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Abstract: Color transparency, the reduction of initial-state or final-state interactions in coherent
nuclear processes, is a natural prediction of QCD (quantum chromodynamics) provided that small-
sized or point-like configurations (PLCs) are formed in high-momentum transfer, high-energy, semi-
exclusive processes. I use the Frankfurt-Miller-Strikman criteria for the existence of PLCs to show that
the wave functions of light-front holographic QCD, as currently formulated, do not contain a PLC.
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Color transparency is an amazing prediction of quantum chromodynamics (QCD) that
initial-state and final-state interactions are reduced in reactions that are measured under
very specific conditions. The usual situation is that when a strongly interacting particle hits
a nucleus, it does not penetrate (with the same energy) in its motion all the way through
the nucleus. The typical situation is that the intensity falls exponentially as e−zσρ, where σ
is the cross-section, ρ the nuclear density, and z is the distance traveled. However, coherent
reactions (those in which the amplitude is added before squaring to make the cross-section)
that occur at high-momentum transfer are predicted to be very different; see reviews [1–4].
According to QCD the effective cross-section can be much smaller than σ. This remarkable
effect is a kind of quantum mechanical invisibility because the typical diffractive shadow
of a nucleus is removed.

This phenomenon is based on three requirements:

• High-momentum transfer coherent reactions make point-like color-singlet objects,
denoted as point-like configurations (PLCs). This statement was a prediction initially
based on perturbative QCD (pQCD). For example, early pQCD calculations [5–10]
of the pion elastic electromagnetic form factor were interpreted [11] to involve point-
like configurations of quarks, meaning that the important regions of integration that
contribute to the form factor are those in which the quark and anti-quark are very close
together. The idea is that for the system to stay together when hit by a high-momentum
virtual photon, the quark and anti-quark must be connected by the exchange of a
high-momentum gluon, see Figure 1a. This idea is based on the ideas of perturbative
QCD, but the validity of that version of QCD is not a necessary condition. Other
strong interaction effects may also lead to the creation of a PLC.

• Small objects have small cross-sections. It has been widely reported that the imaginary
part of the forward scattering amplitude, f , of a rapidly moving color singlet object is
proportional to the square of the transverse separation b between positive and negative
color charges. Two-gluon exchange [12–14] provides the lowest-order perturbative
contribution to f . The remarkable feature is that, in the limit that b approaches 0,
the cross-section vanishes because the color singlet point particles do not exchange
colored gluons; concisely, limb→0 σ(b2) ∝ b2. This result is caused by interference
between emission by quarks of different colors in coherent processes. Coherence
means that one adds amplitudes to obtain the scattering amplitude, which is then
squared to obtain the cross-section. The cancellation, known as color cancellation, is
the basic ingredient behind QCD factorization proofs and is used elsewhere [15] and
not questioned.
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• A PLC, once created, will expand as it moves. This is because a PLC is not an
eigenstate of the Hamiltonian. The expansion effect is diminished if the PLC moves
with sufficiently high momentum.
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Figure 1. High-momentum transfer reaction mechanisms. (a) A pQCD mechanism; other diagrams
of the same order are not shown. (b) Initial state (top) and final state (bottom) in the Feynman
mechanism. The final state overlaps well with the turned around version of the initial state. See text
for detals.

If all three requirements are satisfied for a given process, then the effects of color
transparency will be evident in coherent nuclear reactions.

The second and third items are based on many calculations, many experiments, and the
basic principles of quantum mechanics. The interesting dynamical question is the validity
or lack thereof of the idea the PLCs are formed. This question is intimately connected with
the origin of the hadronic-electromagnetic-form mechanism at high-momentum transfer.
In the perturbative QCD mechanism, the large-momentum transfer is taken up by the
exchange of high-momentum gluons. For this to occur, all of the partons must be at
the same transverse spatial location. While it is natural to suppose that PLCs dominate
coherent high-momentum transfer processes, it is not obvious that such dominance actually
occurs [9,10,16]. A counter example is that the momentum transfer can involve only one
single quark of high momentum; this is the Feynman mechanism (see also [17]). The
spectator system does not shrink to a small size, and color transparency effects involving
protons could not be expected to occur. References [17,18] obtained a reasonably valid
relation between elastic and deep inelastic scattering. Another recent example that favors
the Feynman mechanism is [19]. Feynman remarked that “if a system is made of three
particles, the large Q2 behavior depends not on the singularity when just two come together,
but rather when all three are on top of one another”. Furthermore, “such pictures are too
simple and inadequate”.

