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Abstract: Probability distributions for the center of gravity are fundamental tools for track fitting. The
center of gravity is a widespread algorithm for position reconstruction in tracker detectors for particle
physics. Its standard use is always accompanied by an easy guess (Gaussian) for the probability
distribution of the positioning errors. This incorrect assumption degrades the results of the fit. The
explicit error forms evident Cauchy–Agnesi tails that render the use of variance minimizations
problematic. Therefore, it is important to report probability distributions for some combinations
of random variables essential for track fitting: x = ξ/(ξ + µ), y = (ξ − µ)/[2(ξ + µ)], w = ξ/µ,
x = θ(x3 − x1)(−x3)/(x3 + x2) + θ(x1 − x3)x1/(x1 + x2) and x = (x1 − x3)/(x1 + x2 + x3). The
first two are partial forms of the two strip center of gravity. The fourth is the complete two strip center
of gravity, and the fifth is a partial form of the three strip center of gravity. For the complexity of the
forth equation, only approximate expressions of the probability are allowed. Analytical expressions
are calculated assuming ξ, µ, x1, x2 and x3 independent Gaussian random variables. The analytical
form of the probability for the two strip center of gravity allows one to construct an approximate
proof for the lucky model of our previous paper. This proof also suggests how to complete the lucky
model by its absence of a scaling constant, relevant to combine different detector types. This advanced
lucky model (the super-lucky model) can be directly used in trackers composed of non-identical
detectors. The construction of the super-lucky model is very simple. Simulations with this upgraded
tool also show resolution improvements for a combination of two types of very different detectors,
near to the resolutions of the schematic model.

Keywords: center of gravity; weighted average; probability density functions; position reconstruction;
micro-strip detectors; track fitting; least squares method; lucky model

1. Introduction

The top resolutions in track fitting, discussed in [1–3], require special types of prob-
ability density functions (PDFs) for their realizations. The maximum likelihood, used
to obtain the top resolutions, implies the handling of products of the observation PDFs
(likelihood), one PDF for each observation of the fit. Such PDFs must have analytical
expressions, appositely tuned on the statistical properties of the used signals. In our case,
signals were released by minimum ionizing particles (MIPs) in silicon micro-strip detectors.
In fact, a careful observation of the simulated data evidences the impossibility to reproduce
the scatter-plots with a single variance (homoscedasticity). The homoscedasticity of the
observations implies immense simplification of the fitting problem: the variances of the
observations disappear from the equations for the least-squares. Those equations can be
applied to any type of fitting problem. The homoscedasticity is a fundamental assump-
tion of mathematical statistics, as repeatedly recalled in [4]. The failure of this key point
of mathematical statistics imposes a completely different strategy. The properties of the
observations (hits) must be carefully studied to extract the essential information to achieve
the fit optimality [5]. The scatter-plots, which provided a hint to these studies, were those
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of [6], showing samples of center of gravity (COG) of MIP signals as a function of the MIP
impact points, (ε).

To explore the relevance of additional pieces of information, those simulations were
used to produce seven very rough approximations of the PDFs as functions of ε for a fixed
interval of COG values. Those rough PDFs were used in a maximum likelihood search
of fitted parameters of MIP straight tracks. The evident improvement of the parameter
distributions convinced us about the importance of the additional pieces of information.
A feature was particularly convincing: the unexpected richness of exact values, absent in
the standard fits (homoscedastic least squares). This feature was clearly evident as narrow
peaks in all our simulations. However, to effectively use those hints, the rough PDFs need
to be replaced with accurate forms such as those derived in the following and used in [1–3].
In addition, we demonstrated in Refs. [5,7] that the usual fitting methods are non-optimal
just for the neglect of the variance differences of the hits. Those studies proved that the
variances of the fitted parameters, given by the standard fits, are always greater than the
variances obtained by weighted fits with the hit variances as weights. The demonstrations
are perfectly consistent with our early empirical results.

The aim of this study is to complete the previously employed methods giving the
derivations and the explicit expressions of the PDFs essential to obtain our previous re-
sults. The implied PDFs are those calculated for the center of gravity (COG) algorithm.
The COG algorithm is an easy and efficient positioning algorithm that is widely used in
particle physics and in many other technological problems. The generic COG definition
is ∑j EjXj/ ∑j Ej, where {Ej} are the signals of a cluster inserted in the COG and {Xj}
denote their positions. The different selections of the signals, inserted in the COG expres-
sion, generate positioning algorithms with different analytical and statistical properties.
Our special attention is directed to the two strip COG (COG2) for its minimal noise and
usefulness for tracks at orthogonal incidence (direction with the worst resolution). The
COG2 is computed with the signals of the leading strip (seed) and the maximum of the two
contiguous strips. The corresponding PDF has a typical gap, the explanation of this feature
and examples are reported in [8]. It is just this typical feature that renders very complicated
the calculation and very long the equation of the PDF for the COG2. Nevertheless, the
COG2 PDF is extensively used in the simulations of [2,3] with very large improvements
for the resolutions of the track parameters (up to a factor three for the most favorable
cases). Although our attention is focalized on COG2, other COG PDFs are calculated as
well, and few of them are frequently used in our approaches. However, the COG PDFs
are only a part of the probabilities for track fitting, the other part is the insertion of the
functional dependence on ε. Completed with the particle impact point (ε), the PDF can
take into account the signal-to-noise ratio of each strip and correct the COG systematic
errors. The insertion of the ε functional dependence requires the exploration and filtering
of special types of random processes and the availability of large sets of homogeneous
data [2]. Further details about the handling of these types of random processes will be
discussed elsewhere.

As a non-trivial by product, the analytical expression of the COG2 PDF also allows us
to discuss an approximate demonstration for the lucky model [1]. The same equation also
consents to an extension of the lucky model to trackers formed with non-identical detectors
(a declared limitation for the lucky model in [1]).

In Section 2, the necessity to go beyond the standard (homoscedastic) least squares
method is illustrated and the simplest forms of COG PDFs are reported. In the following,
the least squares method, which uses the equations for homoscedastic systems, is called
“standard least squares.” Sections 3 and 4 are devoted to the complete COG2 PDF and the
PDF for the three strip COG. Applications of these results are reported in Section 5, with
proofs and extensions of the lucky model. Section 6 contains the conclusions. Appendix A
gives a derivation of a partial COG2 PDF from the cumulative probability distribution and
Appendix B reports on a better approximation of the COG2 PDF. These results are obtained
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with the extended use of MATHEMATICA [9] and verified in many realistic cases with
MATLAB [10] simulations.

2. Definition of the Problem

The peculiar non-uniformity (heteroscedasticity) of the point distributions in the
scatter plots of COG simulations are easily observed, (as in [2,6] and in the figures shown
in this study). In [2], this heteroscedasticity is demonstrated with the definition of an
effective variance for each hit and with the distributions of the samples of these values.
The plots of those distributions substantially differ from a horizontal line, the obvious
result for an identical variance for all hits (homoscedasticity). Therefore, the hypothesis
of homoscedasticity for the positioning errors must be ruled out in favor of more realistic
assumptions. In fact, the variance reduction, introduced by the distinction of good or
excellent hits (heteroscedasticity) on a track containing two or more hits of such types,
is easily grasped. This is the reason for the evident richness of the exact values of the
heteroscedastic fits, absent in the standard least squares. The distributions of the hit
effective standard deviations also show trends surprisingly similar to the COG histograms.
This similarity consents the definition of a sub-optimal model (the lucky model [1]) for
the hit variances that introduce good improvements in the fitting results, without the
complications of the full calculation.

The corrections of the hit properties, due to the differences of the detector technologies
along the lines of Ref. [11], are small steps in the right direction but absolutely insufficient.
Experimental indications about the differences of the hit resolutions are reported in [12].
However, the Landau distribution of the charge released by a MIP is another well known
experimental fact, adding further differences to the hit properties and definitively sup-
pressing the homoscedasticity. Instead, the maximum likelihood method involves all the
available information contained in the data, and it is able to obtain drastic improvements
of the track parameters also in presence of outliers [2]. This ability to handle outliers is a
consequence of the tails of PDFs. As previously discussed, another important feature is
introduced by the different quality of hit PDFs. Two goods (or excellent) hits suffice for a
good (or excellent) straight track fit as in [2], or three of them for momentum reconstruction
in a known homogeneous magnetic field as in [3]. The probability of good (or excellent)
hits grows proportionally to the number N of hits (detecting layers) per track [1,5,7]. There-
fore, the pool of the track parameters is enriched at this rate (≈ linear in N) for a range of
N-values of interest for tracker physics. Instead, the standard least squares, not accounting
for the hit differences, grows as ≈

√
N. This is a very slow growth compared with the

linear one, implying a waste of tracker resolution and an increase of tracker complexity.
In spite of the proofs of the maximum likelihood as the best fitting method, intrinsic

difficulties limit its use. For very complex trackers, the full machinery of the maximum
likelihood could be beyond reasonable computing resources. Although the schematic
model [2] substitutes the maximum likelihood method with a weighted least squares,
the computing of the effective hit variances also requires large processing time. The
lucky model of Ref. [1] and its advanced version can be an easy substitute. Evidently,
each departing step from the maximum likelihood adds a loss of resolution. It must
be remembered that the schematic model, the lucky model, and its advanced form are
ineffective with the outliers.

