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Abstract: The properties of spinors and vectors in (2 + 2) space of split quaternions are studied.
Quaternionic representation of rotations naturally separates two SO(2, 1) subgroups of the full group
of symmetry of the norms of split quaternions, SO(2, 2). One of them represents symmetries of three-
dimensional Minkowski space-time. Then, the second SO(2, 1) subgroup, generated by the additional
time-like coordinate from the basis of split quaternions, can be viewed as the internal symmetry
of the model. It is shown that the analyticity condition, applying to the invariant construction of
split quaternions, is equivalent to some system of differential equations for quaternionic spinors and
vectors. Assuming that the derivatives by extra time-like coordinate generate triality (supersymmetric)
rotations, the analyticity equation is reduced to the exact Dirac–Maxwell system in three-dimensional
Minkowski space-time.

Keywords: split quaternions; triality; (2 + 1) electrodynamics

1. Introduction

It is important to express physical variables and their relationships by maximally
universal mathematical structures. In previous papers, I suggested that normed division
algebras can play this role [1–8], since they provide a natural framework to describe space-
time transformations, together with spinors and vectors and their equations.

It is known that besides of the usual real numbers, according to the Hurwitz theorem,
there are three other unique normed division algebras An: complex numbers, quaternions
and octonions [9–11]. These four division algebras have dimensions n = 1, 2, 4, and 8,
respectively. The real numbers are ordered, commutative and associative, but for each next
mentioned algebra one such property is lost.

An element X of any n-dimensional normed real algebra, An, can be written as the
linear combination of the basis elements en with the real coefficients Xn,

X = Xnen . (1)

The unit basis element, e0 = 1, is real and the other n− 1 elements are hyper-complex.
The square of the unit element is always positive, while the squares of some hyper-complex
basis units can be negative as well,

e2
0 = 1 , e2

n−1 = ±1 . (2)

In normed algebras the conjugation operation is defined, which does not affect unit
element but changes the sign of all hyper-complex basis units,

e∗0 = e0 , e∗n−1 = −en−1 . (3)

Then, using the multiplication and conjugation rules of en, the quadratic form (norm)
in An can be defined,

N = XX∗ , (4)
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which for any two elements, X and Y, satisfy the condition

N(XY) = N(X)N(Y) . (5)

In applications of normed algebras mainly the basis elements with the negative square
e2

n−1 = −1 (similar to the ordinary complex unit i), which correspond to Euclidean norms,

N = ∑
n

X2
n , (6)

are used. Introducing the vector-like basis elements (with the positive squares e2 = 1) leads
to split algebras having an equal number of “+” and “–” sign terms in the definition of their
norms. In particular, signatures of the quadratic forms of split algebras have the structures:
(1 + 1) for hyper-numbers, (2 + 2) for split quaternions and (4 + 4) for split octonions.

Normed algebras An are closely related to Lie algebras in various guises. The norm of
division and split algebras are preserved under the transformations of their elements Xn
by the Lie algebras of SO(n) and SO(n/2, n/2), respectively; n = 2, 4, 8. Algebras An are
characterized by the remarkable property of having vector, spinor and conjugate spinor
representations of the same (real) dimensions, a property best known as triality. The vector,
spinor and conjugate spinor, as well as the gamma matrices that transform them, are all
represented by division algebra elements and their multiplication. One can show that there
is a division algebra of dimension n if the double cover of the rotation group SO(n) has a
spinor representation whose dimension equals n.

The current paper concentrates on four-dimensional (n = 4) normed algebra of split
quaternions. On physical application of quaternions, one can find thousands of publica-
tions [12]. The most commonly quaternions are used in the areas of computer graphics,
navigation systems, quantum physics and kinematics (see [13–18] and references therein).

It is known that ordinary (Hamilton’s) and split quaternions can be used to describe
three-dimensional Euclidean and Minkowski spaces, respectively. Here, vector and spinor
representations are considered in (2 + 2) space of split quaternions, which generates kine-
matics of three-dimensional Minkowski space-times [8]. There are several physical models
employed in (2 + 1) spaces, such as the theory of graphene [19], black holes [20], quantum
gravity [21], Anti-de Sitter/conformal field thery (AdS/CFT) correspondence [22], gauge
theory of gravity [23,24], etc.

This paper is organized as follows. Section 2 briefly reviews properties of split quater-
nions and their applications to describe geometry of (2 + 2) space. It is shown that maximal
rotations towards the second time-like coordinate in (2 + 2) space of split quaternions can be
used to introduce Plank’s constant and generate quantum uncertainty relation. In Section 3,
the property of triality—rotations between quaternionic vectors and spinors—is discussed.
In Section 4, the generalized Cauchy–Riemann analyticity condition for quaternionic func-
tions is introduced. It is shown that the requirement of analyticity for triality invariant
quaternionic construction leads to the system of equations that are equivalent to the Dirac–
Maxwell system in three-dimensional Minkowski space-time. Finally, conclusions are
presented in Section 5.

The paper is accompanied by several Appendices. In Appendix A, the SL(2, R) and
SU(1, 1) matrix representations of the basis elements of split quaternions are presented.
Appendix B is devoted to classification of split quaternions by the values of their norms. In
Appendix C, a reminder on descriptions of vectors and spinors of (2 + 2) space is given.
In Appendix D, quaternionic representations of rotations and boosts are considered. In
Appendix E, decomposition of split quaternions by idempotent and nilpotent elements is
described. In Appendix F, the quaternionic spinors are considered. It is shown also the
validity of the so-called 3-ψ rule, the Fierz identity for quaternionic spinors.
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2. Split Quaternions

Algebra of split quaternions over reals is an associative, non-commutative ring, the
general element of which can be written as the linear combination of four basis elements,
e0 = 1 and ek, k = 1, 2, 3, with the real coefficients q0 and qk,

q = q0 + qkek = q0 + q1e1 + q2e2 + q3e3 . (7)

The first basis element e0 = 1 is real, while the other three, ek, are anti-commuting
hyper-complex units. Using algebra of ek it can be shown that one of the hyper-complex
basis elements, for example the last one e3, is possible to define as the product of other two,

e3 = e1e2 = −e2e1 . (8)

Matrix representations of quaternionic basis elements is introduced in Appendix A.
In analogy with complex numbers, the quaternionic conjugation, which changes the

sign of the hyper-complex basis elements, is defined:

e∗0 = e0 , e∗1 = −e1 , e∗2 = −e2 , e∗3 = (e1e2)
∗ = e∗2e∗1 = −e1e2 = −e3 . (9)

Then, the inverted (conjugated) quaternion can be constructed:

q∗ = q0 − q1e1 − q2e2 − q3e3 . (10)

Note that the two main basis units of split quaternions have the feature of unit
polar vectors,

e2
1 = e2

2 = 1 , (11)

while the third hyper-complex basis element, e3 = e1e2, behaves like a complex unit,

e2
3 = (e1e2)(e1e2) = −e2

1e2
2 = −1 , e∗3 = −e3 . (12)

Because of these distinct properties of basis elements, the norm of a split quaternion,

N =
√
|qq∗| =

√
|q2

0 − q2
1 − q2

2 + q2
3| , (13)

has (2 + 2)-signature and in general qq∗ is not positively defined.
For geometrical applications, one can define the line element in the space of split

quaternions in the form [8]:
s = λ + e1x + e2y + e3t , (14)

where the four real parameters that multiply basis units, 1 and ek, denotes: some time-like
quantity λ, the spatial coordinates x and y and the time coordinate t (the speed of light is
set as c = 1). Using the conjugation rules one can find that the norm of quaternion (14)
(the interval),

ss∗ = s∗s = λ2 − x2 − y2 + t2 , (15)

has (2 + 2)-signature and in general is not positively defined. As in the standard relativity,
it is required:

ss∗ ≥ 0 , (16)

i.e., the consideration is restricted to time-like split quaternions, defined in Appendix B.

