β

Kk
η]

)
+

1 + γ2

3e
Π2 − 3

4
e

1 + γ2 ∂βγ∂βγ ≈ 0 . (67)

Here, ∂β denotes the coordinate derivative.
For the Nieh–Yan case, the super Hamiltonian is denoted as [54]H, i.e.,

H ≡ − 1
2e

Eβ
j Eη

k

(
ε

jk
l Rl

βη + 2K j
[β

Kk
η]

)
+

1
3e

Π2 − 3
4

e∂βγ∂βγ ≈ 0 . (68)

Here, in the canonical formalism, the factor
(
1 + γ2) disappears in the contribution of

the pseudo-scalar field for the Nieh–Yan term. The Nieh–Yan term exhibits a shift symmetry,
i.e., γ→ γ + γ0 [54].

Pros and Cons of the BI Parameter as a Scalar Field

Taveras and Yunes defined the γ as a dynamical scale field in the Holst action with
non zero torsion tensor, while Calcagni and Mercuri defined the γ as a field in the canonical
formalism. These proposals provide new significance of the BI parameter; however, the γ,
which is sometimes complex valued, is still unclear.

2.8. Topological Interpretation of the BI Parameter

In 2008, Date et al. [56] gave a proposal on the topological interpretation of the γ.
In terms of the Holst formalism, the Hilbert–Palatini Lagrangian as the Lagrangian

density can be written as [56]

L =
1
2

eΣµν
JKRJK

µν(ω) +
γ

2
eΣµν

JK R̃JK
µν(ω) (69)

where Σµν
JK := 1

2

(
eµ

J eν
K − eµ

Keν
J

)
, RJK

µν(ω) := ∂[µω JK
ν]

+ ω JK
[µ

ω J
ν]L and R̃JK

µν(ω) :=
1
2 εJKLMRµνLM(ω).

Here, with γ−1, the second term is the Holst term, while with γ = −i, this Lagrangian
density gives the complex value SU(2) Ashtekar connection. For γ = 1, one gets the real
valued SU(2) Barbero connection [56]. This has been already discussed in the introduction.

The expression of the Nieh–Yan (NY) density is given as [56]

INY = εµνβη

[
Dµ(ω)eJ

νDβ(ω)eJβ −
1
2

ΣJK
µν Rβη JK(ω)

]
, (70)



Physics 2022, 4 1109

where Dµ(ω)eJ
ν = ∂µeJ

ν + ω J
µKeK

ν . For a torsion-free connection, the Nieh–Yan density
disappears.

In this proposal, in the time gauge, Nieh–Yan topological density of a theory of gravity
permits us to explain gravity as a real SU(2) connection. For γ = 1, the set of constraints for
both the Hamiltonian and the Barbero formalism are the same. For the rest of the values of
the γ, the Immirzi formulation exhibits 1

γ . The parameter γ is analogous to the θ parameter
of the quantum chromodynamics. This parameter (γ) implies an enriched vacuum structure
of gravity. The Nieh–Yan density is fully constructed from geometric quantities, while
the modified Holst terms exhibit fields of matter. With the aid of connection equation of
motion, both are connected [56].

Pros and Cons of Topological Interpretation of the BI Parameter

In this proposal, the authors gave the interpretation of the γ topologically using the
Nieh–Yan density with the real valued SU(2) connection. From this proposal, the γ can be
compared to the θ parameter of the quantum chromodynamics. The complex valued γ is
also less emphasized in this proposal.

2.9. The Peccei–Quinn Mechanism in Gravity and the Nature of the BI Parameter

Promoting the γ as a field was an active research area between 2007 and 2011; that
added new physical significance for the γ with the topological perspective in LQG.