The required analytical expressions of the PDFs have the general functional forms
P(ε, xgn), where, xgn is a generic COG with n-strips. The conditional probabilities, P(ε|xgn)
and P(xgn |ε), are connected with the marginal probabilities, P(xgn) and P(ε) [13]:

P(ε|xgn)P(xgn) = P(ε, xgn) = P(xgn |ε)P(ε) .

The constant probability of the impact point ε is assured by

P(ε) =
∫ +∞

−∞
P(ε, xgn)dxgn = 1 , (1)
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and it is consistent with the assumption of uniformity and normalization on a strip.
The Kolmogorov axioms [13] attribute to the cumulative probability distribution

a fundamental role to calculate the PDF. The cumulative probability distribution for a
continuous case is given by integrations on the appropriate portion of the plane, or the space,
as required by the geometry of the problem. Differentiating the cumulative probability
distribution produces the PDF. This method becomes extremely long with complicated
algorithms. However, our first approach was modeled on the ratio of two random variables
of [13], and we used the cumulative distributions for all the considered PDFs, from the
simplest to the most complex one. This very long set of integrals is quite tedious, to be
reported in a paper. This is the principal reason for the delay of this report. Here, a
different approach is utilized, very direct and flexible, with the use of Dirac δ-functions
and Heaviside θ-functions, operating directly on the PDFs of the strip noise; an assay was
given in [3]. This method is a variance of the Fermi “golden rule 1” that is used for the
cross-section calculations (or diffusion probabilities), and it recovers the results of our
geometric approaches. However, Gauss [14] gives similar generic expressions as obtained
after the δ-integration, but we found that old fundamental paper only recently. To underline
the consistency with the geometric approach, the first part of the COG2 PDF is obtained
with the cumulative probability distribution in Appendix B.

The random signals of our interest are modeled on the charges released on the strips
by the hitting MIPs. The signals are corrupted by additive random noises produced by the
rest of the acquisition system. The data are at their final elaboration procedure (calibration,
pedestal, common noise suppression, etc.) and are ready to be used in a positioning
algorithm of any type. The stream of primary charges, released by a MIP, diffuses in the
detector toward a cluster of strips. The charges, collected by a strip, are correlated with
those, collected by the cluster. The distributions of the charges in the cluster depend,
among other parameters such as particle direction and total released charges, on the MIP
impact point. Hence, the ε dependence of P(ε, xgn) must be contained in the strip signal
ai. The signals ai are considered as parameters, and the PDF will be expressed in the form
P({ai}, xgn), where {a1} is the set of strips inserted in xgn . The variable xgn is abandoned
for a simpler xgn ! x. The strip size is always taken to be one, and this is the length scale
of the system (all the implied lengths are divided by the strip widths). The parameters,
{ai}, can be expressed in any dimensional units consistent with those of the noise {σi} (we
use directly the ADC (analog-to-digital converter) counts.) The variable x turns out to be a
pure number as the PDFs.

Each strip has its own random additive noise uncorrelated with that of any other strip.
In strips without MIP signals, the strip noise is well reproduced with a Gaussian PDF. Thus,
the PDFs for the signal plus noise of the strip i become:

Pi(z) =
1√

2π σi
exp

[
− (z− ai)

2

2σ2
i

]
, i = 1, 2, . . . , n . (2)

The Gaussian mean values {ai} are the (noiseless) charges, collected by the strips, and
are positive numbers (we assume to have signals from real particles). The parameters {σi}
are the standard deviations of the additive zero-average Gaussian noise.

2.1. Probability for the Ratio x = ξ/(ξ + µ)

The first explored PDF is the distribution of the random values of x with x = ξ/(ξ + µ).
This expression has the structure of a COG with the origin of the reference system in the
center of the strip 2 (µ random variable) and another signal on the right strip 1 (ξ random
variable). This form of COG is the right part of the full COG2 algorithm. Due to its
limitation to only two random variable {ξ, µ}, it is a first step toward more complex PDFs.
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The derivation of the PDF for Pxg2R(x) with the cumulative distribution is illustrated in
Appendix B However, this PDF can be rapidly obtained with this method:

Pxg2R(x) =
∫ +∞

−∞
δ

(
x− ξ

ξ + µ

)
P1(ξ) P2(µ)dξ dµ . (3)

Integrating the δ-function with z = ξ + µ:∫ +∞

−∞
F(z)δ

(
x± ξ

z

)
d z = F

(
∓ ξ

x

)
|ξ|
x2 , (4)

the expression for Pxg2R(x) is easily obtained:

Pxg2R(x) =
1
x2

∫ +∞

−∞
P1(ξ)P2

(
1− x

x
ξ

)
|ξ |d ξ . (5)

The heavy tails of a Cauchy–Agnesi-like distribution are evident; Equation (5) shows
1/x2 behavior for x → +∞, and the factor (1− x)/x goes to −1. In this limit, the integral
is convergent and different from zero. Identically for x → −∞. The singularity for x = 0
is apparent because one integrand goes to zero for x → 0 and can be removed with
the coordinate transformation z/x = ζ. However, it is useful to save the 1/x2 factor to
remember the divergence of the variance for Pxg2R(x). The Gaussian integral is analytic for
any x and ai and has the following form:

Pxg2R(x) =
a2(1− x)σ2

1 + a1x σ2
2√

2π[(1− x)2σ2
1 + x2σ2

2 ]
3/2

exp

[
−
(

a1

a1 + a2
− x
)2 (a1 + a2)

2

2
(
σ2

1 (1− x)2 + x2σ2
2
)]

× erf

 a2(1− x)σ2
1 + a1x σ2

2√
2σ1σ2

√
(1− x)2σ2

1 + x2σ2
2

+ exp

(
−

a2
1

2σ2
1
−

a2
2

2σ2
2

)
σ1σ2

π
[
(1− x)2σ2

1 + x2σ2
2
] .

(6)

The expression of the Pxg2R(x) shows some aspects that will be found often in the
following. One can easily recognize, in Equation (6), part of the PDF reported in [3].
Equation (6) has a maximum for x ≈ a1/(a1 + a2). The maximum is the noiseless COG for
this combination of variables and tends to eliminate the COG systematic error [8]. Around
the maximum, Pxg2R(x) looks similar to a Gaussian. However, the exponential differs
from a Gaussian for large x. The modulating term of the exponential is connected to the
signal to noise ratio of the two strips. The positivity of the PDF is granted by the term
A erf(A), which, for a not too small A, converges rapidly to |A|. Around zero, A erf(A) is a
continuous differentiable function and differs from |A| essentially for the cusp at A = 0 of
|A|. The range of the differences with respect to |A| are of the order of σ1 (or some weighted
average with σ2). This range is expected to be negligible, if the hit-detection algorithm
works well and discards almost all the fake hits (with ai = 0). Thus, very often we will
substitute A erf(A) with |A|.

The last term will be indicated as “Cauchy-like” term; it is very similar, but not
identical, to a Cauchy-Agnesi PDF. This term survives also for a1 = a2 = 0 and could
be a probability of fake hits. It assures the strict positivity of the PDF. For ai 6= 0, the
Cauchy-like term is heavily suppressed by the negative exponents, quadratic in the strip
signal-to-noise ratio.

The validity of this PDF is limited to one side of the COG2 algorithm. The track
reconstruction requires a rigid connection to the local reference system, which is naturally
locked in the seed-strip center. Therefore, it is important to conserve a difference from the
left strip, the central strip, and the right strip. The track impact point, ε, can also be located
outside the seed strip.

Another PDF, which composes the complete COG2 PDF, contains the random variable
β, the signal collected by strip 3 positioned to the left of strip 2. This PDF will be indicated
as Pxg2L(x). As for Pxg2R(x), the strip 2 is the seed of the strip cluster. As always, the
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origin of the reference system is the center of strip 2. Now, x is given by the combination
of random variables −β/(β + µ). The function Pxg2L(x) is obtained from Equation (6)
with the substitution a1 → a3, σ1 → σ3 and x → −x. We report here Pxg2L(x); often in
the following, terms of this type will be indicated with the substitutions needed for their
construction:

Pxg2L(x) =
a2(1 + x)σ2

3 − a3xσ2
2√

2π[(1 + x)2σ2
3 + x2σ2

2 ]
3/2

exp

[
−
(

a3

a3 + a2
+ x
)2 (a3 + a2)

2

2(σ2
3 (1 + x)2 + x2σ2

2 )

]

× erf

 (1 + x)a2σ2
3 − a3 xσ2

2√
2σ3σ2

√
(1 + x)2σ2

3 + x2σ2
2

+ exp

[
−

a2
3

2σ2
3
−

a2
2

2σ2
2

]
σ3σ2

π[(1 + x)2σ2
3 + x2σ2

2 ]
.