2.1. Vector-Type Rotations

Now we want to represent rotations of a split quaternion q by the products of other
quaternions.

There are a lot of methods to represent three-dimensional rotations (the method of
orthonormal matrices is considered in Appendix C), however, quaternions are known to
be the most convenient ones [14–16]. The vector part (time-like or space-like) of unit split
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quaternions (see Appendix B) can be thought of as a vector about which rotation should be
performed and scalar part specifies the amount of rotation that should be performed about
the vector part. That is, only four numbers are enough to represent a rotation by quaternions
and there is only one constraint—the unity of norm. This makes it possible to find solutions
to some optimization problems involving rotations in three dimensions, which are hard to
solve when using orthonormal matrices because of the six non-linear constraints to enforce
orthonormality, and the additional constraint—the unity of determinant.

Rotations in the vector (2 + 1) space of split quaternions about the time-like axis, e3,
or about the space-like axes e1 and e2, can be expressed with two side products of the unit
time-like quaternions with time-like vector part (A37), or unit time-like quaternions with
space-like vector part (A35), respectively. Every unit half-angle split quaternion α(θ/2)
represents a vector-type rotation by two-side multiplication. The result of the product,

q′ = α

(
θ

2

)
q α∗

(
θ

2

)
, (17)

is the quaternion q′, which norm and scalar part are the same as for q and the vector part
Vq′ is obtained by revolving Vq through the angle θ conically about the vector ε defined
in Equation (A34).

The set of unit split quaternions αt, αx and αy form the group of rotations in (2 + 1)-
dimensional space-time, which algebra is isomorphic to SU(1, 1). Under this isomorphism
the quaternion multiplication operation corresponds to the composition operation of rotations.

However, why vector-like quaternions have the ’double-cover’ property (17), why
there are two different quaternions (α and α−1 = α∗) that represent the same rotation
instead of α(θ)q in analogy with complex numbers? It turns out that multiplication by a
single quaternion do represent double rotations of spinors in four-dimensional quaternionic
space (see Appendix F) and not in a plane of the three-dimensional vector space Vq. In the
case of complex numbers, one has just one dimension of rotation. In three dimensions of
quaternionic vector parts, we talk regarding to rotating about an axis, but in reality it means
rotating in a plane perpendicular to that axis. In four-dimensional space of quaternions
there are enough dimensions that it’s possible to rotate in two independent planes at once.
These planes have no axes in common, they intersect only at a single point, which is the
center of rotation. So, both rotations can take place without disturbing each other, which is
not possible in three dimensions, where two planes always intersect in a line.

In Appendix D, it is shown that for quaternions one needs two distinct representa-
tions of vector-type rotations, αqα∗ and αqα, each corresponding to SO(2, 1)-subgroups
of SO(2, 2). Thus, the four components of a split quaternion qa (a = 0, 1, 2, 3) cannot be
treated as a single 4-vector of SO(2, 2). The αqα-type SO(2, 1)-transformations contain two
independent hyperbolic rotations (boosts) of x and y axes towards the second time-like di-
rection λ of split quaternions (2 + 2) space, and compact rotations in time-like (λ− t)-plain,
while the products αqα∗, forming automorphism group of split quaternions SO(2, 1), give
successfully representation of rotations in three dimensional Minkowski space-time with
two space-like and one time-like coordinates (x, y, t) and can be used to define physical
3-vectors.

So, the standard representation of quaternion rotations αqα∗, which generate transfor-
mations of only vector part of split quaternions,

Vq = q1e1 + q2e2 + q3e3 (e2
1 = e2

2 = −e2
3 = 1), (18)

naturally separates the Lorentz-like SO(2, 1) subgroup from the full group of symmetry of
the split quaternion norms, SO(2, 2). Then, in field theory applications in three-dimensional
Minkowski space-time, the second SO(2, 1) subgroup that generates rotations involved the
second time-like coordinate, can be interpreted as corresponding to the internal symmetries
of the model.
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Note that to define coordinate transformations as quaternionic products, all four
elements of a split quaternion (7) are needed, i.e., one should not remove the scalar part
q0 (see Appendix D). In general, interpretation of scalar parts of quaternions, which is
not affected by αqα∗-type rotations, causes difficulties. Hamilton himself without notable
success tried to interpret the scalar part of quaternions as an extra-spatial unit [25,26]. Later,
when inspired by quaternions, vector algebra was introduced in physics, the scalar part of
quaternions even was omitted. Introduction of vectors was successful, however because
of removing of the scalar part of quaternions the division operation is not defined for
vectors. There was lost also the property of quaternions, that they are rotation generators
and expresses not only the final state achieved after a rotation, but the direction in which
this rotation has been performed. It is this direction of rotation that the standard matrix
representation of the rotation group fails to give.

2.2. Maximal Velocity and Uncertainty Principle

Analysis of the spinor-type one-side boosts of quaternionic intervals (14), can help in
physical interpretation of the scalar parts of split quaternions λ. From definitions (A77)
one notices that for the boosts along the positive x-direction, i.e., when x′ increases (or
the x-component of the momentum, px, increases), the scalar part λ′ decreases and vice
versa. In quantum mechanics the quantity with the dimension of length which is inversely
proportional to the momentum is particle’s wavelength. So, in geometrical application it is
natural to interpret the scalar part of the split quaternion (14) as the wavelength describing
the inertial properties of particle’s reference frame.

Suppose the split quaternion (14) is used to describe motion of a particle with the
wavelength λ along the x-axis with the velocity vx in a laboratory coordinate system.
Denoting the wavelength in particles own system by Λ, from the condition of invariance of
the intervals,

ds = dλ

(
1 +

dy
dλ

e2

)
+ dt(1− vxe2)e3 = dΛ + dτe3 , (19)

where τ is the proper time of the particle, one obtains the two conditions:∣∣∣∣dτ

dt

∣∣∣∣ = √1− v2
x ,

∣∣∣∣dΛ
dλ

∣∣∣∣ =
√

1− dy2

dλ2 . (20)

From these conditions follows the relations:

|vx| < 1 ,
∣∣∣∣ dy
dλ

∣∣∣∣ < 1 , (21)

which must be obeyed simultaneously. This means that, together with speed of light
c = 1, there must exist the second fundamental constant (which can be extracted from λ)
characterizing this critical property of the algebra.