Both the longitudinal and transverse structure of nucleons can be accessed by mea-
suring generalized parton distributions (GPDs) [20], allowing the different mechanisms
to be distinguished. It is known [21] that GPDs parameterize soft dynamics akin to the
Feynman mechanism. Specific models of GPDs (see, e.g., [22]) also favor the Feynman mech-
anism. There are only two proposals for the mechanism responsible for high-momentum
elastic reactions [23].

Frankfurt, Miller, and Strikman (FMS) introduced [24] a criterion to determine whether
or not a given model of a hadronic wave function admits the existence of a PLC. They
found that a PLC could arise from non-perturbative effects, as well as from perturbative
QCD. The aim of this paper is to use the FMS criteria to see if the relativistic light-front
(LF) wave functions obtained from LF holographic QCD (for review, see [25]) admit the
existence of a PLC.
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The first step is to discuss the FMS criterion. A PLC is originated via a hard interaction
TH involving nucleons initially bound in a nucleus. As noted above, the soft interaction
between the PLC and the surrounding medium is proportional to b2, the square of the
transverse separation distance between constituents [12–14]. Here, b2 = ∑i<j(bi − bj)

2,
where the constituents are labeled i, j, etc. in first-quantized notation. Consider a high-
momentum transfer process on a nucleon. Denote the initial nucleon state as |ψ(p)〉 and
the final state as |ψ(p + q)〉, where p and q denote the initial proton momentum and the
momentum transfer, respectively . Then, represent the high-momentum transfer operator
as TH(q)|ψ〉. With this notation, the form factor F(Q2), with Q2 being the momentum
transfer squared (Q2 = −q2), is given by

F(Q2) = 〈ψ(p + q)|TH(q)|ψ(p)〉 (1)

The key question is whether the state TH(q)|ψ(p)〉 is a PLC that does not interact with
the medium. The interaction with the surrounding medium is proportional to b2. The first-
order term in the interaction is proportional to the matrix element 〈ψ(p + q)b2TH(q)|ψ(p)〉.
This term is small if the operator TH produces a PLC. The relevant comparison is with the
form factor F(Q2), which is the process amplitude in the absence of final-state interactions.
Thus, FMS defined the quantity b2(Q2) as

b2(Q2) =
〈ψ(p + q)|b2TH(q)|ψ(p)〉
〈ψ(p + q)|TH(q)|ψ(p)〉 ≡

Fb2(Q2)

F(Q2)
(2)

If b2(Q2) = b2(0), final-state interactions of normal magnitudes occur. If b2(Q2) drops
with increasing values of Q2, then the model wave function is said to admit the existence
of a PLC.

Now, I evaluate b2(Q2) for wave functions obtained from holographic techniques
used to represent relativistic LF wave functions; for review, see [25]. I briefly discuss that
approach. LF quantization is a relativistic approach for describing the hadronic constituent
structure. The simple LF vacuum allows a definition of the partonic content of a hadron in
QCD [26]. In principle, the spectrum and LF wave functions of relativistic bound states
are obtained from the eigenvalue equation HLF|ψ〉 = M2|ψ〉, which is an infinite set of
coupled integral equations; here HFL is the LF Hamiltonian and M is the hadronic mass.
The formalism provides a quantum-mechanical probabilistic interpretation of the structure
of hadronic states in terms of their constituents at a fixed LF time x+ = x0 + x3, where
x0 and x3 are the time and space components of the space-time four-vector [27]. The
necessary integral equations [26] of the frame-independent LF Hamiltonian eigenvalue
equation in four-dimensional space–time have not been solved. Instead, other methods
and approximations [25] are necessary.

Neglecting quantum loops and quark masses, the relativistic bound-state equation
for light hadrons has been approximately reduced to an effective LF Schrödinger equation.
The invariant mass of the constituents is identified as a key dynamical variable, ζ, which
measures the separation of the partons within the hadron at equal LF time [28]. The result is
an effective one-dimensional quantum field theory in which the complexities of the strong
interaction dynamics are hidden in an effective potential, U.

It is remarkable that in the semiclassical approximation, described above, the LF
Hamiltonian has a structure that matches exactly the eigenvalue equations in anti-de-Sitter
(AdS) space [25]. This offers the possibility to explicitly connect the AdS wave function
Φ(z) to the internal constituent structure of hadrons. In fact, one can obtain the AdS
wave equations by starting from the semiclassical approximation to LF QCD in physical
space–time. This connection yields a relation between the coordinate z of AdS space with
the impact LF variable ζ [28], thus giving the holographic variable z a precise definition
and intuitive meaning in LF QCD.