(7)

The small x approximation is now:

Pxg2L(x) =
|a2|√

2π

exp
[
−
(

x + a3
a3+a2

)2 (a3+a2)
2

2(σ2
3 (1+x)2)

]
σ3(1 + x)2 .

The approximation of P2[z(−1− x)/x] as a Dirac δ-function in the integration of Equation (5)
does not reproduce the Cauchy-like term. The factor (1 + x) is retained, being contained in
the argument of the δ-function. Its role is essential to obtain the maximum of Pxg2L(x) in the
expected position −a3/(a3 + a2) of its noiseless COG.

2.2. Probability Distribution for y = ξ−µ
2(ξ+µ)

Another type of COG2 algorithm is of frequent use, for example, in [15]. The main dif-
ference of this combination of random variables, from previous expressions, is a translation
with respect to the standard reference system (centered in the middle of the strip 2). Now,
the reference system is centered on the right border of the strip 2. This COG2 algorithm has
the following form:

y = x− 1
2
=

ξ − µ

2(ξ + µ)
. (8)

Although this is another direct transformation of Equation (6), we report its general
form and the case of Gaussian PDF for completeness:

PG(y) = Pxg2R

(
y +

1
2

)
=
∫ +∞

−∞
P1(ξ)P2

(
1− 2y
1 + 2y

ξ

)
|ξ|

(y + 1/2)2 d ξ . (9)

In the form of PG(y), we directly use the substitution of A erf(A) with |A|. In any case,
A erf(A) is easily obtained from Equation (6):

PG(y) =
4
∣∣a2(1− 2y)σ2

1 + a1(1 + 2y)σ2
2

∣∣
√

2π
[
(1− 2y)2σ2

1 + (1 + 2y)2σ2
2
]3/2 exp

[
−
(

a1 − a2

2(a1 + a2)
− y
)2

× 2(a1 + a2)
2

(σ2
1 (1− 2y)2 + (1 + 2y)2σ2

2 )

]

+ exp

[
−

a2
1

2σ2
1
−

a2
2

2σ2
2

]
4σ1σ2

π
[
(1− 2y)2σ2

1 + (1 + 2y)2σ2
2
] .

(10)

With a similar transformation, the PDF for y = x + 1/2 can be obtained; here, the
reference system is centered on the left border of strip 2 with strip 3. A discussion of
the variance of y for small errors is given in [16], although the variance is an ill defined
parameter due to the Cauchy–Agnesi-like tails of the PDF. In this case, the results depend
on the assumptions introduced.
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These PDFs have simple analytical forms; they are defined in reference systems that
depend on the signal in the second strip. Their use in maximum likelihood search, could
imply heavy complications in the exploration of the likelihood surface. In fact, to allow for
the maximum to be outside the two strips of the PDF, another function must be introduced
with a different reference system.

2.3. Probability Distribution for w = ξ/µ

As a final use of Equation (5), we apply it to obtain the PDF for the ratio of random
variables w = ξ/η. Now it reads:

x =
ξ

ξ + µ
, w = ξ/µ , x =

w
1 + w

, Pξ/µ(w) = Pxg2R

(
w

1 + w

)
1

(1 + w)2 . (11)

The integral expression of Pξ/µ(w) becomes:

Pξ/µ(w) =
1

w2

∫ +∞

−∞
P1(z)P2

( z
w

)
|z|dz , (12)

and transforming Equation (6) in w, as indicated, the Pξ/µ(w) for Gaussian PDFs becomes:

Pξ/η(w) =
a2σ2

1 + a1wσ2
2√

2π(σ2
1 + w2σ2

2 )
3/2

exp

[
−
(

a1

a2
− w

)2 a2
2

2(σ2
1 + w2σ2

2 )

]

× erf

 a2σ2
1 + a1wσ2

2√
2σ1σ2

√
σ2

1 + w2σ2
2

+ exp

[
−

a2
1

2σ2
1
−

a2
2

2σ2
2

]
σ1σ2

π(σ2
1 + w2σ2

2 )
.

(13)

Now, the maximum of the first term is moved to be around a1/a2. For a1 = a2 = 0,
the last term, the only non-zero, coincides with that reported in [13].

3. The PDF of the Complete COG2 Algorithm

To obtain the PDF for the COG2 algorithm, we have to define in detail this algorithm.
As previously recalled, the signals of the three strips must be simultaneously accounted for:
the strip with the maximum signal (strip 2, the seed strip) and the two lateral strips (strip
1 to the right and strip 3 to the left). Any signal value in these two strips is accepted, as
well as any signal value below the threshold for the insertion of a strip signal in a cluster
by the cluster detection algorithm (as in [17]). Around strip 2, the strip with the maximum
signal is selected between the two strips 1 and 3. Due to the smallest number of strips, this
COG2 has a very favorable signal-to-noise ratio. It is the natural selection for orthogonal
incidence on strip detectors with strip widths near to the average lateral drift of the primary
charges [6].

3.1. The Definition of the COG2 Algorithm

The definition of the COG2 algorithm can be condensed into the following equation [3]:

xg2 =
x1

x1 + x2
θ(x1 − x3)−

x3

x3 + x2
θ(x3 − x1) . (14)

where x1, x2, x3 are the random signals in the three strips and θ(z) is the Heaviside θ-
function: θ(x) = 0 for x ≤ 0 and θ(x) = 1 elsewhere. The two θ-functions select the lateral
strip with the highest signal. No condition is imposed on the strip 2, although it has some
constraints for its role of seed strip. This choice eliminates inessential complications and
saves the normalization of the PDF.

Our aim is to reproduce the gap for xg2 ≈ 0, which is typical of the histograms
of the COG2 algorithm. This gap is given by the impossibility (or lower probability) to
have xg2 ≈ 0 if the charge drift populates one or both the two lateral strips. The gap
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grows rapidly with an increase of these two charges. The noise and our selection allow
forbidden values.

The η-algorithm of Ref. [18] uses a slightly different definition. The term−x3/(x2 + x3)
of Equation (14) is modified in x2/(x2 + x3). In this way, the values of η are contained in
the interval {0 `a 1}, and the gap for xg2 ≈ 0 is spread at the borders of this interval.

The constraints of Equation (14), on the three random signal, {x1, x2, x3}, are inserted
in the integral for the PDF of Pxg2(x). The integral expression is given by (with the usual
substitution of xg2 as x):

Pxg2(x) =
∫ +∞

−∞
d x1 d x2 d x3P1(x1)P2(x2)P3(x3)

[
δ

(
x− x1

x1 + x2

)
θ(x1 − x3)

+ δ

(
x +

x3

x3 + x2

)
θ(x3 − x1)

]
.

(15)

The normalization of Pxg2(x) can be immediately proved with a direct x-integration.
The other integrals are executed with the following transformations: x1 = ξ, x1 + x2 = z1,
x3 = β, and x3 + x2 = z2. The Jacobian of each couple of transformations is one. The
integrals on z1 and z2 of the two δ-functions can be performed with the rule of Equation (4).
The general form of Pxg2(x) for any type of signal PDF {P1, P2, P3} becomes:

Pxg2(x) =
1
x2

[ ∫ +∞

−∞
dξP1(ξ)P2(ξ

1− x
x

)|ξ|
∫ ξ

−∞
dβP3(β)

+
∫ +∞

−∞
dβP3(β)P2(β

−1− x
x

)|β|
∫ β

−∞
dξP1(ξ)

]
.

(16)

The Gaussian PDFs of Equation (2), inserted in Equation (16), allow for the explicit
expression of the two integrals on P3(β) and P1(ξ) with the appropriate erf-functions.
Indicating the remaining integration variable as z, Equation (16) becomes:

Pxg2(x) =
1

2πσ1σ2x2

×
∫ +∞

−∞
dz |z|

{
exp

− (z− a1)
2

2σ2
1
−

(
(1−x)z

x − a2)
)2

2σ2
2

 1
2

[
1− erf

(
a3 − z√

2σ3

)]

+
σ1

σ3
exp

[
− (z− a3)

2

2σ2
3
−

( (−1−x)z
x − a2)

2

2σ2
2

]
1
2

[
1− erf

(
a1 − z√

2σ1

)]}
.

(17)

The combination of erf-functions and |z| render an analytical integration of Equation (17)
impossible. The serial development of the erf-function and its successive integration term by
term is too cumbersome to be of practical use. (A generalization of the erf-function to the two
dimensions is missing). Thus, we have to explore analytical approximations apt to be useful
in a maximum likelihood search.

3.2. Small-|x| Approximation

The small |x| approximation is one of the easiest ways to handle Equation (17). The
function P2(z(1− x)/x) can be transformed to approximate a Dirac δ-function for small |x|:

exp
[
−
(

1−x
x z− a2

)2 1
2σ2

2

]
√

2πσ2
=

exp
[
−
(

z
a2
− x

1−x

)2 (1−x)2 a2
2

2x2 σ2
2

]
√

2 π σ2 | x |
a 2 | (1−x) |

|x |
a2|(1− x)|

≈ |x |
a2|(1− x)| δ

(
ζ − x

1− x

)
ζ = z/a2 .