In (2 + 2) space there are two different light-cones with two class of critical rotations
and there must exist two fundamental constants characterizing this property of algebra.

It is known that the parameter with required properties is the reduced Planck constant,
h̄, which relates particles wavelength to its momentum,

λ =
h̄
p

. (22)

So, in the approach here considered, two fundamental physical constants, c and h̄,
have the algebraical origin and correspond to two kinds of critical signals in (2 + 2) space
of split quaternions [8].

Furthermore, it was shown that for the boosts with the positive velocity, when px
increases (py decreases), the quantity λ decreases, i.e., dλ < dΛ, and vice versa. So, for
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the change in the scalar part of the split quaternion, ∆λ, when the particle momentum in
x-direction increases, one can write

∆λ ∼ − h̄
∆py

, (23)

where py is the y-component of the momentum. When the variety of wave lengths becomes
overall shorter, the overall magnitude of the variety of momenta must become greater,
i.e., the shorter the wavelength, the higher will be its frequency and hence carry a greater
amount of momentum. Similar relation can be obtained for the boost along the y-axis.

Inserting Equation (23) into Equation (21), one can conclude that the uncertainty
principle,

∆x∆px & h̄ , (24)

probably has the same geometrical meaning as the existence of the maximal velocity c [8].
In the formalism here applied, one can reach the relation (24) using also stochastic

approach [27]. The trajectory Xn(t) (n = x, y) of a classical test particle in (2 + 1) space, in
general, depends on the second time-like coordinate λ. Then in the (2 + 2) space of split
quaternions one gets a diffusion-like process:

dXn = vndt +
∂xn

∂λ
dλ (n = x, y), (25)

where Xn is the random 2-position. The 2-velocity, vn = ∂xn/∂t, and diffusion parameters
toward the x and y directions, ∂xn/∂λ, in Equation (25) are restricted by condition (21).

The additional time-like coordinate of quaternionic (2 + 2) space, λ, can be imagined
to represent a Wiener process (the most common example of a Wiener process is Brownian
motion) if is characterized by the following properties:

• at a starting moment can be set to zero together with t;
• has independent increments for every t > 0;
• is normally distributed with mean 0 and have some finite variance;
• has continuous paths in t.

These requirements are indeed satisfied for physical processes in (2 + 1)-sub-subspace
of the (2 + 2) space of split quaternions. In Appendix D it is shown that any rotation in the
spatial (x− y)-plain (represented with one-side multiplications by a time-like unit split
quaternions) is accompanied with the compact rotations (represented with the harmonic
functions) in the temporal (t− λ)-plain. Thus, the variable λ in (2 + 1) space has continues
path in t and its mean value is zero for sufficiently large time intervals. On the other
hand, to a quaternionic boost, e.g., towards x, it is corresponded non-compact rotation
in (y − λ)-plain with the restriction dy/dλ < 1, which follows from the positive norm
condition (21). So, in (2 + 1) space a normal distribution of the continuous variable λ with
the mean value 0 and the variance 1 can be assumed.

For a process described by the stochastic differential Equation (25) the probability
density obeys the Fokker–Planck equation. Using a stationary solution to this equation one
can define the standard deviations, σX and σP, of the random coordinate X and momentum
P. Then, the Cauchy-Schwartz inequality,

σXσP ≥ |Cov(X, P)| , (26)

leads to the standard uncertainty relation (24) [28].

3. Quaternions and Triality

Lie groups corresponding to division algebras have the property of having vector,
spinor and conjugate spinor representations of the same (real) dimensions, a property
known as triality [10,29,30]. By split quaternions the basic operations involving vectors,
spinors and scalars can be described. These include an operation that takes two spinors, ξ
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and χ (defined in Appendix F using zero divisors of the algebra Appendix E), and forms a
vector A = ξχ̄, and an operation that takes a vector A and a spinor ξ and forms a spinor
χ = Aξ.

3.1. Vector and Spinor Transformations

In quaternionic (2 + 2) space the vector (for example the interval (14)) and the first and
second kind spinors can be parameterize using the quaternionic basis (A1),

s = xaea , ξ = ξaea , χ = χaea . (27)

Thus, all three spinors are realized as split quaternion and their rotations will take
a multiplicative form, different in each case. One can check that their indices can be
raised/lowered by the matrix (A47) and that, in all three cases, the generators can be chosen
to be real antisymmetric matrices. These are consequences of the triality property, which
implies that one can just use a single index a for all three representations, which will be
distinguished only by the symbols, s, ξ and χ.

Note that the (2× 2) matrices

γa = ea
(

0 −1
1 0

)
(28)

satisfy the Clifford algebra
γaγb + γbγa = 2ηab , (29)

so rotations of spinors of the first and second kinds, ξ and χ, can be written by two sets of
matrices ea and ea∗,

ξ ′ = e
1
2 εabSab ξ = ξ + 1

4 εabeae∗b ξ ,

χ′ = χ e
1
2 εabSab = χ + 1

4 εabe∗a ebχ ,
(30)

where Sab are defined in (A54).
Furthermore, one can write the SL(2, R)-matrix representation of the Lorentz-type

transformations (A49), Lnm (n, m = x, y, t), in the (2 + 1)-subspace (x, y, t) of the vector (14):

x′n = Ln
mxm ⇔ s′ = e

1
2 εmn(Lmn) b

a xaeb

= s + 1
4 εmn

(
δb

mδna − δb
nδma

)
xaeb

= s + 1
4 εmn[em(e∗nea)− ea(e∗men)]xa

= s + 1
4 εmn(eme∗ns− se∗men) .

(31)

3.2. Triality Algebra

The triality algebra of split quaternions can be defined as:

α1(pq) = α2(p)q + pα3(q) , (32)

where p and q denote some split quaternions and α1, α2 and α3 are unit quaternions that
generate SO(2, 1) rotations.

In the formulations of SO(2, 2) vector A, covariant spinor ξ and contravariant spinor
χ representations in terms of quaternions (see Appendix F), the relationships between
the three may be expressed without gamma matrices. For example, a covariant and a
contravariant spinor can be used to form a vector

A = ξχ∗ , (33)
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or a contravariant spinor can be made from a vector and a covariant spinor

χ = A∗ξ , (34)

or a covariant spinor can be made from a vector and a contravariant spinor

ξ = Aχ . (35)

Supposing that all three objects A, ξ and χ are transformed by a priori unrelated
unit quaternions α1, α2 and α3 and still insisting that A is made from ξ and χ, these
transformations would have to be related. This relation is exactly the condition that defines
triality (32) and leads to the conclusion that the triality transformations is the largest
group that preserves (33). However, these transformations are exactly of the form used in
supersymmetry (see, for example [31]), so it is only natural that the overall symmetry of
these theories is given by the triality algebras.