LF holographic methods were originally introduced [29,30] by matching the electro-
magnetic current matrix elements in AdS space [31] with the corresponding expression
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derived from LF quantization in physical space–time [17,18]. It was also shown that
one obtains an identical holographic mapping using the matrix elements of the energy–
momentum tensor [32] by perturbing the AdS metric around its static solution [33], thus
establishing a precise relation between wave functions in AdS space and the LF wave
functions describing the internal structure of hadrons.

The LF wave functions that arise out of this LF holographic approach provide a new
way to study old problems that require the use of relativistic-confining quark models. The
study of the existence of a PLC by evaluating b2(Q2) is an excellent example of such a
problem.

I evaluate two examples. The first [30] is an early representation of the pion wave
function as a quark–anti-quark system,

ψ(x, b) =
κ√
π

√
x(1− x)e−b2κ2x(1−x)/2 , (3)

where κ is a constant phenomenologicaly chosen to reproduce meson spectra.
I use the normalization 1 =

∫
dxd2b|ψ(x, b)|2 throughout this paper. The form factor

is given by

F(Q2) =
∫

dxd2beiQ·b(1−x)|ψ(x, b)|2, (4)

and evaluation yields

F(Q2) = 1− eQ2/4κ2
Γ(0, Q2/4κ2), (5)

with Γ being the incomplete Gamma function. This form factor falls asymptotically as
∼ 1/Q2. The quantity Fb2(Q2) is obtained by inserting a factor b2 into the integrand:

Fb2(Q2) =
∫

dxd2b b2 eiQ·b(1−x)|ψ(x, b)|2. (6)

The insertion represents the interaction with the surrounding medium.
Observe that Fb2 cannot be obtained just by differentiating the form factor with respect

to Q2. This is because of the factor 1− x that appears in the exponential function. Evaluation
of the integral over the transverse coordinates yields

Fb2(Q2) =
1
κ2

∫ dx
x2(1− x)

e−Q2/4κ2 1−x
x

(
x + Q2/(4κ2)(1− x)

)
. (7)

The value of Fb2(Q2) is infinite for all values of Q2 because of the divergence as x
approaches unity. This shows that the simple wave function of Ref. [30] is not suitable for
use in evaluating high-energy forward cross-sections for pion–nucleus interactions.

The model of Equation (3) is meant as a simple first illustration. It is merely an
indication that b2(Q2) can be very large. The next step is to use the more-detailed universal
LF wave functions of Ref. [22]. This presents a universal description of generalized parton
distributions, obtained from LF holographic QCD, and I use the wave functions of Ref. [22].
These are given as functions of the number τ of constituents of a Fock space component.
Nucleon and pion valence quark distribution functions have been obtained in precise
agreement with global fits. The model is defined by the quark distribution, qτ(x), and the
profile function, f (x):

qτ(x) = 1
Nτ

(
1− w(x)

)τ−2
w(x)−

1
2 w′(x) (8)

f (x) =
1

4λ

[
(1− x) log

1
x
+ a(1− x)2

]
, (9)
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and w(x) = x1−xe−a(1−x)2
. The constant Nτ denotes a normalization factor that insures

that
∫

dx qτ(x) = 1. The value of the universal scale λ was fixed from the ρ-meson
mass:

√
λ = κ = mρ/

√
2 = 0.548 GeV [25,34]. The flavor-independent parameter a was

determined to be a = 0.531± 0.037. The u and d quark distributions of the proton are given
by a linear superposition of q3 and q4, while those of the pion are obtained from q2 and q4.
The relevant wave function is that of Ref. [22]:

ψ
(τ)
eff (x, b) =

1
2
√

π

√
qτ(x)
f (x)

(1− x) exp
[
− (1− x)2

8 f (x)
b2
]

, (10)

where qτ(x) and f (x) are given by Equations (8) and (9).
The form factor for a given value of τ is given by

F(τ)(Q2) =
∫

dxqτ(x)e−Q2 f (x), (11)

and F(τ)
b2 Q2, obtained by inserting a factor b2 into the above integrand, is given by:

F(τ)
b2 Q2 =

∫
dx

qτ(x)
4 f (x)

e−Q2 f (x)
(

1− Q2

16 f (x)
(1− x)2

)
. (12)

Consider first the case of τ = 2. The use of Equations (8) and (9) shows that

lim
x→1

q2(x)
f (x)

=
1.0942
(1− x)

+ · · · . (13)

Thus, the same divergence that haunted the wave function of Equation (3) reappears
for the more sophisticated τ = 2 wave function of Ref. [22]. The function b2

τ(Q2) =

F(τ)
b2 Q2/F(τ)Q2 for τ = 3, 4 is shown in Figure 2.

b2(Q2) (GeV−2)

Q2 (GeV2)

τ = 3
τ = 4

2 4 6 8 10

0.5

1.0

1.5

Figure 2. The function b2(Q2) . The numbers refer to the value of τ, the number of constituents in
the Fock state. See text for details.