(18)
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The effective standard deviation of the Gaussian is σ2|x|/(a2|1− x|); this term, for
|x| → 0, produces the convergence of the Gaussian toward a Dirac δ-function. The term
|1− x| is useful to obtain the combination a1/(a1 + a2) in the exponent of the Gaussian-like
function. A similar transformation can be applied to P2[z(−1− x)/x]; the integration on ζ
is now immediate, and the small |x| probability Pxg2 becomes [3]:

Pxg2(x) =
|a2|

2
√

2π


exp

[
−
(

x− a1
a1+a2

)2 (a1+a2)
2

2(σ2
1 (1−x)2)

](
1− erf

[(
a3

a3+a2
− x
)

a2+a3√
2(1−x)σ3

])
σ1(1− x)2

+

exp
[
−
(

x + a3
a3+a2

)2 (a3+a2)
2

2(σ2
3 (1+x)2)

](
1− erf

[(
a1

a1+a2
+ x
)

a1+a2√
2(1+x)σ1

])
σ3 (1 + x)2

 .

(19)

The term a2 is a positive constant (the noiseless charge of the seed strip) and the
absolute value can be eliminated, but for future developments it is better to remember its
presence. It is easy to recognize in Equation (19) the two maxima of Equations (6) and (7),
the noiseless position of the two branches of the COG2 algorithm. The main difference is
due to the two [1− erf(−z)]/2 functions, these types of functions are similar to continuous
(and derivable) Heaviside θ-functions. They interpolate, in a very smooth way, the two
sides of the PDF. Two different simulated distributions are reported in [2,3] and compared
with Equation (19); the first one did not contain the Landau fluctuations, while the second
one contained the approximate Landau fluctuations. At orthogonal incidence, the Landau
fluctuations are well described by the fluctuations of the total collected charges.

The approximation of Equation (19) reproduces, in a reasonable way, the COG2 PDF
for non-small-x too. Actually, the real useful range of x is |x| ≤ 0.5, and the factor that is
supposed small is |x|σ2/a2. However, the constant a2 is connected to the seed of the cluster,
and it has a high probability to be larger than a few times σ2. The a2 noisy detected part, x2,
must assure a reasonable detection efficiency of the hit. Certainly, Equation (19) becomes
of no use around x = ±1. Anyway, improved approximations are always useful, given
that the probability Pxg2(x) has to be applied to a large set of experimental configurations.
The conceptual incompleteness of Equation (19) is the lack of the normalization. The
normalization assures a constant probability of the impact point (Equation (1)), but its lack
is not a real limitation for a practical use of Equation (19)).

3.3. A Better Approximation for Pxg2(x)

A more accurate approximation for Pxg2(x) can be obtained retaining the small-x
approximation for the two erf-function of Equation (17) and integrating on z the remaining
parts. Now, the two integrals have analytical forms, one identical to Equation (6) (a part a
factor 1/2) and the other to Equation (7). This approximation also saves the normalization,
obviously within the precision of a numerical integration of a heavy-tail PDF. It must be
recalled that normalization is the only converging integral for all these PDFs.

As with simplification described above, we substitute A erf(A) for |A|. In any case,
the expressions of the erf-functions are those of Equations (6) and (7). Additionally, the
Cauchy-like terms are neglected. They are very small. For example, the seed charge in
some experiments is selected to be around 6 ∼ 7σ; thus, the term exp(−a2

2/2σ2
2 ) could be

around exp(−18) ≈ 10−8. In some special conditions, these terms might be useful for the
outlier suppressions [2] that depend on the PDF tails. As previously stated, these terms
assure the strict positivity of Pxg2(x) for a1 = a2 = a3 = 0. However, we did not insert
those terms in our track reconstructions.
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Pxg2(x) =

∣∣∣a2(1− x)σ2
1 + a1xσ2

2

∣∣∣
2
√

2π[(1− x)2σ2
1 + x2σ2

2 ]
3/2

exp

[
−
(

a1

a1 + a2
− x
)2 (a1 + a2)

2

2(σ2
1 (1− x)2 + x2σ2

2 )

]

×
{

1− erf

[(
a3

a3 + a2
− x
)

a2 + a3√
2(1− x)σ3

]}
+ (a1 ↔ a3, σ1 ↔ σ3, x → −x) .

(20)

Although Equation (20) represents a better approximation, compared to Equation (19),
it shows appreciable deviation from the numerical integral of Equation (17) in some extreme
cases. For example, for tracks with large inclination, the combination of parameters
a1/(a1 + a2) are quite close to a3/(a3 + a2) and slightly lower than 0.5. In this case, the
two maxima are widely separated, and the Pxg2(x) of Equation (20) shows discrepancies,
compared to the numerical integration of Equation (17). These discrepancies are absent, or
heavily reduced, in the longer approximation, given in Appendix B.

Some properties of this PDF and its extensions, which are useful in track reconstruction,
are illustrated with a set of simulations in Section 5.

4. Simplified form of the Three Strip COG

To test the accuracy of the functions {ai(ε)}, the reconstruction of the two-strip and
three-strip COG (COG2 and COG3) histograms were extensively used in [2]. For this
task, the COG3 PDF was also essential. To simplify, we leave out of this discussion the
complications of the full form of the COG3 PDF and their gaps at the strip borders as
discussed in [8], limiting the demonstration to the easiest COG3 form. This incomplete PDF
is useful in all the cases when the border gaps are very small (near orthogonal incidence):

Pxg3(x) =
∫ +∞

−∞
dx1 dx2 dx3P1(x1)P2(x2)P3(x3)δ

(
x− x1 − x3

x1 + x2 + x3

)
. (21)

Again, the normalization of Pxg3(x) is easily verified. The substitution of variables, ξ =
(x1 − x3), z = (x1 + x2 + x3), and β = x2, simplifies the Dirac δ-function integration.
The Jacobian of the substitution equals 1/2. Integrating over ξ the Dirac δ-function, the
remaining double integral has the following form:

Pxg3(x) =
1
2

∫ +∞

−∞
dz dβ|z|P1

(
z(1 + x)− β

2

)
P2(β) P3

(
z(1− x)− β

2

)
. (22)

The integration in β is a convolution of Gaussian PDFs and provides another Gaussian.
Due to the |z|, the integral on z produces the term of the form A erf(A) that, as above, we
approximate as |A|. The introduction of the auxiliary constants X3 and E3 further simplifies
the form of Pxg3(x). The Cauchy term, indicated with PC

xg3
(x), is the first one discussed and

it is:

PC
xg3

(x) = exp

−
E2

3

[
σ2

1 (X3 − 1)2 + σ2
2 (X3)

2 + σ2
3 (X3 + 1)2

]
2(σ2

1 σ2
2 + 4σ2

1 σ2
3 + σ2

3 σ2
2 )


×

√
σ2

1 σ2
2 + 4σ2

1 σ2
3 + σ2

3 σ2
2

π
[
(1− x)2σ2

1 + x2σ2
2 + (1 + x)2σ2

3

] ,

X3 =(a1 − a3)/(a1 + a2 + a3) , E3 = a1 + a2 + a3 .

(23)

The term PC
xg3

(x) for σ1 = σ2 = σ3, as it is often, has a very simple form:

PC
xg3

(x) = exp

[
−

E2
3 (X2

3 + 2/3)
4σ2

1

] √
2/3

π(x2 + 2/3)
.
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This term also survives for E3 = 0 and becomes an exact Cauchy–Agnesi PDF. The main
term Pxg3(x) is:

Pxg3(x) = exp

−(X3 − x)2 E2
3

2
[
(1− x)2σ2

1 + x2σ2
2 + (1 + x)2σ2

3

]


×

∣∣∣E3

[
(1− X3)(1− x)σ2

1 + X3xσ2
2 + (1 + X3)(1 + x)σ2

3

]∣∣∣
√

2π
[
(1− x)2σ2

1 + x2σ2
2 + (1 + x)2σ2

3

]3/2 ,

(24)

the approximation of A erf(A) as |A| has no observable differences in our realistic simula-
tions. Anyway, the erf-function is:

erf

{
E3
[
(1− X3)(1− x)σ2

1 + X3xσ2
2 + (1 + X3)(1 + x)σ2

3
][

2(σ2
1 (1− x)2 + x2σ2

2 + (1 + x)2σ2
3 )(σ

2
2 σ2

3 + σ2
1 (σ

2
2 + 4σ2

3 ))
]1/2

}
. (25)

The upper part of the fraction in the erf-argument in Equation (25) coincides with
the corresponding term in the absolute value of Equation (24). The numerator of the
erf-argument represents rather peculiar recurrent form (in the main term (24)); the σ2

i of
each strip is multiplied by the noiseless COG3, referred to in the position of that strip and
identically for the running x. A similar feature can also be seen in the COG2 PDF.