If A, ξ and χ are quaternionic vector and covariant and contravariant spinors, respec-
tively, then, the triality construction

Tri ≡ χAξ (36)

is SO(2, 1) invariant. This can be checked explicitly by applying to (36) spinor and vector
transformation rules (see Appendices D and F),

χ′ = χα∗ , ξ ′ = αξ , A′ = αAα∗ . (37)

where α is a unit quaternion, i.e., αα∗ = 1.
The construction of division algebras from trialities has tantalizing links to physics. In

the Standard Model of particle physics, all particles (other than the Higgs boson) transform
either as vectors or spinors, and the interaction between matter and the forces is described
by a trilinear map (36), involving two spinors and one vector. Moreover, split normed alge-
bras naturally introduce pseudo-Euclidean spaces which are needed to describe physical
spinors and vectors that are associated with Lorentz-type groups.

4. Quaternionic Analyticity and (2 + 1) Electrodynamics

In this section, the quaternionic analyticity condition, that is generalization of the
Cauchy–Riemann equations from complex analysis, is derived. Then it is shown that
this condition, written for the triality invariant element of split quaternions, leads to the
system of equations for quaternionic vector and spinors, which is equivalent to the ordinary
Dirac–Maxwell system in three-dimensional Minkowski space-time [1].

4.1. Quaternionic Gradient Operator

In physical applications it is important to define the quaternionic gradient operator.
Although there have been some derivations of this operator in the literature with different
level of details (see, [32–41] and references therein), it is still not fully clear how this
operator can be written in the most general case and how it can be applied to various
quaternion-valued functions.

Employ analogy with complex analysis, one can define the split quaternionic deriva-
tive operator in the form [35–37],

d
ds

=
1
2
(
∂λ + e1∂x + e2∂y + e3∂t

)
, (38)

with ∂a ≡ ∂/∂a, such that its action upon interval quaternion (14) is equal to one,

ds
ds

=
1
2
(
1 + e2

1 + e2
2 + e2

3
)
= 1 , (39)
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while if applied to conjugated interval element,

s∗ = λ− xe1 − ye2 − te3 , (40)

it gives zero,
ds∗

ds
=

1
2
(
1− e2

1 − e2
2 − e2

3
)
= 0 . (41)

Similarly, the conjugated gradient can be defined by the operator

d
ds∗

=
1
2
(
∂λ − e1∂x − e2∂y − e3∂t

)
, (42)

which annihilates s. Thus, from the definitions of quaternionic gradients, (38) and (42),
one finds:

ds∗

ds
=

ds
ds∗

= 0 . (43)

From these relations it is clear that the interval (15) is a constant function for the
restricted left quaternionic gradient operators,

d
ds

(s∗s) =
(

ds∗

ds

)
s = 0 ,

d
ds∗

(ss∗) =
(

ds
ds∗

)
s∗ = 0 .

(44)

4.2. Analyticity Condition

The main obstacle in physical applications of quaternions is that the real-valued func-
tions of quaternion variables Φ(q) are not analytic according to quaternion analysis [32–41].
To bypass the issue of non-existent derivatives of real functions of quaternion variables,
current applications typically rewrite Φ(q) in terms of the four real components φa(qa)
(a = 0, 1, 2, 3) of four quaternion variables:

Φ(s, s∗) = φλ + e1φx + e2φy + e3φt , (45)

and take the real derivatives with respect to qa [37]. Thus, analogously to the Cauchy–
Riemann equations from complex analysis,

∂z∗ f (z, z∗) = 0 , (z = x + iy) (46)

the Cauchy–Riemann–Fueter condition of analyticity for quaternionic functions of quater-
nionic variables can be written as [35–37],

dΦ(s, s∗)
ds∗

=
1
2
(
∂λ − e1∂x − e2∂y − e3∂t

)
Φ = 0 . (47)

This statement, that quaternionic functions should be independent of the variable s∗,
represents the condition that quaternionic derivative be independent of direction along
which it is evaluated.

Note that the simple case of the quaternionic analyticity condition for interval vec-
tors (43), due to the existence of the relations of the type (41), holds only for split quater-
nions. This justifies in split quaternionic calculus the use of the simple gradient opera-
tors (38) introduced in [35,36]. For ordinary quaternions, even the polynomial functions
do not satisfy these Cauchy–Riemann–Fueter conditions and several generalizations are
necessary [37–41].

The coordinate transformations, e.g., q′ = αq, in general do not preserve the property
of analyticity, since unit split quaternions representing rotations and boosts are not analytic
functions. Thus, to construct analytic and invariant structures (Lagrangians, Superpoten-
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tials, etc.), combinations of spinor-like and vector-like split quaternions are needed. For
instance, if the transformation laws of χ, ξ and A have the forms,

χ′ = χα∗ , ξ ′ = αξ , A′ = αAα∗ , (48)

the invariant constructions are products of the type χξ and χAξ. Indeed,

(χξ)′ = χ′ξ ′ = χ α∗α ξ = χξ ,

(χAξ)′ = χ α∗α A α∗α ξ = χAξ .
(49)

Then, using validity of the distribution law for quaternionic gradient operators (38)
and (42) [35–37], one can write Cauchy–Riemann–Fueter analyticity condition (47) for the
triality invariant construction (36) in the form:

d(χAξ)

ds∗
=

dχ

ds∗
Aξ + χ

dA
ds∗

ξ + χA
dξ

ds∗
= 0 . (50)

This condition is equivalent to the system of equations for quaternionic vector and
spinors of the first and second kind (covariant and contravariant),

dA
ds∗

= 0 ,
dχ

ds∗
= 0 ,

dξ

ds∗
= 0 . (51)

Below, it is shown that this system can be reduced to the equations of (2 + 1) electrody-
namics, i.e., to the system of standard Dirac and Maxwell equations in three-dimensional
Minkowski space-time.

4.3. Quaternionic Dirac Equation

Let us demonstrate that the algebraic Cauchy–Riemann–Fueter condition (51) for
the covariant spinor ξ can be understood as the Dirac equation. Analogous logic can be
applied for the case of the second kind (contravariant) spinor χ to obtain Dirac equation
for conjugated spinors.