Observe that b2
τ(Q2) rises with increasing values of Q2, so that these wave functions do

not admit the existence of PLCs. Furthermore, observe the surprising effect that constituents
with a larger number of partons have smaller values of b2(Q2) and, so, interact less strongly
with a surrounding medium.

The summary of this study is that light-front holographic wave functions do not
contain a PLC, so they do not predict the appearance of color transparency. This is consistent
with the recent striking experimental finding [35] that color transparency does not occur in
reactions with momentum transfer squared, Q2, up to 14.2 GeV2. The present results show
that these wave functions do not predict color transparency to occur disregarding any large
value of Q2. The wave functions are suitable for describing the soft dynamics involved in
the time evolution of a wave packet [36].
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I conclude this paper by commenting on the state of the data. No color transparency
has been observed for the (e, e′p) reaction [35], but hints have been seen in the (e, e′, π) [37]
and (e, e′ρ) [38] reactions. Furthermore, a massive signal [39] has been observed in the
high-energy (500 GeV) nuclear-coherent dijet-production reaction π + A→ J JA [3]. The
latter reaction is unique. The physics is different than the form factor physics discussed
above because the final pionic state is not the ground-state wave function. Nevertheless,
the clear interpretation is that a PLC is formed. A simple explanation is that it is easier
for a quark–anti-quark system to form a PLC than for a three-quarks system to do so.
Furthermore, the energy is large enough so that the effects of PLC expansion are not
important. Future higher-energy (e, e′, π) and (e, e′ρ) measurements that are free from the
PLC expansion should observe the effects of color transparency.

Funding: This work was supported by the U.S. Department of Energy Office of Science, Office of
Nuclear Physics under Award Number DE-FG02-97ER- 41014.

Data Availability Statement: Not applicable.

Acknowledgments: I thank the organizers R. Dupre, D. Dutta, M. Sargsian, and M. Strikman of the
2021 Workshop on The Future of Color Transparency and Hadronization Studies at Jefferson Lab and Beyond
for re-stimulating my interest in this subject. I thank S. J. Brodsky for making this paper necessary.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Frankfurt, L.L.; Miller, G.A.; Strikman, M. The Geometrical color optics of coherent high-energy processes. Ann. Rev. Nucl. Part.

Sci. 1994, 44, 501–560. [CrossRef]
2. Jain, P.; Pire, B.; Ralston, J.P. Quantum color transparency and nuclear filtering. Phys. Rep. 1996, 271, 67–179. [CrossRef]
3. Ashery, D. High momentum diffractive processes and hadronic structure. Prog. Part. Nucl. Phys. 2006, 56, 279–339. [CrossRef]
4. Dutta, D.; Hafidi, K.; Strikman, M. Color transparency: Past, present and future. Prog. Part. Nucl. Phys. 2013, 69, 1–27. [CrossRef]
5. Farrar, G.R.; Jackson, D.R. The pion form factor. Phys. Rev. Lett. 1979, 43, 246–250. [CrossRef]
6. Efremov, A.V.; Radyushkin, A.V. Factorization and asymptotical behavior of pion form-factor in QCD. Phys. Lett. B 1980,

94, 245–250. [CrossRef]
7. Lepage, G.P.; Brodsky, S.J. Exclusive processes in quantum chromodynamics: The form-factors of baryons at large momentum transfer.

Phys. Rev. Lett. 1979, 43, 545–549. Erratum in Phys. Rev. Lett. 1979, 43, 1625–1626. [CrossRef]
8. Lepage, G.P.; Brodsky, S.J. Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions

and the form-factors of mesons. Phys. Lett. B 1979, 87, 359–365. [CrossRef]
9. Duncan, A.; Mueller, A.H. Asymptotic behavior of composite-particle form factors and the renormalization group. Phys. Rev. D

1980, 21, 1636–1650. [CrossRef]
10. Duncan, A.; Mueller, A. Asymptotic behavior of exclusive and almost exclusive processes. Phys. Lett. B 1980, 90, 159–163.