A complete form for the COG3 algorithm must account for the gap at the strip borders.
This happens when the signal distribution is larger than two strips, and the values of
x ≈ |0.5| are suppressed in the COG3 creating gaps at the strip borders. The suppression
increases rapidly as the (average) signal distribution grows beyond the two-strip size. Near
to the strip borders, the noise can increase the signal collected by the nearby strip (as the
strip 1), becoming the seed of another three-strip cluster. In this case, the COG3 algorithm
must operate with the signal triplet {x2, x1, x4}, where x4 is the signal of the strip to the
right of the strip 1. Thus, the algorithm becomes:

xg3 =
( x1 − x3

x1 + x2 + x3

)
θ(x2 − x1) +

( x4 − x2

x1 + x2 + x4
+ 1
)

θ(x1 − x2) . (26)

The two sides of Equation (26) are defined in the identical reference system centered
on strip 2. A similar expression is required for the gap at the other border of the strip 2.
The details of these extensions of the COG3 algorithm are reported in [19] (and references
therein.) These are the instruments to move toward large angles of incidence. However,
the selection of the COG algorithm depends on the sizes and shapes of the average signal
distributions. Such parameters must be extracted from the data with the equations from [2].

5. Applications
5.1. Plots and Simulations with Equation (20)

A set of simulations highlight some peculiar properties of the PDF of Equation (20). The
other PDFs are of minor use at the orthogonal incidence. The effective use of Equation (20)
in track reconstruction, and similarly for all the other PDFs, requires the completion with
the functional dependence from the hit impact point. The method for this completion is
discussed in [2], with the construction of the functions aj(ε). Unlike their definition in the
previous equations, the aj(ε) are constructed normalized to one. For tuning them to each
hit, the parameter E0 scales the aj to the appropriate values; E0 is the noiseless total charge
collected by the three strips of each hit. The functions aj(ε) are obtained by large averages
of hit positioning given by the η-algorithm [6]. The data of the test-beam [20] were used for
those constructions. The unbiasedness of the η-algorithm and the special averages [2] give
to the aj realistic functional dependencies from the hit impact point ε. The finiteness of the
averages leave small artifacts, but they have no detectable effects on the distributions of the
fitted parameters.
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A simple simulation can be used to verify the consistency of Equation (20) and to
illustrate the weak gap present in a distribution of simulated xg2 in the scatter-plot of
Figure 1. The data of the simulation are generated with the function randn of MATLAB and
with the equations xi = σ1 randn(1,N)+ai ∗ E0 and inserted in Equation (14) to calculate
a large sample of xg2. The values for ai ( a1 = 0.01, a2 = 0.91, a3 = 0.08, E0 = 150 ADC
counts, and σ1 = 8 ADC counts) and σi are extracted from [2] for orthogonal incidence
on the two types of silicon detectors studied there. The type of detector considered in
Figures 1 and 2 is of normal type with a high noise of 8 ADC counts, one of the two types
studied in [2,3]. To simplify the simulations, all the σi are identical to the most probable
noise of the strips. The noisy strips are very few, and it is a useless complication to explore
different σi. The left side of Figure 2 reports the overlaps of the analytical PDF and the PDF
obtained from the simulated data (empirical PDF).

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

X
g
2

Figure 1. Left: scatter-plot of a sample of simulated xg2 data as a function of the impact point ε; the
red line is the η-algorithm. The magenta line and the blue line are for the following figures. Right: a
two-dimensional (2D) illustration of the PDF for xg2 in function of the impact point ε for E0 = 150
ADC counts. See text for details.
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Figure 2. Left: empirical PDFs of xg2 (blue line), compared with Equation (20) (red line), for a model
of silicon detector [2] and an impact point ε = −0.2; all the σi = 8 ADC counts, and a1 = 0.01 E0,
a2 = 0.91 E0, and a3 = 0.08 E0 are the charges, collected by the three strips; here, E0, the total charge of
the three strips, is 150 ADC counts (the magenta line of Figure 1). Right: the probability distribution
for xg2 = 0.15, the blue line in the scatter-plot of Figure 1.

The probability decreases between the principal and secondary maximum of Figure 2,
originating a similar reduction along the magenta line in the scatter-plot of Figure 1. The
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secondary maximum is produced by the noise that promotes the minority noiseless signal
to become the greater one. The signal clusters with a lower total charge show larger gaps.

The right side of Figure 2 shows the probability distribution of the hit impact points
for a given value of the two strip COG xg2. xg2 = 0.15 is the constant value of xg2, the
blue line in the scatter-plot of Figure 1. The integral of this distribution provides the
probability for this value of xg2 for 150 ADC counts. The integration is limited to a two-
strip width, centered on the maximum of the distribution. In this way, the histogram
of xg2 is analytically reconstructed and reproduces well the histogram of the simulated
data [2]. Products of probability distributions, similar to that of Figure 2, are used to find
the maximum likelihood of a set of hits for a track. Figure 2 also shows the presence of
outliers in the tail of the distribution. These outliers are difficult to handle because they are
masked as good hits in the schematic model. Instead, the maximum likelihood is able to
avoid their disturbances in the fits. In [2], we illustrate one of the worst outliers and how the
maximum likelihood finds almost the exact parameters of the fitted track. We accumulated
many similar simulated events with excellent maximum likelihood reconstructions and the
worst for schematic model and standard fit reconstructions.

Figures 3 and 4 report plots similar to Figures 1 and 2 for the floating strip detector [2,20].
These plots illustrate the large differences of this excellent detector type with very low noise
and the floating strips, which are able to distribute the incoming signal to the nearby strips.
The gap for COG2 ≈ 0 is a real gap without data in a scatter-plot with a moderate number of
events. The the effects of the low noise (of 4 ADC counts) are quite evident in the distributions.
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Figure 3. Same as Figure 1 but for floating strip detectors. Left: scatter-plot of xg2 data as a function
of ε. Right: 2D PDF for xg2 as a function of ε.
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Figure 4. Floating strip detector. Left: analytical PDFs of xg2 for ε = −0.1 and E0 = 150 ADC counts.
Right: the probability distribution for xg2 = 0.1, the blue line in the scatter-plot of Figure 3.



Physics 2022, 4 1039

5.2. The Lucky Model

The availability of the analytical equations for the COG PDFs allows for a direct
discussion about the lucky model of Ref. [1]. The structure of [1] had to heavily deviate
from its aims to complete this discussion. As sketchily illustrated in [1], this sub-optimal
model is suggested by the similarity of the trends of the effective standard deviations
for the schematic model and the trends of the xg2 histograms (similarly for the COG3
histograms). Those effective standard deviations were obtained from the variances of
functions of ε, two of them illustrated in the right side of Figures 2 and 4, as explained
in [2,3]. The scatter-plots of these effective standard deviations clearly show the trends
of the xg2 histograms. In [2], we gave an approximate motivation of this non-obvious
correlation. We can complete those motivations with more details. The reasoning of [2]
supposes (as always ) a uniform population of events on a strip; thus, for regions with large
effective variances, a relative larger fraction of events ends up with the corresponding xg2-
values. Instead, for small effective variances, a relative lower fraction of events ends up with
these xg2-values. Assuming the correctness of this explanation, a test of its effectiveness
in improving a fit is a natural output. Although the result of this “lucky” test of [1] was
successful, a detailed supporting proof is essential for confident use. This proof was a
pledge of reference [1].

Actually, the construction of this proof requires an analysis of Equation (20) and the
left sides of Figures 2 and 4, unavailable tools in [1].

Equation (20) shows the Pxg2(x) as formed by two bumps ( approximatively Gaussian)
whose maxima follows the noiseless function xg2(ε). Beyond the center of the strip, the
last part of each bump decreases rapidly as illustrated in the two-dimensional 2D PDF of
Figures 1 and 3. As discussed in [6], the η-algorithm produces functions that show strong
similarity with the noiseless xg2(ε), in the relevant parts of the two bumps. Therefore, we
can use the functions xg2(η), of the η-algorithm, in place of the exact noiseless xg2(ε), and
to follow the path of the bump maxima and the two corresponding positions at the half-
maximum. The distance between these two positions is the full-width-at-half-maximum of
the Pxg2(x) in the direction of the hit impact point. Each of these two points follows paths
parallel to the noiseless xg2(ε), one above and the other below the path followed by the
bump maximum. Again, we approximate these paths with the xg2(η)-function. The two
sides of Figure 5 (out of scale for a better illustration) present these paths for the two types
of detectors considered in [2,3]. The vertical segments are the full-width-at-half-maximum
of Pxg2(x) and are defined as σxg2 . The positioning errors ση of a generic x0

g2, possible
realizations of their COG2, are the horizontal black lines. The amplitudes of the horizontal
segments are the positioning errors relevant for the weighted least squares.
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Figure 5. Relation between the amplitude of the xg2 error of Equation (20) and the positioning error
of a given value of COG2 due to an observation for normal strip detector (left) and for floating strip
detector (right). See text for details.
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The blue lines in Figure 5 are curved lines and only approximatively describe a triangle,
while the ratio of σxg2 and ση can be estimated as

tan(α) ≈
σxg2

ση
,

1
tan(α)

=
d η

d xg2

∣∣
x0

g2
= Γ(x0

g2) , ση ≈
σxg2

tan(α)
= σxg2 Γ(x0

g2) , (27)

where Γ(x0
g2) is the amplitude of the normalized histogram of COG2 for the value x0

g2.
Actually, the starting point of the η-algorithm of [6] is the differential equation d η/d xg2 =
Γ(xg2). Neglecting the differences of σxg2 , the η-algorithm gives all the elements for a good
fit; the corrections of the COG2 systematic errors and the weight for track fitting in an array
of identical detector layers. In this case, the expressions of the parameter estimators of the
fit are independent from the (assumed) constant σxg2 . Therefore, the values of Γ(xg2) can
be used directly as weights of the observations in the weighted least squares of a track.