In 2009, Mercuri [57] gave a proposal on the nature of the γ using the Peccei–Quinn
mechanism in gravity, in which the γ is taken as a field. Using the Holst formalism,
the modified Hilbert–Palatini (HP) action is obtained. This modified (total) action with
the Nieh–Yan invariant (spacetime with the torsion) and the matter coupling is given as
Stot = SHP[e, ω] + SNY[e, ω] + Smat. Hence,

Stot = −
1

16πG

∫
ec ∧ ed ∧ ?Rcd +

γ

16πG

∫ (
Tc ∧ Tc − ec ∧ ed ∧ Rcd

)
+

i
2

∫
?ec ∧

(
ψ̄γcDψ− Dψγcψ +

i
2

mecψ̄ψ

)
,

(71)

where Tc denotes the torsion two-form. The author suggested promoting γ as a field, the
contribution from divergence to the chiral anomaly must be reabsorbed [57].

The author also implied that the Peccei–Quinn mechanism (this mechanism is used
for charge-parity (CP) conservation for a strong force, in which pseudo-particle effects
are considered with a scalar field) permits one to connect the constant value of the γ to
the other certain topological ambiguities. This connection creates an interaction between
gravity and the field of the BI parameter [57].

From the spontaneous symmetry breaking (SU(2)×U(1)), the obtained quark mass
matrices M is not diagonal and Hermitian. A chiral rotation is needed to diagonalize it.
Similar to this, the chiral rotation of the fermionic measure in the Euclidean path integral
produces a NY term with Pontryagin class in space–time with torsion that is diverged as
the square of the regulator [57].

The following equation is a part of regularization procedure when γ is considered as a
field:

δψδψ̄→ δψδψ̄ exp
{

i
8π2

∫
β
[

Rcd ∧ Rcd + 2Λ2
(

Tc ∧ Tc − ec ∧ ed ∧ Rcd
)]}

, (72)

where β is the transformation parameter and Λ is a regulator. In short, Equation (72)
shows the regularization. Hence, the effective action after the regularization procedure in
Equation (72) reads:
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Seff = SHP[e, ω] + SD[e, ω, ψ, ψ̄] +
1

8π2 β
∫

Rcd ∧ Rcd +
1

16πG

(
γ +

4G
π

βΛ2
)

×
∫ (

Tc ∧ Tc − ec ∧ ed ∧ Rcd
)

.
(73)

Any attempt at removal of the regulator results in the divergence of β. By promoting
γ as a field, this divergence is reabsorbed [57]. Hence,

Seff = SHP[e, ω] + SD[e, ω, ψ, ψ̄] +
1

16πG
×
∫

γ
′
(x)
(

Tc ∧ Tc − ec ∧ ed ∧ Rcd
)

, (74)

where γ
′
(x) = γ(x) + 4G

π βΛ2.

Pros and Cons of the Peccei–Quinn Mechanism in Gravity and the Nature of the BI Parameter

In this proposal, the γ is promoted as a field using the Peccei–Quinn mechanism in
LQG. This notion is essential, since it removes divergence from the total effective action.
However, the origin of the complex valued γ is still open for exploration.

2.10. The Kodama State and the BI Parameter

In year 2006, suggested Randono [58,59] the generalization of Kodama states, in which
the real valued γ was used to generalize these states and derived physical interpretation
of these states. The Kodama state is special, providing an exact solution to all the normal
constraints of canonical quantum gravity.

The Kodama state has an unambiguous semi-classical interpretation as a quantum
sort of classical spacetime (anti-de Sitter space). However, the structure of the phase space
is complex. Therefore, a generalization of the real valued γ state is needed [58].

The state of Lorentzian Kodama is a solution to the quantum constraints in the
Ashtekar formalism, in which the connection is complex valued. However, to get the
classical GR, one has to execute the reality conditions ensuring the reality of the metric [58].

In the Euclidean framework formalism, the SO(4) group is divided into two left and
right parts, as in the complex framework. The Ashtekar variables exhibit a real valued
SO(3) connection, and its real valued momentum conjugate for the left-handed part of the
group. The corresponding state in the Euclidean framework is a pure phase, because the
connection is real. Thus, the state is written as [58],

Ψ[A] = N e−
3

4κλ

∫
YCS[A], (75)

where
∫

YCS[A] is the Chern–Simon term, λ = Gh̄Λ with Λ the cosmological constant, and
N being topology dependent normalization.