[CrossRef]
11. Mueller, A.H. Topics in high-energy perturbative QCD including interactions with nuclear matter. In Proceedings of the 17th

Rencontres de Moriond on Elementary Particle Physics: I. Electroweak Interactions and Grand Unified Theories, Les Arcs, France,
14–20 March 1982; Tran Than Van, J., Ed.; Editions Frontieres: Gif-Sur-Yvette, France, 1988; pp. 13–43.

12. Low, F.E. Model of the bare Pomeron. Phys. Rev. D 1975, 12, 163–173. [CrossRef]
13. Nussinov, S. Colored quark version of some hadronic puzzles. Phys. Rev. Lett. 1975, 34, 1286–1289. [CrossRef]
14. Gunion, J.F.; Soper, D.E. Quark counting and hadron size effects for total cross-sections. Phys. Rev. D 1977, 15, 2617–2621.

[CrossRef]
15. Donnachie, S.; Dosch, G.; Landshoff, P.; Nachtmann, O. Pomeron Physics and QCD; Cambridge University Press: Cambridge, UK,

2002. [CrossRef]
16. Feynman, R.P. Photon-Hadron Interactions; W. A. Benjamin, Inc.: Reading, MA, USA, 1972. [CrossRef]
17. Drell, S.; Yan, T.M. Connection of elastic electromagnetic nucleon form-factors at large Q2 and deep inelastic structure functions

near threshold. Phys. Rev. Lett. 1970, 24, 181–185. [CrossRef]
18. West, G.B. Phenomenological model for the electromagnetic structure of the proton. Phys. Rev. Lett. 1970, 24, 1206–1209.

[CrossRef]
19. Radyushkin, A.V. Nonforward parton densities and soft mechanism for form factors and wide-angle Compton scattering in QCD.

Phys. Rev. D 1998, 58, 114008. [CrossRef]
20. Ji, X. Generalized parton distributions. Ann. Rev. Nucl. Part. Sci. 2004, 54, 413–450. [CrossRef]
21. Diehl, M. Generalized parton distributions. Phys. Rep. 2003, 388, 41–277. [CrossRef]

http://doi.org/10.1146/annurev.ns.44.120194.002441
http://dx.doi.org/10.1016/0370-1573(95)00071-2
http://dx.doi.org/10.1016/j.ppnp.2005.08.003
http://dx.doi.org/10.1016/j.ppnp.2012.11.001
http://dx.doi.org/10.1103/PhysRevLett.43.246
http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/10.1103/PhysRevLett.43.545
http://dx.doi.org/10.1016/0370-2693(79)90554-9
http://dx.doi.org/10.1103/PhysRevD.21.1636
http://dx.doi.org/10.1016/0370-2693(80)90074-X
http://dx.doi.org/10.1103/PhysRevD.12.163
http://dx.doi.org/10.1103/PhysRevLett.34.1286
http://dx.doi.org/10.1103/PhysRevD.15.2617
http://dx.doi.org/10.1017/CBO9780511534935
http://dx.doi.org/10.1201/9780429493331
http://dx.doi.org/10.1103/PhysRevLett.24.181
http://dx.doi.org/10.1103/PhysRevLett.24.1206
http://dx.doi.org/10.1103/PhysRevD.58.114008
http://dx.doi.org/10.1146/annurev.nucl.54.070103.181302
http://dx.doi.org/10.1016/j.physrep.2003.08.002


Physics 2022, 4 596

22. de Teramond, G.F.; Liu, T.; Sufian, R.S.; Dosch, H.G.; Brodsky, S.J.; Deur, A. Universality of generalized parton distributions in
light-front holographic QCD. Phys. Rev. Lett. 2018, 120, 182001. [CrossRef]

23. Belitsky, A.V.; Radyushkin, A.V. Unraveling hadron structure with generalized parton distributions. Phys. Rep. 2005, 418, 1–387.
[CrossRef]

24. Frankfurt, L.; Miller, G.; Strikman, M. Precocious dominance of point-like configurations in hadronic form-factors. Nucl. Phys. A
1993, 555, 752–764. [CrossRef]

25. Brodsky, S.J.; de Teramond, G.F.; Dosch, H.G.; Erlich, J. Light-front holographic QCD and emerging confinement. Phys. Rep. 2015,
584, 1–105. [CrossRef]

26. Brodsky, S.J.; Pauli, H.C.; Pinsky, S.S. Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 1998,
301, 299–486. [CrossRef]

27. Dirac, P.A. Forms of relativistic dynamics. Rev. Mod. Phys. 1949, 21, 392–399. [CrossRef]
28. de Teramond, G.F.; Brodsky, S.J. Light-front holography: A first approximation to QCD. Phys. Rev. Lett. 2009, 102, 081601.