In the presence of large data gaps, (i.e., the absence of data) in the histogram of
COG2, the function xg2(η) acquires discontinuities that complicate the plots of Figure 5,
as discussed in [8]. Anyhow, the presence of large gaps in the COG histograms should be
avoided for the excessive loss of information. It is preferable to use the COG-algorithms
with more strips.

Advanced form for the Lucky Model: The Super-Lucky Model

The precedent discussion is a justification of the simple lucky model of [1]. We utilized
this model with a set of identical detectors, directly inserting the amplitudes of the COG2
histograms in place of effective standard deviations of the observations. The scaling factor,
(σ(xg2) = constant) of this approximate guess, is simultaneously present in the numerator
and denominator of the expressions of the fitted parameters and simplifies. This simpli-
fication is impossible for arrays with detectors of different types. Hence, the (assumed)
constant vales of the scaling factors (σxg2) become relevant to tuning the amplitudes of
different histograms with the properties of the different detectors. The full calculation of
some effective standard deviations of the schematic model looks unavoidable. However,
the demonstration of Equation (27) recalls one’s attention to the possible variations of
σxg2 . Let us suppose that the principal bumps of Equation (20) are close to the form of
Gaussian PDFs. We can push this assumption forward and extract from Equation (20)
approximate forms for σxg2 (abandoning the full-width-at-half-maximum in favor of the
usual standard deviation):

σR
xg2

=

√
σ2

1 (1− |XR|)2 + σ2
2 (XR)2

a1 + a2
, XR =

a1

a1 + a2

σL
xg2

=

√
σ2

3 (1− |XL|)2 + σ2
2 (XL)2

a3 + a2
, XL = − a3

a3 + a2
.

(28)

Actually, a careful substitution of XR and XL in place of x in the two branches of Equa-
tion (20), is able to transform the two bumps in two Gaussian PDFs. Anyhow, even these
approximate forms are outside our reach; a1, a2, and a3 are the noiseless signals released by
the MIP. Only their noisy version is available. Similarly for XR and XL, they represent the
noiseless COG2, the ratio of noiseless signals. The only well defined parameters are σ1, σ2,
and σ3, the strip noises, calculated at the initialization stage of the strip detectors. However,
we can try to combine the noisy data to see what might happen (we were lucky with the
COG2 histogram in Ref. [1]). The COG2 algorithm is described in Equation (14) with the
definition of xg2; therefore, the approximate (super-lucky) Σsup could be:
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Σsup =

√
σ2

1 (1− |xR|)2 + σ2
2 (xR)2

x1 + x2
θ(x1 − x3) +

√
σ2

3 (1− |xL|)2 + σ2
2 (xL)2

x3 + x2
θ(x3 − x1) ,

xR =
x1

x1 + x2
, xL = − x3

x3 + x2
, ση = Σsup(xg2) Γ(xg2).

(29)

The insertion of Equation (29) into the calculation of the effective standard deviations
of the observations can be compared with those of the schematic model for the two widely
different detector types of our simulations. We also tested the use of the soft cut-offs with
the erf-functions of Equation (20) in place of the sharp cut-offs of Equation (29), but this
insertion adds complications without any visible effect on the simulations.

The upper plots of Figure 6 illustrates the relations of the effective standard deviations
from Refs. [2,3] for the two schematic models and the corresponding amplitudes of the
lucky model. The lower plots of Figure 6 show the surprisingly good overlaps of the
guessed weights of Equation (29) for the advanced lucky model (hereafter, the super-lucky
model) with the two schematic models of [2,3]. Additionally, the limitation to an identical
set of detectors is solved by the super-lucky model.

-0.5 0 0.5

x
g2

0

0.5

1

1.5

2

2.5

3

3.5

s
c
h

e
m

,l
u

c
h

y

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x
g2

0

0.5

1

1.5

2

2.5

3

3.5

s
c
h

e
m

,l
u

c
h

y

-0.6 -0.4 -0.2 0 0.2 0.4

x
g2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

s
c
h

e
m

,l
u

c
h

y

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x
g2

0

0.02

0.04

0.06

0.08

0.1

0.12

s
c
h

e
m

,l
u

c
h

y

Figure 6. Top: blue dots represent the schematic model, red dots the COG2-histogram for normal
strip detector (left) and floating strip detector (right). Bottom: blue dots represent the schematic
model, red dots the ση(xg2) of Equation (29) for normal strip detector (left) and for floating strip
detector (right). See text for details.

Figure 7 shows the quality of the track reconstructions produced by the super-lucky
model that is quite close to that of the schematic model, which is substantially better
than the simple lucky model (not plotted for a better readability). Similarly to that in [1],
Figure 7 reports the empirical PDFs for the fitted directions (the tangents of small angles)
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of 150,000 straight tracks at orthogonal incidence on a set of parallel and equidistant
detector layers. To clearly visualize the differences of the parameter distributions, the
first distributions with two detector layers are centered on zero (as it must be); the other
distributions with N = 3, N = 4, . . ., up to N = 13, are shifted by N-2 identical steps. We
always start from two detector layers as a check of the methods.
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Figure 7. Comparison of the schematic model (black lines), the super-lucky model (red lines), and the
standard model (blue lines) for the track direction reconstructions with 2, 3, . . ., 13 layers for normal
strip detectors (left) and for floating strip detectors (right). See text for details.

An interesting comparison is the relations of the maxima of the distributions of Figure 7
and the standard deviations of those distributions. We have to recall the possible com-
plications with the standard deviation for systems with PDFs having tails similar to the

Cauchy–Agnesi PDFs. As in Refs. [1,5], we report 1/
√

2 π S2
d, where Sd is the standard de-

viation of one of the empirical PDFs in Figure 7. For the Gaussian PDF, this ratio coincides
with the maximum of the PDF. As expected by the Cauchy–Agnesi tails of the PDFs, we
observe large distances from the maxima in these plots. The maxima of the standard least
squares are the nearest.

The results of the lucky model are not reported to avoid an excessive complication
in the plots. However, the simulations with the lucky model for the normal strip detector
are reported in Ref. [1]. The results of the lucky model for the floating strip detector are
appreciably lower (≈12%) than the results of the super-lucky model.

5.3. The Super-Lucky Model for the Combination of Two Very Different Detector Types

The super-lucky model was studied just for the application of the lucky model to
trackers with different types of detector layers. Thus, we simulated a set of trackers starting
with two detector layers, one for each type, and added via alternation a floating strip
detector and a normal detector. Figures 7 and 8 show the large differences in resolution of
these two types of detectors composing this new system; the floating strip detectors with a
low noise of four ADC counts and the normal detectors with a noise of eight ADC counts.
The floating strips add further improvement in resolution because they spread the signal in
the nearby strips.

The left sides of Figures 9 and 10 illustrate the similarity in the resolution of the
super-lucky model and the schematic model for this non-homogeneous set of trackers. For
comparison, in the right sides of Figures 9 and 10, we also report the simulation with the
simple lucky model. The improvements of the super-lucky model are evident. Despite its
inconsistency in this case, the simple lucky model shows a substantial increase of resolution
compared with the standard least-square. The rough pieces of information contained in
the model are able to enrich the parameter distributions of the exact values. Instead, the
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standard deviations of the parameters of this simple model are close enough (although
better) to those of the standard least-squares, signaling large tails given by tracks without
good hits. The super-lucky model has standard deviations appreciably better than the
lucky model; thus, the added corrections (29) recover part of the tails. However, the effects
due to the large tails of the distributions can be attenuated by the selection of tracks with
two or more good hits.
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Figure 8. Comparisons of maxima and 1/
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2 π S2
d, Sd is the standard deviation of one of the three

distributions for the normal strip detectors (left) and for the floating strips detectors (right). The
magenta markers represent the schematic model, the red markers the super-lucky model, and the
blue markers the standard fit. The circles indicate the maxima, and the asterisks the ratio of the
standard deviations. See text for details.
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Figure 9. Left: comparison of the schematic model (black lines), super-lucky model (red lines), and
the standard model (blue lines) for the track direction reconstructions half detector layers of floating
strip detector and half with normal detector layers. Right: the same half-and-half detector arrays.
The green lines represent the simpler lucky model, and other lines are those of the left plot.
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Figure 10. Mixed detector quality. Comparison of maxima and 1/
√

2 π S2
d for the normal strip case

(left) and for the comparison with the simpler lucky model shown by green circles (right). The
magenta markers represent the schematic model, the red markers the super-lucky model, and the
blue markers the standard fit. The circles indicate the maxima, and the asterisks the ratio of the
standard deviations. See text for details.