Consider the first kind of spinor, ξ+ (A128),

ξ+ = (q0 − iq3)D+ + (q2 + iq1)G− , (52)

expressed in terms of the idempotent and nilpotent elements in SU(1, 1) representa-
tion (A92), where qn represents real functions of λ, x, y and t. One can replace

ξ+(λ, x, y, t) → emλξ+(x, y, t) , (53)

where m is a real parameter. Then, the condition (51) for the covariant spinor ξ takes
the form: (

∂λ − e1∂x − e2∂y − e3∂t + m
)
ξ+(x, y, t) = 0 . (54)

Next let us assume that the derivative of the covariant split quaternion ξ+(x, y, t) by
the extra time-like coordinate λ generates the supersymmetric (triality) transformation:

∂λξ+ = Bχ+∗ , (55)

where B is some vector-type split quaternion, while χ+∗ is the conjugated contravariant
quaternionic spinor (A129) in SU(1, 1) representation:

χ+∗ = (q0 − iq3)D+ − (q2 + iq1)G− . (56)

Then the quaternionic Cauchy–Riemann condition (54) obtains the form:(
e1∂x + e2∂y + e3∂t −m

)
ξ+ − Bχ+∗ = 0 , (57)
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or in matrix notation,[(
−i∂t + m ∂y − i∂x
∂y + i∂x i∂t + m

)
+

(
B0 − iB3 B2 − iB1
B2 + iB1 B0 + iB3

)(
−1 0
0 1

)](
q0 − iq3
q2 + iq1

)
= 0 . (58)

On the other hand, the (2 + 1)-dimensional Dirac equation for a massive particle has
the form, [

iγk(∂k + iAk)−m
]
Ψ(t, x, y) = 0 (k = 1, 2, 3), (59)

where i denotes the standard complex unit, Ak is the vector-potential and γ3 plays the role
of the γ0 matrix. As the (2 + 1) gamma matrices the split quaternionic basis elements can
be used in SU(1, 1)-matrix representation,

iγ1 = e1 =

(
0 −i
i 0

)
, iγ2 = e2 =

(
0 1
1 0

)
, iγ3 = e3 =

(
−i 0
0 i

)
, (60)

and identify the complex Dirac spinors Ψ(t, x, y) with the complex SU(1, 1) representation
of the quaternionic spinor ξ+(t, x, y). Then, the matrix form of (2 + 1) Dirac Equation (59)
obtains the form:[(

−i∂t + m ∂y − i∂x
∂y + i∂x i∂t + m

)
+

(
At Ax + iAy

−Ax + iAy −At

)](
q0 − iq3
q2 + iq1

)
= 0 , (61)

where qn(t, x, y) denote the four real components of the complex Dirac spinor ξ+(t, x, y).
Than assuming

B0 = At , B1 = Ay , B2 = −Ax , B3 = 0 , (62)

the quaternionic analyticity conditions (58) becomes equivalent to the complex (2 + 1) Dirac
Equation (61) [1].

Note that Dirac’s theory in (2 + 1) space has some novel features. For example, there
exists two inequivalent representations of Dirac gamma matrices, without which parity
operation and its conservation would not have been possible. Further, when an external
gauge field is introduced, it induces an ’anomalous’ current which can be related to the
anomalous divergence of an axial current and to the topological Chern-Simons charge.

4.4. (2 + 1) Maxwell Fields

Firs let us remind ordinary Maxwell’s equations in three-dimensional Minkowski
space-time. To write the full set of Maxwell’s equations in (2 + 1) spaces with the signature

ηkm = diag(+1,+1,−1) (k, m = x, y, t), (63)

let us define the three potential Ak = (Ax, Ay, At) and the Faraday tensor,

Fkm = ∂k Am − ∂m Ak , (64)

which has only three independent components. The relation between the vector potential
and the magnetic and electric fields can be done through

H = ∂x Ay − ∂y Ax , Ex = ∂x At − ∂t Ax , Ey = ∂y At − ∂t Ay . (65)

Note that in (2 + 1) space, Faraday’s tensor has only three independent components
and the magnetic field is no longer a vector—it becomes a (pseudo) scalar field. Indeed, in
a world where all electric effects are confined to two planes, the magnetic field would be
along the perpendicular direction. One must notice also that the dual tensor,

F̃k = εklmFlm , (66)
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will become a vector.
In covariant form, Maxwell’s equations in (2 + 1) spaces are then

∂kFmk = jm , ∂k F̃k = 0 , (67)

where jt is the surface charge and jx and jy are surface currents. One can then work out the
differential Maxwell’s equations in (2 + 1) spaces in terms of the fields,

∂xEx + ∂yEy = jt , ∂tEx − ∂y H = −jx ,

∂xEy − ∂yEx + ∂tH = 0 , ∂tEy + ∂x H = −jy .
(68)

One can see that there is no equivalent to the three-dimensional magnetic Gauss’ law.
Electrodynamics become complete with the Lorentz force law f k = Fkmvm,

fx = e(Ex + vy H) , fy = e(Ey − vx H) , (69)

where e is the charge and vm = (vx, vy, 0) represents components of the velocity in the
(x− y)-plain.

An immediate consequence of (2 + 1) Maxwell’s equations in is the existence of
electromagnetic waves in two spatial dimensions,

(∂2
x + ∂2

y − ∂2
t )Ex = ∂x jt + ∂t jx ,

(∂2
x + ∂2

y − ∂2
t )Ey = ∂y jt + ∂t jy ,

(∂2
x + ∂2

y − ∂2
t )H = ∂y jx − ∂x jy.

(70)

In the Lorenz gauge,
∂k Ak = 0 , (71)

Equation (70) are the wave equations with sources for the components of Ak ,

(∂2
x + ∂2

y − ∂2
t )Ak = −jk . (72)

Short discussions about the electrodynamics in (2 + 1) space can be found in [42–45],
where it is noted that the model faces a few issues:

• The Coulomb force in (2 + 1) space must change, the electric field of a point charge
now falls off as the inverse of the distance which entails a logarithmic electrostatic
potential. This dramatically alters the phenomenology, since the attractive potential
between opposite charges becomes confining, i.e., an infinite amount of energy would
be required to extract the electron from the hydrogen atom, for example.

• Part of the vector calculus must change. The absence of a right-hand rule is obvious
and the magnetic field must be qualitatively different; it turns out that it cannot be a
vector any more—it becomes a scalar field.

• One of the main new features is connected to the retarded potentials. The reason
for this is directly linked to the Huygens principle, which states that every point on
a wave front is itself the source of (spherical) waves and relies on the fact that all
waves propagate with a single speed. In (2 + 1) space, however, a solution to the
wave equation can be understood as a superposition of waves travelling with speeds
ranging from zero to the maximum value c, with which the first wave front travels.

4.5. First-Order Maxwell System

Let us write down the split quaternion that contains the electromagnetic potentials as

A = A0 + e1 Ax + e2 Ay + e3 At , (73)
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where Ax, Ay and At are components of the (2 + 1) vector and A0 corresponds to extra
degree of freedom in the quaternionic algebra. Using quaternionic gradient operator (42)
the Cauchy–Riemann–Fueter analyticity condition (51) for the vector potential (73) can be
written in the form:(

∂λ − e1∂x − e2∂y − e3∂t
)

A =
[
∂λ A−

(
e1∂x + e2∂y + e3∂t

)
A0 − F

]
= 0 . (74)

Here F denotes the quaternionic electro-magnetic field,

F =
(
e1∂x + e2∂y + e3∂t

)(
e1 Ax + e2 Ay + e3 At

)
= −∂k Ak − e1Ey + e2Ex + e3H , (75)

where H, Ex and Ey are components of the magnetic and electric fields (65).
As in Equation (53), the variable λ is separated in the scalar part of the vector-

potential (73) (with the unit ’charge’, m = 1),

∂λ A0 = A0 . (76)

Similar to the case of spinors (55), it is also assumed here that the derivative of the
vector part of (73) by the extra time-like coordinate λ generates the supersymmetric (triality)
transformations (A→ ξχ),

∂λ

(
e1 Ax + e2 Ay + e3 At

)
= e1 jx + e2 jy − e3 jt , (77)

where jk are the components of the current vector, which is constructed by the covariant
and contravarint spinors j ∼ ξχ.