For this result, no reality condition is required, since the structure of the phase space
of the Euclidean framework is simple. Hence, the complexification of the phase space (in
which the γ is the complex valued γ = i) is the main reason for the requirement of the
reality conditions [58].

The Kodama state beginning with the Holst action with the cosmological constant is
given as [58],

SH =
1
κ

∫
M

?e ∧ e ∧ R +
1
γ

e ∧ e ∧ R− λ

3
? e ∧ e ∧ e ∧ e , (76)

where e = 1
2 γJeJ , R = 1

4 γ[JγK]ω
JK, ? = −iγ5 = γ0γ1γ2γ3, andM is the manifold.

The chiral symmetric Holst action is written as [58]
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S = 1
κ

∫
M 2(αLPL + αRPR) ? Σ ∧

(
R− λ

6

)
= 2

κ

∫
M αL ? ΣL ∧

(
RL − λ

6 ΣL

)
+ αR ? ΣR ∧

(
RR − λ

6 ΣR

)
.

Here, ΣR = (e ∧ e)R, PL and PR are left-handed and right-handed chiral projection
operators, RL and RR are the left-handed and right-handed chiral curvatures for spin(3, 1)
connection.

If αL + αR = 1 and γ = −i
αL−αR

, the equation becomes [58]

S =
1
κ

∫
M
(αL + αR) ? Σ ∧

(
R− λ

6
Σ
)
+ i(αL − αR)Σ ∧ R. (77)

In year 2011, Wieland [60] gave a proposal, namely complex Ashtekar variables, the
Kodama state and spinfoam gravity, in which the complex valued Ashtekar variable and
the real valued γ were used. In Ref. [60], the author used SL(2,C) Kodama state and
proposed a spinfoam vertex amplitude.

As per the usual method, it also started with the Holst action with the cosmological
constant, Λ [60], i.e.,

S[e, ω] =
h̄

4l2
P

∫
M

eJ ∧ eK ∧
(

εJKLMRLM[ω]− 2
γ

RJK[ω]− Λ
6

εJKLMeL ∧ eM
)

. (78)

where γ ∈ R.
As mentioned, in this proposal, the real valued γ and the complex valued Ashtekar

variable are considered [60].

Pros and Cons of the Kodama State and the BI Parameter

The generalization of the Kodama state can only be achieved with the real valued γ,
since, the γ with the complex value makes the state complex and ambiguous. Here, the
significance of the complex valued BI parameter is also unclear.

2.11. The Quantum Gravity BI Parameter—A General Physical and Topological Interpretation

In the year 2013, El Naschie [61] gave a proposal on general physical and topological
interpretation of the γ. This proposal is not directly related to LQG. In this paper, the γ of
LQG is considered as a definite quantum entanglement correction.

According to this proposal, the γ is not only a free basic parameter of LQG; it is also
an exact sort of a basic constant of the micro-spacetime topology [61].

As mentioned in Section 2.3, one of the fixed values of the γ from black hole entropy
calculation in LQG is given as [61]

γ =
log 2
π
√

3
= 0.055322. (79)

From Hardy’s quantum entanglement, the author proposed that the value of the γ is
same as that obtained from quantum entanglement correction [61], i.e.,

γ = φ6 =

(√
5− 1
2

)6

= 0.055728. (80)

Pros and Cons of the Quantum Gravity BI Parameter—A General Physical and Topological
Interpretation

This proposal advocates the real valued γ. It does not explain the physical significance
of the γ in LQG.
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2.12. A Correction to the BI Parameter of SU(2) Spin Networks

In year 2014, Sadiq [62] gave a correction to the γ of SU(2) spin networks. In this
paper, by taking j = 1 and to preserve the SU(2) symmetry of theory, twice the value of
the γ is proposed. Previously in LQG, the γ was fixed by j = 1 transitions of spin networks
as the dominant processes instead of j = 1/2 transitions. This means SO(3) should be a
gauge group instead of SU(2).