In this set of trackers, the growth of the maxima are dominated by the floating strip
detectors; the addition of a layer of this type of detectors shows an evident increase of
the maxima of the distributions. Instead, the addition of a layer of normal detectors has a
negligible effect. The usual linear growth shown in the two sides of Figure 8 transforms
into the step-like growth in Figures 9 and 10. Additionally, the standard least-square
fit shows a drastic reduction of the maxima and a general deterioration in comparison
with the simpler analysis of the parts with good detector types. All other models also
show improvements for the addition of low-quality detectors. In [5], the resolutions for
these non-Gaussian distributions are defined by the maxima of the distributions: the
higher the maximum, the better the resolution. The method of fitting a Gaussian in the
core of the distributions (as, e.g., in [12,21]) gives too high values for these very narrow
distributions. The demonstrations from Refs. [5,7] prove that the standard least squares
model is never optimum outside the homoscedastic systems. The results of the previous
two suboptimal models enforce the power of those demonstrations. Actually, any deviation
from homoscedasticity, as well as with weak correlations with the true variances for the
observations, is able to improve the fit resolution beyond the results of the standard
least squares.

These results are exclusively obtained with the hit position, given by the η-algorithm,
as it is shown in the two sides of Figure 5. The use of the positions, given by the COG2-
algorithm (as often done), totaly supresses the goodness of these results, and the parameter
distributions are lower than those of the standard least-squares fits, (even these substantially
lower than those given by the η-algorithm).

5.4. Further Discussions and Comparisons for the Simulations and Data

For a happy coincidence, we found a very effective approximation of the schematic
model. When we started to write Equation (27), we had no idea of those further upgradings.
They were suggested by the environment in which the equation was written. Surprising
enough were the overlaps among the effective standard deviations for excellent hits; they
are illustrated in the low part of Figure 6. Further checks also showed that the differences
of these parameters, for the same hit, are around ≈10%, 20% for many thousands of
excellent hits. This is a very improbable random event; thus, a mathematical explanation
has to be found. We have to recall that the construction of the effective variances in
the schematic model contains an arbitrariness to be fixed. Equation (11) of [3] reports a
detailed description of this construction. The probability distributions in the integrals are
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similar to those at the right side of Figures 2 and 4, very different from Gaussian PDFs
for the COG2 around zero. Instead, in the regions of excellent hits for the floating strip
detectors, the simulations show a strong similarity with the Gaussian PDFs for the core
of the distributions. The tails are surely different (Cauchy–Agnesi type) and had to be cut
to avoid divergences. The effective variances showed a sensible dependency from the cut
position. Our decision about the cut was essentially “aesthetical”; the effective variances
had to reproduce the core with Gaussian PDFs for a small number (four or five) of excellent
hits where that core was quite similar to a Gaussian. At the same time, the systematic
comparison of the real PDFs with Gaussian PDFs gives an indication of the deviations
from optimality. Actually, the Gaussian PDFs are the optimum for the schematic model.
Evidently, this selection produces effective standard deviations very near to those of the
super-lucky model almost perfect for excellent hits. Such hits turned out to be far more
numerous [2] than our best expectations.

In any case, a different selection of the cuts can change this convergence and perhaps
the fit quality for the loss of optimality of those excellent hits. At the moment of these
selections, we were in a very early stage of the work, with no idea of the results.

Other interesting comparisons are possible: the ση(xg2) of the lucky model from our
simulations and the data. The calculation of these expressions are very fast (contrary to the
schematic model that requires a huge number of numerical integrations). Figure 11 shows
these comparisons for the two types of detectors. The blue dots are now the ση(xg2) of
the super-lucky model given by the data from a test-beam [20], and the red ones are those
of the low side of Figure 6. The overlaps are excellent, showing the high quality of our
method of simulation [2]. Althogh, the histograms of the simulated signal distributions on
the strips show excellent overlaps with those from data; this type of comparison had never
been explored before for evident reasons. The ση(xg2)-values have a non-trivial relation
with the data, and these strict correlations enforce our system of extracting/defining [2] the
average signal distribution on the strips.
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Figure 11. Blue dots: the ση(xg2) of Equation (29) from data of the test beam [20]. Red dots: the ση(xg2)

of Equation (29) from simulations. Left: Normal strip detectors. Right: Floating strip detectors.

It is reasonable to expect that the use of the ση(xg2)-values, in real track fitting, provide
the results comparable to those of Figures 7 and 8 for the detector types or combinations
(Figures 9 and 10).

6. Conclusions

This is a part of a study for COG PDFs, essential tools to go beyond the methods based
on variance minimizations. The long analytical equations, reported here, are indispensable
components to operate with the maximum likelihood method. Although complex and slow,
the maximum likelihood could be able to obtain results impossible with other methods.
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For example, the elimination of the effects introduced by the outliers. The increase of
the track parameter resolution could also reduce the complexity of the tracker hardware,
requiring fewer detection layers to obtain the resolution of the standard least squares
method (or of its equivalent the Kalman filter). These equations were on our desk for a long
time, but the huge length of the standard demonstrations forbade their publications. The
method, illustrated here, allowed manageable demonstrations. The produced expressions
can be handled with the essential help of MATHEMATICA. The numerical simulations
with MATLAB complete the verification of the full process. The analytical expressions also
allow an explanation of the lucky model and to find an advanced form (super-lucky model)
able to extend its use in trackers composed of detectors with very different properties.
The reported simulations show a substantial increase of the parameter resolution of the
super-lucky model, well beyond the results of the standard least squares and very near
to those of the schematic model. This method, for the easy availability of its composing
elements, adds negligible complications to the fits with substantial increases of resolution.
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Appendix A. The Partial COG2 PDF and Its Cumulative Probability Distribution

We report a synthetic calculation of the PDF for ξ/(ξ + η) along the lines of [13] for
the ratio of two random variables. The PDF is obtained differentiating the cumulative
probability distribution for the random variable x. The cumulative distribution is defined as
the probability to have ξ/(ξ + η) ≤ x. Thus, the product of P1(ξ)P2(η) must be integrated
on regions of the plane (η, ξ) compatible with the defined condition. Figure A1 illustrates
the geometry of this calculation.

We have to select two different procedures, one for x ≤ 0 and one for x > 0. The
two lines of equation, ξ + η = 0 and ξ(1− x)/x = η, are the boundaries of the integration
regions. The first line is fixed and separates the two regions with different signs of the
denominator of ξ/(ξ + η). The other line rotates around the origin as x increases, and it
is the second boundary of the integration regions. It overlaps the line ξ + η = 0 when
x → ±∞. The η-axis separates the two regions with x 6= 0.
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Figure A1. The integration regions of the plane (η, ξ) for x ≤ 0 (left) and for x > 0 (right). The
integration regions are indicated by thick arrows along the η integrations. The ξ integrations are not
indicated; they are orthogonal to the thick arrows to cover the sector of the plane with the arrows.

For x ≤ 0, we obtain:

F−2 (x) =
∫ 0

−∞
dξP1(ξ)

∫ ξ(1−x)/x

−ξ
P2(η)dη +

∫ ∞

0
dξP1(ξ)

∫ −ξ

ξ(1−x)/x
P2(η)dη (A1)

and, for x > 0, F+
2 (x) is

F+
2 (x) =

∫ 0

−∞
dξP1(ξ)

∫ +∞

−ξ
P2(η)dη +

∫ +∞

0
dξ P1(ξ)

∫ +∞

ξ(1−x)/x
P2(η)dη

+
∫ 0

−∞
dξP1(ξ)

∫ ξ(1−x)/x

−∞
P2(η)dη +

∫ +∞

0
dξ P1(ξ)

∫ −ξ

−∞
P2(η)dη .

(A2)

It is easy to prove that F−2 (x) = 0 for x → −∞ and F+
2 (x) = 1 for x → +∞.

The PDF Pxg2R(x) is given by a differentiation of F−2 (x) and F+
2 (x) with respect to

x, obtaining

Pxg2R(x) =
dF+

2 (x)
dx

=
1
x2

∫ +∞

−∞
dξ |ξ|P1(ξ)P2

(
ξ

1− x
x

)
, (A3)

an identical result is obtained differentiating F−2 (x). The cumulative distribution for the
random variable, −β/(β + η) could be obtained similarly.

The construction of the cumulative distribution for the complete COG2 algorithm of
Equation (14) implies the insertion of another random variable β. The integration regions
are defined in the space (ξ, η, β). The cumulative distribution is expressed by a large number
of integrals on sectors of the (ξ, η, β)-space. The differentiation and the collection of the
various terms reproduce Equation (16). Further details and other PDFs are reported in
Ref. [19] (and references therein.)

Appendix B. An Advanced Approximation of Pxg2(x) Beyond Equation (20)

For very inclined tracks, the MIP signal is spread among various strips, and the
histograms of COG2 algorithm show very large gaps around zero. In this case, the approxi-
mations, described above, show perceptible deviations from the simulated data and the
numerical integrations of Equation (17). In this case, a better approximation is useful.