Using Equations (76) and (77) the Cauchy–Riemann–Fueter analyticity condition (74)
can be written as the first-order Maxwell system [46,47]:

F = A0 ,(
e1∂x + e2∂y + e3∂t

)
A0 = −e1 jx − e2 jy + e3 jt .

(78)

Utilize the auxiliary function A0 this system can be transferred to the single second-
order Maxwell’s equation in (2 + 1) space,(

e1∂x + e2∂y + e3∂t
)

F = −e1 jx − e2 jy + e3 jt . (79)

Indeed, the left side of this equation under the Lorenz gauge,

∂k Ak = ∂x Ax + ∂y Ay − ∂t At = 0 , (80)

in SU(1, 1)-matrix representation has the form:(
−i∂t (∂y − i∂x)

(∂y + i∂x) i∂t

)(
−iH (Ex + iEy)

(Ex − iEy) iH

)
=
(
∂yEx − ∂xEy − ∂tH

)
e0 +

(
∂tEx − ∂y H

)
e1 +

(
∂tEy + ∂x H

)
e2 +

(
∂xEx + ∂yEy

)
e3 .

(81)

Equating to zero the coefficients in front of the four quaternionic basis units, one
obtains the system of four real equations which are identical to the system of the Maxwell
Equation (68) [1].

Note that the algebra of quaternions was applied to the study of Maxwell’s equa-
tions starting from the work of Maxwell himself [48]. Maxwell’s equations also were
obtained long ago using Cauchy–Riemann-type analyticity conditions for functions of real
quaternions [49]. However, in previous studies, first-order quaternionic equations were
considered for the fields (65) and not second-order equations for vector potentials (78). A
review of different applications of quaternionic analysis to the Maxwell equations can be
found in [50]. Furthermore, usually it is considered sourceless quaternionic Maxwell’s
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equation, while in this paper, coupled quaternionic Dirac–Maxwell system is obtained
receiving Dirac’s current from triality transformations.

5. Conclusions

Spinors and vectors in (2 + 2) space of split quaternions were studied and connections
of their algebraic and physical properties were noted.

We think that some properties of physical models, such as invariance of space-time
intervals, non-commutativity and half-angle spinor representations, are encoded in the
structure of split quaternions. In the approach considered, two fundamental physical
constants (light speed and Planck’s constant) have similar geometrical meanings and
appear from the positive definiteness of quaternionic norms.

Quaternionic representation of rotations naturally separates two SO(2, 1) subgroups
of the full group of symmetry of the norms of split quaternions, SO(2, 2). One of them
represents symmetries of the three-dimensional Minkowski space-time, while the extra
SO(2, 1) rotations by the second time-like coordinate can be viewed as internal symmetries
of the model.

It is shown that the quaternion analyticity condition, analog of the Cauchy–Riemann
equations from complex analysis, applied to the triality invariant construction of split
quaternions, is equivalent to some system of differential equations for quaternionic spinors
and vectors. Assuming that derivatives by the extra time-like coordinate of quaternionic
(2 + 2) space generate triality (supersymmetric) rotations of vectors and spinors, the an-
alyticity equations is reduced to the exact Dirac–Maxwell system in three-dimensional
Minkowski space-time.

We should state that we do not know of any physical system which can be described
by the (2 + 1) electrodynamics considered in this paper. Rather, the main purpose was to
consider split quaternionic analysis as a toy-model on the way of developing the realistic
field theoretical models using split octonions, in the spirit of [2–7].
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Appendix A. Matrix Representation of Split Quaternions

The quaternion algebra is associative and therefore can be represented by matrices.
For example, one gets the simplest non-trivial representation of the basis element of split
quaternions by the unit matrix and the three traceless (2 × 2) matrices of the SL(2, R)
algebra,

e0 = (1) =

(
1 0
0 1

)
, e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
, e3 = e1e2 =

(
0 1
−1 0

)
. (A1)

In this representations split quaternion (7) uniquely corresponds to the 2× 2 real
matrix,

qSL(2,R) =

(
(q0 + q1) (q2 + q3)
(q2 − q3) (q0 − q1)

)
. (A2)

Conversely, an arbitrary real matrix:

p =

(
a1 b1
a2 b2

)
, (A3)
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where an and bn (n = 1, 2) are some real parameters, uniquely corresponds to a quaternion:

p =
1
2
[
(a1 + b2) + (a1 − b2)e1 + (b1 + a2)e2 + (b1 − a2)e3

]
. (A4)

To represent the basis units of split quaternions in (A1) one can use, instead of the
three real SL(2, R) matrices, the complex SU(1, 1) matrices,

e0 =

(
1 0
0 1

)
, e1 =

(
0 −i
i 0

)
, e2 =

(
0 1
1 0

)
, e3 =

(
−i 0
0 i

)
, (A5)

where i is the ordinary complex unit. The basis units e0 and e2 in matrices (A5), coincides
with the corresponding ones in matrices (A1), while for the remaining two basis units, one
has e1 → ie3 and e3 → ie1. So, any split quaternion (7) has the following SU(1, 1)-matrix
representation:

qSU(1,1) =

(
(q0 − iq3) (q2 − iq1)
(q2 + iq1) (q0 + iq3)

)
, (A6)

which can be obtained from the SL(2, R)-matrix representation (A2) by the replacements
q1 → −iq3 and q3 → −iq1.

The representations (A2) and (A6) have the following properties:

1. the norm of a quaternion is expressed by the determinant of associated matrix,

det(q) = N2 = q2
0 − q2

1 − q2
2 + q2

3 ; (A7)

2. the spur (trace) of the associated matrices is equal to 2q0;
3. the conjugated quaternion is associated with the quaternionic matrices,

q∗SL(2,R) =

(
(q0 − q1) −(q2 + q3)

−(q2 − q3) (q0 + q1)

)
, q∗SU(1,1) =

(
(q0 + iq3) −(q2 − iq1)

−(q2 + iq1) (q0 − iq3)

)
. (A8)

Appendix A.1. SL(2, R) and SU(1, 1) Groups

A split quaternion q (with non-zero norm Nq 6= 0) can be written in the form:

q = Nqα , (A9)

where α is the split quaternion with the unit norm Nα = 1. Any split quaternion q has
(2× 2)-matrix representation, thus to α corresponds a matrix with the norm equal to one.
On the other hand, it is known that the set of all (2× 2) matrices with the unit determinant,

α =

(
a b
c d

)
, α∗ =

(
a b
c d

)−1

=

(
d −b
−c a

)
(ad− bc = 1), (A10)

forms a group. The parameters a, b, c and d in (A10), in general, can be complex.
Matrix groups consisting of matrices with unit determinant are called special linear,

but which particular group obtained depends on the nature of the elements in (A10). When
a, b, c, and d – all are real, one gets the SL(2, R) group, while for the complex elements and
when d = a∗, and c = b∗, the SU(1, 1) group is obtained.