This proposal begins with [35] (see Section 2.3) and gave a correction to the γ. The
author investigated that if SU(2) is the compatible gauge group and jmin = 1 process
governs, then the change in the mass of the black hole during the transition is [62]

∆M = 2h̄ωQNM. (81)

Since the value of ωQNM is ωQNM = ln 3/(8πM), the change in the mass is [62]

∆M =
2h̄ ln 3
8πM

. (82)

Therefore, the fixed value of γ for jmin = 1 is [62]

γ =
ln 3

π
√

2
. (83)

Pros and Cons of a Correction to the BI Parameter of SU(2) Spin Networks

In this proposal, the author modified the fixed value of the γ; that was proposed
in [35]. This proposal advocates the real valued γ. The physical significance is based on the
black hole entropy calculation in LQG.

2.13. Physical Effect of the Immirzi Parameter in LQG

In this proposal, Perez and Rovelli [63] proposed that the BI term in the (Holst) action
does not disappear on the shell when fermions are there. The BI term is also present in the
equations of motion. The γ governs the coupling constant of a four-fermion interaction
(it is mediated by a torsion). In other words, the γ is a coupling constant that governs the
strength of a four-fermion interaction. Thus, the γ may show physical effects that can be
observed independently from LQG.

The Holst action with the fermionic field is expressed as [63]

S[e, A, ψ] = S[e, A] +
i
2

∫
d4xe

(
ψ̄γJec

J Dcψ− DcψγJec
Jψ
)

, (84)

where S[e, A] = 1
16πG

(∫
d4xeec

Je
d
KF JK

cd −
1
γ

∫
d4xeec

Je
d
K ∗ F JK

cd

)
, Dc is a covariant derivative,

and γJ is the Dirac matrix. In this proposal, D[ceJ
d] is the fermionic current. In the connection,

the fermion current behaves as a source for a torsion component [63].
In the fermionic current, the linear terms are total derivative; hence, the resulting

action is

S[e, ψ] = S[e] + S f [e, ψ] + Sint[e, ψ] ,

∴ S[e, ψ] =
1

16πG

∫
d4xeec

Je
d
KF JK

cd [ω[e]] + i
∫

d4xeψ̄γJec
J Dc[ω[e]]ψ

− 3
2

πG
γ2

γ2 + 1

∫
d4xe(ψ̄γ5γAψ)

(
ψ̄γ5γAψ

)
.

(85)

The standard coupling of the Einstein–Cartan theory is recovered in the third term
with the limit γ→ ∞ [63].
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Pros and Cons of Physical Effect of the Immirzi Parameter in LQG

In this proposal, the γ is a coupling constant that governs the strength of a four-
fermion interaction. Here, the γ is indeed free parameter. γ = i gives the self-dual Ashtekar
canonical formalism and γ = 1 (real valued) gives the SU(2) Barbero connection.

2.14. A Relation between the BI Parameter and the Standard Model

In the year 2010, Broda and Szanecki [64] established the relationship between the γ
and the standard model.

In this proposal, Sakharov’s method was used with the Nieh–Yan term (in the Holst
action) that fixed the γ by considering the Lagrangian density [64], i.e.,

L = α ?
(

ec ∧ ed
)
∧ Rcd − β

(
Tc ∧ Td − ec ∧ ed ∧ Rcd

)
, (86)

where γ = α/β.
The Einstein–Hilbert Lagrangian is written as [64]

LEH = − 1
12

(
M
4π

)2(
N0 + N1

2
− 4N1

)
?
(

ec ∧ ed
)
∧ Rcd , (87)

where N1 is the gauge fields number, N1
2

the two-component fermion fields number, and
N0 is the minimal scalar degrees of freedom number. Here, the γ is defined as [64]

γ =
− 1

12

(
N0 + N1

2
− 4N1

)
− 1

4 NL
=

1
9
≈ 0.11. (88)

Here, NL is the number of the chiral left-handed modes. By taking N0 = 4 (for Higgs),
N1 = 12, N1

2
= 45 and NL = 3 (3 neutrinos) [64].