[CrossRef]
29. Brodsky, S.J.; de Teramond, G.F. Hadronic spectra and light-front wavefunctions in holographic QCD. Phys. Rev. Lett. 2006,

96, 201601. [CrossRef]
30. Brodsky, S.J.; de Teramond, G.F. Light-front dynamics and AdS/QCD correspondence: The pion form factor in the space- and

time-like regions. Phys. Rev. D 2008, 77, 056007. [CrossRef]
31. Polchinski, J.; Strassler, M.J. Deep inelastic scattering and gauge/string duality. J. High Energy Phys. 2003, 2003, 12. [CrossRef]
32. Brodsky, S.J.; de Teramond, G.F. Light-front dynamics and AdS/QCD correspondence: Gravitational form factors of composite

hadrons. Phys. Rev. D 2008, 78, 025032. [CrossRef]
33. Abidin, Z.; Carlson, C.E. Gravitational form factors of vector mesons in an AdS/QCD model. Phys. Rev. D 2008, 77, 095007.

[CrossRef]
34. Brodsky, S.J.; de Teramond, G.F.; Dosch, H.G.; Lorce, C. Universal effective hadron dynamics from superconformal algebra. Phys.

Lett. B 2016, 759, 171–177. [CrossRef]
35. Bhetuwal, D.; Matter, J.; Szumila-Vance, H.; Kabir, M.L.; Dutta, D.; Ent, R.; Abrams, D.; Ahmed, Z.; Aljawrneh, B.; Alsalmi, S.; et al.

Ruling out color transparency in quasielastic 12C(e, e′p) up to Q2 of 14.2 (GeV/c)2. Phys. Rev. Lett. 2021, 126, 082301. [CrossRef]
[PubMed]

36. Caplow-Munro, O.; Miller, G.A. Color transparency and the proton form factor: Evidence for the Feynman mechanism. Phys.
Rev. C 2021, 104, L012201. [CrossRef]

37. Clasie, B.; Qian, X.; Arrington, J.; Asaturyan, R.; Benmokhtar, F.; Boeglin, W.; Bosted, P.; Bruell, A.; Christy, M.E.; Chudakov, E.
et al. Measurement of nuclear transparency for the A(e, e′π+) reaction. Phys. Rev. Lett. 2007, 99, 242502. [CrossRef]

38. El Fassi, L.; Zana, L.; Hafidi, K.; Holtrop, M.; Mustapha, B.; Brooks, W.K.; Hakobyan, H.; Zhenga, X.; Adhikari, K.P.; Adikaram,
D.; et al. [CLAS Collaboration]. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei. Phys. Lett. B 2012,
712, 326–330. [CrossRef]

39. Frankfurt, L.; Miller, G.A.; Strikman, M. Coherent nuclear diffractive production of mini-jets: Illuminating color transparency.
Phys. Lett. B 1993, 304, 1–7. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.120.182001
http://dx.doi.org/10.1016/j.physrep.2005.06.002
http://dx.doi.org/10.1016/0375-9474(93)90504-Q
http://dx.doi.org/10.1016/j.physrep.2015.05.001
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://dx.doi.org/10.1103/RevModPhys.21.392
http://dx.doi.org/10.1103/PhysRevLett.102.081601
http://dx.doi.org/10.1103/PhysRevLett.96.201601
http://dx.doi.org/10.1103/PhysRevD.77.056007
http://dx.doi.org/10.1088/1126-6708/2003/05/012
http://dx.doi.org/10.1103/PhysRevD.78.025032
http://dx.doi.org/10.1103/PhysRevD.77.095007
http://dx.doi.org/10.1016/j.physletb.2016.05.068
http://dx.doi.org/10.1103/PhysRevLett.126.082301
http://www.ncbi.nlm.nih.gov/pubmed/33709760
http://dx.doi.org/10.1103/PhysRevC.104.L012201
http://dx.doi.org/10.1103/PhysRevLett.99.242502
http://dx.doi.org/10.1016/j.physletb.2012.05.019
http://dx.doi.org/10.1016/0370-2693(93)91390-9

	References