The following approximation shows negligible differences from the numerical inte-
grations. For its construction, the Fubini theorem is applied to invert the order of the
double integrals of Equation (16), and variable transformations are selected to have a zero
as the lowest limit of an internal integration region. In this way, the two integrations
become independent and can be executed in any order. The neglecting of the change of
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sign introduced by the absolute values of Equation (17) allows one to obtain the following
analytical results:

Pxg2(x) =

1
2
√

2π

a2(1− x)σ2
1 + a1xσ2

2
[(1− x)2σ2

1 + x2σ2
2 ]

3/2
exp

[
−
(
x− a1

a1 + a2

)2 (a1 + a2)
2

2(σ2
1 (1− x)2 + x2σ2

2 )

]
{

1− erf
[ (1− x)

[
a3(1− x)− a2x

]
σ2

1 − (a1 − a3)x2σ2
2√

2((1− x)2σ2
1 + x2σ2

2 )(x2σ2
1 σ2

2 + (1− x)2σ2
1 σ2

3 + x2σ2
2 σ2

3 )

]}
+

+ x → −x, a1 � a3 σ1 � σ3

(A4)

The approximation does not reproduce the absolute value (actually, A erf(A)) of the
previous Equation (20). However, for realistic values of the parameters {aj}, it is irrelevant.
In any case, it is a trivial completion, as in (20). Here, the argument of the erf-function
is more complete than that given for the small |x| of Equation (20) (it is easy to reduce
this erf-function to that for small |x|). The difference of Equation (A4) with a numerical
integration is negligible in many significant cases.

To complete the approximation, we report the Cauchy-like terms (even if they are of
scarce relevance). These terms are exactly given by MATHEMATICA being the first terms
of an integration by part of Equation (16). The Cauchy tails are evident, and the factor x in
the numerator compensates the

√
x2 in the denominator. The expression of PCauchy

xg2 (x) is:

PCauchy
xg2 (x) =

exp

[
−
(a3(1− x)− a2x)2σ2

1 + (a1(1− x)− a2x)2σ2
3 + (a1 − a3)

2x2σ2
2

2
(
x2σ2

2 σ2
3 + (1− x)2σ2

1 σ2
3 + x2σ2

2 σ2
1
) ]

×
x σ2

1 σ2
2

2π
(
(1− x)2σ2

1 + x2σ2
2
)√

(1− x)2σ2
3 σ2

1 + x2σ2
2 (σ

2
1 + σ2

3 )

× erf

 (1− x)a2σ2
1 σ2

3 + σ2
2 (σ

2
1 a3 + σ2

3 a1)x
√

2σ1σ2σ3

√
σ2

2 σ2
3 x2 + σ2

1 (σ
2
3 (1− x)2 + σ2

2 x2)


+ exp

[
−

a2
1

2σ2
1
−

a2
2

2σ2
2

] [
1− erf(a3/

√
2σ3)

]
σ1σ2

2π[x2σ2
2 + (1− x)2σ2

1 ]

+ (x → −x, a1 � a3 σ1 � σ3) .

(A5)

Actually, these terms are a very small fraction of the main terms (around 10−5) but
become of the order of 10−1 for very inclined tracks. The exponential term has maxima
around x = a3/(a3 + a2) (due to the term with

(
a1(1− x) + xa2

)
) and x = a1/(a1 + a3)

(due to the term with
(
a3(1− x) + xa2

)
); these two maxima are very close one to another,

with large overlaps.

References

1. Landi, G.; Landi, G.E. Beyond the
√

N-limit of the least squares resolution and the lucky model. Instruments 2022, 6, 10. [CrossRef]
2. Landi, G.; Landi, G.E. Improvement of track reconstruction with well tuned probability distributions. J. Instrum. 2014, 9, P10006.

[CrossRef]
3. Landi, G.; Landi, G.E. Optimizing momentum resolution with a new fitting method for silicon-strip detectors. Instruments 2018,

2, 22. [CrossRef]
4. Devore, J.L.; Berk, K.N. Modern Mathematical Statistics with Applications; Springer: New York, NY, USA, 2018. [CrossRef]
5. Landi, G.; Landi, G.E. Generalized inequalities to optimize the fitting method for track reconstruction. Physics 2020, 2, 608–623.

[CrossRef]

http://doi.org/10.3390/instruments6010010
http://dx.doi.org/10.1088/1748-0221/9/10/P10006
http://dx.doi.org/10.3390/instruments2040022
http://dx.doi.org/10.1007/978-1-4614-0391-3
http://dx.doi.org/10.3390/physics2040035


Physics 2022, 4 1049

6. Landi, G. Problems of position reconstruction in silicon microstrip detectors. Nucl. Instr. Meth. Phys. Res. A 2005, 554, 226–246.
[CrossRef]

7. Landi, G.; Landi, G.E. The Cramer-Rao inequality to improve the resolution of the standard least-squares method in track fitting.
Instruments 2020, 4, 2. [CrossRef]

8. Landi, G. The center of gravity as an algorithm for position measurements. Nucl. Instr. Meth. Phys. Res. A 2002, 485, 698–719.
[CrossRef]

9. MATHEMATICA 6; Wolfram Inc.: Champaign, IL, USA, 2010. Available online: https://www.wolfram.com/ (accessed on 1 July
2022).

10. MATLAB; The MathWork Inc.: Natick, MA, USA, 2020. Available online: https://www.mathworks.com/ (accessed on 1 July
2022).

11. Hartmann, F. Silicon tracking detectors in high-energy physics. Nucl. Instrum. Meth. Phys. Res. A 2012, 666, 25–46. [CrossRef]
12. The CMS Collaboration. The performance of the muon detector in proton-proton collision at

√
s = 7 TeV at LHC. J. Instrum.

2013, 8, P11002. [CrossRef]
13. Gnedenko, B.V. The Theory of Probability and Elements of Statistics; AMS Chelsea Publishing: New York, NY, USA, 1989.
14. Gauss, C.F. Méthode des Moindres Carrés. Mémoires sur la Combination des Observations; Mallet-Bachelier: Paris, France, 1855.

Available online: https://books.google.it/books?id=_qzpB3QqQkQC (accessed on 1 September 2018).
15. The CMS Collaboration. Description and Performance of track and primary vertex reconstruction with the CMS tracker. J.

Instrum. 2014, 9, P10009. [CrossRef]
16. Samedov, V.V. Inaccuracy of coordinate determined by several detectors’ signals. J. Instrum. 2012, 7, C06002. [CrossRef]
17. Landi, G.; Landi, G.E. Silicon microstrip detectors. Encyclopedia 2021, 1, 1076–1083. [CrossRef]
18. Belau, E.; Klanner, R.; Lutz, G.; Neugebauer, E.; Seebrunner, H.J.; Wylie, A. Charge collection in silicon strip detector. Nucl.

Instrum. Methods Phys. Res. A 1983, 214, 253–260. [CrossRef]
19. Landi, G.; Landi, G.E. Positioning error probabilities for some forms of center-of-gravity algorithm calculated with the cumulative

distributions. Part II. arXiv 2021, arXiv:2103.03464. [CrossRef]
20. Adriani, O.; Bongi, M.; Bonechi, L.; Bottai, S.; Castellini, G.; Fedele, D.; Grandi, M.; Landi, G.; Papini, P.; Ricciarini, S.; et al.

In-flight performance of the PAMELA magnetic spectrometer. PoS 2008, Vertex 2008, 048. [CrossRef]
21. The CMS Collaboration. Performance of the reconstruction and identification of high-momentum muons in proton proton

collision at
√

s = 13 TeV. J. Instrum. 2020, 15, P02027. [CrossRef]

http://dx.doi.org/10.1016/j.nima.2005.08.094
http://dx.doi.org/10.3390/instruments4010002
http://dx.doi.org/10.1016/S0168-9002(01)02071-X
https://www.wolfram.com/
https://www.mathworks.com/
http://dx.doi.org/10.1016/j.nima.2011.11.005
http://dx.doi.org/10.1088/1748-0221/8/11/P11002
https://books.google.it/books?id=_qzpB3QqQkQC
http://dx.doi.org/10.1088/1748-0221/9/10/P10009
http://dx.doi.org/10.1088/1748-0221/7/06/C06002
http://dx.doi.org/10.3390/encyclopedia1040082
http://dx.doi.org/10.1016/0167-5087(83)90591-4
https://doi.org/10.48550/arXiv.2103.03464 
http://dx.doi.org/10.22323/1.057.0048
http://dx.doi.org/10.1088/1748-0221/15/02/P02027

	Introduction 
	Definition of the Problem
	Probability for the Ratio x=/(+)
	Probability Distribution for y=-2(+)
	Probability Distribution for w=/ 

	The PDF of the Complete COG2 Algorithm
	The Definition of the COG2 Algorithm
	Small-|x| Approximation
	A Better Approximation for Pxg2(x)

	Simplified form of the Three Strip COG
	Applications
	Plots and Simulations with Equation (20) 
	The Lucky Model
	The Super-Lucky Model for the Combination of Two Very Different Detector Types
	Further Discussions and Comparisons for the Simulations and Data

	Conclusions
	The Partial COG2 PDF and Its Cumulative Probability Distribution
	An Advanced Approximation of Pxg2(x) Beyond Equation (20)
	References