The matrices (A2) and (A6) with unit determinant represent the elements of the groups
SL(2, R) and SU(1, 1), respectively. However, it is known that algebras of SU(1, 1) and
SL(2, R) are isomorphic. Indeed the complex SU(1, 1) matrices (A5) can be obtained from
the real SL(2, R) matrices (A1) by the two-side products with

1√
2
(1 + ie2) =

1√
2

(
1 i
i 1

)
,

1√
2
(1− ie2) =

1√
2

(
1 −i
−i 1

)
. (A11)
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i.e., any quaternion in real SL(2, R)-matrix representation can be transformed to the com-
plex SU(1, 1) representation,

qSU(1,1) =
1
2
(1 + ie2)qSL(2,R)(1− ie2) . (A12)

Note that, in contrast with the ordinary Pauli matrices that are used to represent basis
of Hamilton’s quaternions, the squares of the SL(2, R) and SU(1, 1) matrices (A1) and (A5),
give the unit matrix with different signs,

e2
1 = e2

2 = (1) , e2
3 = −(1) . (A13)

Conjugations of the hyper-complex basis elements of split quaternions means Hermi-
tian conjugation of corresponding matrices, i.e.,

e1e∗1 = e1(−e1) = −(1) e3e∗3 = (1) . (A14)

Appendix A.2. Complex-like Representation

In the representation used, one of the hyper-complex basis units of split quaternions,
e3, has properties of the complex unit i, in the sense that e2

3 = −1 and e∗3 = −e3. Then one
can rewrite elements of the split-quaternion algebra (7) in the forms:

q = z1 + z2e2 = z1 − z2e1 (e2
1 = e2

2 = 1), (A15)

where
z1 = q0 + q3e3 , z2 = q2 + q1e3 (A16)

are ’quaternionic complex numbers’. Using the relations

ze2 = e2z∗ , ze1 = e1z∗ , (A17)

for any complex number z, the definition of conjugate split quaternions can be written as
follows:

q∗ = z∗1 + z2e2 = z∗1 − z2e1 . (A18)

One can correspond to a split quaternion in the representation (A15) the complex
matrix

q =

(
z1 z2
z∗2 z∗1

)
, (A19)

determinant of which is the norm of the split quaternion q,

N2
q = N2

z1
− N2

z2
. (A20)

Then it follows that the set of all split-quaternions,

αk
n =

(
z1 z2
z∗2 z∗1

)
(n, k = 1, 2) , (A21)

with the unit norm, i.e., when the complex numbers z1 and z2 in quaternions (A21) are
restricted by the unimodularity condition

z1z∗1 − z2z∗2 = 1 , (A22)

constitute the algebra of non-compact complex group SU(1, 1) that is isomorphic to the
algebra of the special linear group SL(2, R).
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Appendix B. Classification of Split Quaternions

Split quaternions are characterized by pseudo-Euclidean norms (13) and thus can be
grouped in various classes.

The two basis units of split quaternions, e0 and e3 (and the corresponding real pa-
rameters q0 and q3) to be called time-like, with the positive norms, e0e∗0 = e3e∗3 = 1. The
remaining two basis units, e1 and e2 (and the real parameters q1 and q2), are called space-
like, since their norms e1e∗1 = e2e∗2 = −1. Then, one can distinguish the space-like, time-like
and light-like split quaternions [51,52]:

N2 < 0 (space-like),

N2 > 0 (time-like),

N2 = 0 (light-like)
(

N2 = q2
0 − q2

1 − q2
2 + q2

3
)
.

(A23)

Space-like and time-like quaternions have multiplicative inverses,

q−1 =
q∗

N2 , (A24)

with the property:
qq−1 = q−1q = 1 , (A25)

while light-like quaternions have no inverses.

Appendix B.1. Scalar and Vector Parts

Another useful representation of the split quaternion (7) is:

q = Sq + Vq , q∗ = Sq −Vq , (A26)

where the symbols
Sq = q0 , Vq = q1e1 + q2e2 + q3e3 , (A27)

are called the scalar and vector parts, respectively. The real part of the quaternion Sq is then
the one that is invariant by the action of the quaternionic conjugation, S∗q = Sq, while the
vector part Vq is the one that flips the sign under this operation, V∗q = −Vq.

In the representation (A26) the product of q and another split quaternion p = Sp + Vp
is given by

qp = SqSp + (Vq ·Vp) + SqVp + SpVq + Vq ∧Vp , (A28)

where

Sp = p0 ,

Vp = p1e1 + p2e2 + p3e3 ,

(Vq ·Vp) = q1 p1 + q2 p2 − q3 p3 ,

Vq ∧Vp = (q3 p2 − q2 p3)e1 + (q3 p1 − q1 p3)e2 + (q1 p2 − q2 p1)e3 .

(A29)

The vector part Vq of any space-like split quaternions is space-like, since in this case

VqV∗q = −q2
1 − q2

2 + q2
3 < −q2

0 . (A30)

But the vector part of a time-like quaternion can be space-like, time-like, or light-like,
when the quantity

VqV∗q = −q2
1 − q2

2 + q2
3 > −q2

0 . (A31)

is negative, positive, or null, respectively.
The set of space-like split quaternions is not a group since it is not closed under

multiplication. That is, the product of two space-like quaternions is time-like, whereas
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the set of time-like quaternions forms a group under the split quaternion product and are
useful to represent SO(2, 1)-rotations of Minkowski 3-space.

Appendix B.2. The Polar Form

The unit split quaternion α can be obtained from any non-lightlike quaternion q by the
division on its norm,

α =
q
N

. (A32)

Using this definition, one can construct polar forms of space-like and time-like split
quaternions as the products of their norms and the corresponding unit quaternions [51,52]:

• Every space-like quaternion can be written in the form:

q = N(sinh θ + ε cosh θ) , (A33)

where

sinh θ =
q0

N
, cosh θ =

√
q2

1 + q2
2 − q2

3

N
, ε =

q1e1 + q2e2 + q3e3√
q2

1 + q2
2 − q2

3

, (A34)

and ε is a unit (ε2 = 1) space-like three vector.
• Every time-like quaternion with the space-like vector part can expressed as

q = Nαx = N(cosh θ + ε sinh θ) , (A35)

where the functions cosh and sinh have switched places compared to the previous
case, and

cosh θ =
q0

N
, sinh θ =

√
q2

1 + q2
2 − q2

3

N
, (A36)

ε again is a unit space-like three vector as in Equations (A34).
• Every time-like quaternion with the time-like vector part can be written in the form:

q = Nαt = N(cos θ + ε sin θ) , (A37)

where

cos θ =
q0

N
, sin θ =

√
−q2

1 − q2
2 + q2

3

N
, ε =

q1e1 + q2e2 + q3e3√
−q2

1 − q2
2 + q2

3

, (A38)

now ε is a unit time-like three vector.