This is approximately equal to one of the values of the BI parameter in black hole
entropy calculation in LQG [64],

γ =
ln 2

π
√

3
≈ 0.13. (89)

Pros and Cons of a Relationship between the BIParameter and the Standard Model

This proposal established a relationship between the γ and the standard model. It
advocates the real valued γ by comparing the results with the black hole entropy calcu-
lation in LQG. Similar to other proposals, the significance of the complex valued γ is less
emphasized.

2.15. The Holographic Principle and the BI Parameter of LQG

In the year 2015, Sadiq [65] gave a proposal that correlates the γ in LQG and the
holographic principle. In this proposal, the γ is fixed using the equipartition theorem
based on LQG at holographic boundary in such a way that the Unruh–Hawking law of
temperature holds and follows. Such derived value of the γ exhibits validity universally. In
this way, this approach correlates the value of the γ in LQG and the holographic principle.
In this proposal, the real valued BI parameter is considered. Since the relation between the
holographic principle and LQG demands more research, this proposal is given in brief.

Pros and Cons of the Holographic Principle and the BI Parameter of LQG

Similar to majority of the proposals, this proposal also advocates the real valued BI pa-
rameter.
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2.16. Discussion

The γ is a free parameter as well as an enigmatic parameter of LQG. It is a free
parameter because it can be real valued as well as complex valued. It is enigmatic parameter
because its significance for either the real value or with the complex value is still obscure.

As mentioned, there are two kinds of version for the connection variables: SL(2,C),
with a self-duality of Ashtekar formalism, γ = i, and the connection with a real SU(2)
Barbero connection, γ = 1.

If LQG is compared with the other quantum gravity theory, it has only one free
parameter in its formalism. Here, several proposals on the physical significance of the γ are
discussed. Some argue in favor of the real valued BI parameter, while the others argue in
favor of the complex valued BI parameter. The real valued proposals on BI parameter are
more tangible. The value of the BI parameter found from the Black hole entropy calculation
in LQG has more consent than other proposals because the same value is applied for all
sorts of black holes.

Still, the exact physical significance of the γ is yet to be found. There are several ques-
tions regarding the choice of the BI parameter, which are discussed via various proposals.
The most important question is regarding the physical significance of the area operator
and the volume operator spectrum with the complex valued BI parameter. The complex
valued BI parameter is also important because it removes the mathematical complexities
from the equations of the constraints, especially from the Hamiltonian constraint. Research
on the physical significance of the complex valued BI parameter γ = i will open up a new
direction in the field of quantum gravity. Time will shed light on these mysteries.

3. Concluding Remarks

• In this paper, initially, a short introduction of the Barbero–Immirzi (BI) parameter, γ,
along with the introduction to the Ashtekar formalism, the origin of the BI parameter,
the Holst action and a historical timeline of research on the physical significance of
the γ in LQG are given.

• The value of the γ and its implication are very important, especially in the area
operator spectrum and the black hole entropy calculation in LQG; afterwards, these
are elaborated on.

• Thereafter, various proposals on the physical significance of the γ in LQG are given in
brief with their pros and cons.

• Most of the proposals advocate the real valued BI parameter γ, since the significance
of the complex valued BI parameter γ is not yet clear. However, the complex valued
γ is also important, as it removes mathematical complexities from the LQG frame-
work. Research on the complex valued BI parameter will shed light on its physical
significance in future.

• Hence, the γ, whether it is complex valued or the real valued, is a crucial free parameter
of LQG.
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