Appendix B.3. Exponential Maps

Using the classification scheme of split quaternions, one can see that any unit split
quaternion,

α = α0 + αkek (Nα = α2
0 − α2

1 − α2
2 + α2

3 = 1) , (A39)

has the equivalent exponential representations, which for the case of time-like vector part
has the form:

αt = cos θ + ε sin θ = eεθ (α2
3 > α2

1 + α2
2) , (A40)

where θ is some real ’angle’. Since each component of eεθ is a differentiable function of θ,
then

d
dθ

eεθ = − sin θ + ε cos θ = εeεθ = eεθε . (A41)
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For time-like unit split quaternion with the space-like vector part, one gets the other
representation:

αx = cosh φ + ε sinh φ = eεφ (α2
3 < α2

1 + α2
2) , (A42)

where φ corresponds to some ’velocities’. The differential of eεφ is

d
dφ

eεφ = sinh φ + ε cosh φ = εeεφ = eεφε . (A43)

Appendix C. Matrix Representation of (2 + 2)-Rotations

Every point of (2 + 2) space can be represented by coordinates xa, a = 0, 1, 2, 3, with
respect of a frame defined by a set of linearly independent unit time-like and space-like basis
vectors la. Keeping the notation of Equation (14), contravariant and covariant coordinate
vectors can be written as row and column matrices,

xa =


λ
x
y
t

 , la = (lλ, lx, ly, lt) . (A44)

The choice of xa and la is entirely arbitrary and one has to worry about what aspects of
physical fields φ(x) are artifacts of the representation of the coordinate system considered.
There is important class of symmetries, forming the group SO(2, 2), and coordinate trans-
formations that leave the norm (15) invariant. It is crucial that components of fields φa(x)
and the basis vectors la in general are not invariant under these transformations. In fact,
based on the different behavior of φa(x) under SO(2, 2), The physical field can be divided
into several types—scalar, spinor and vector (tensor) fields. Specifically, any field (as an
element of a linear space with the basis la) can be written as

φ(x) = φ0lλ + φ1lx + φ2ly + φ3lt . (A45)

If a SO(2, 2)-transformation U of φa is performed, then the basis la should transform
inversely by U−1, in order to make invariant the combination

φ = UφaU−1la . (A46)

The metric tensor of the (2 + 2) space (15) is given by

ηab = diag(1,−1,−1, 1) , (A47)

and the physics convention for Lie algebras and the exponential mapping can be used. One
possible choice of basis for the Lie algebra of SO(2, 2) ∼= SO(1, 2)× SO(1, 2) group,

Lab = −Lba (a, b = 0, 1, 2, 3), (A48)

is the vector representation by (4× 4) matrices:

L01 = i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , L02 = i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , L03 = i


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 ,

L12 = i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , L13 = i


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , L23 = i


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 ,

(A49)
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Consequently, all (2 + 2)-transformations can be written under the form

U = exp{− i
2 εabLab} , (A50)

where εab are the elements of a real and antisymmetric matrix.
The vector field A is the field whose field representation is vector representation. Thus,

the components transform as

U(Ac) = exp
{
− i

2 εabLab

} c

d
Ad , (A51)

The transformation of the basis lc follows the trivial representation which is defined as

U(lc) = exp{− i
2 εabLab} d

c ld . (A52)

Therefore,

A = U(Ac) ·U−1(lc) = Ac exp
{
− i

2 εabLab

} d

c
· exp

{
i
2 εabLab

} k

d
lk = Ac · lc , (A53)

where the dot can be “viewed” as the matrix product, while it is known that this interpreta-
tion fails for spinors.

Now note that matrices (A49) is not the only “basis” of SO(2, 2), generators are also
the matrices

Sab =
i
4
[γa, γb] . (A54)

Here, the four γa matrices satisfy

{γa, γb} = γaγb + γbγa = −2ηab , (A55)

where ηab is the metric of the (2 + 2) space (A47). Therefore, along with transformation (A50),
the SO(2, 2)-transformation can be expressed as

U = exp{− i
2 εabSab} , (A56)

which is called spinor representation of the SO(2, 2) group. The spinor field ψ = ψala is the
field whose components representation is spinor representation,

U(ψc) = exp
{
− i

2 εabLab

}
ψc = exp

{
− i

2 εabSab

} c

d
ψd . (A57)

If the (2 + 2)-transformation of the spinor ψ is written explicitly, namely,

ψc exp
{

i
2 εabSab

} d

c
· exp

{
− i

2 εabLab

} k

d
lk = ψa · la , (A58)

one can see that the parameters εab are the same in the two sides of dot, but the “basis”
is different. Thus, if the dot is still considered as the matrix product, the equality will no
longer hold. Hence, a new definition will be needed in this case, which means that under
the new product, there is

exp
{

i
2 εabSab

}
· exp

{
− i

2 εabLab

}
→ identity matrix. (A59)

In Fibre Bundle theory this is achieved by introducing an equivalence class.
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Quaternionic Basis in Matrix Representation

The interval vector of quaternionic (2 + 2) space (14) is partitioned into the identity
matrix and the split quaternionic basis matrices ek,

s = xaea . (a = λ, x, y, t) (A60)

The basis vectors of (2 + 2) space have the components:

ea = e∗a = (1, e1, e2, e3) ,

ea = ea∗ = (1,−e1,−e2,−e3) ,
(A61)

and corresponding matrices satisfy the algebra:

eaeb∗ + ebea∗ = 2ηab ,

ea∗eb + eb∗ea = 2ηab ,
(A62)

where the metric tensor ηab has the signature (A47).
Then, the (2 + 2)-vectors (A44) can equally well be described by the matrices, for

example in SL(2, R)-matrix representation (A1),

xa ⇔


x = xae∗a =

(
λ + x y + t
y− t λ− x

)
,

x̄ = xaea = −
(
−λ + x y + t

y− t −λ− x

)
,

(A63)

thus
xx̄ = x̄x = xaxa(1) . (A64)

Here,
xaxa = (λ + x)(λ− x)− (y + t)(y− t) = det x (A65)

is the Minkowski square of the 4-vector (A63), with the signature (+,−,−,+).
The Minkowski inner product of two 4-vectors xa and ya, corresponding to real 2× 2

matrices x and y, can be written as

xaya =
1
2

Tr(xȳ) , (A66)

where the index-lowering operation ya is accomplished in matrix form by

ȳ =

(
0 1
−1 0

)
yT
(

0 1
−1 0

)
, (A67)

where yT denotes transpose matrix.

Appendix D. Quaternionic Rotations

Let us consider various types of quaternionic rotations in the (2 + 2) space of a split
quaternions.

Appendix D.1. Compact Rotations

Suppose a split quaternion q is rotated around the time-like e3-axis in space-like plain
defined by e1 and e2. Rotations are described by a time-like unit quaternion with time-like
vector part (which is analogous to ordinary complex numbers),

αt = cos
θ

2
+ sin

θ

2
e3 (Nα = 1), (A68)
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and the spherical compact rotation angle θ. The result of the left multiplication,

qL = αtq =

(
cos

θ

2
q0 − sin

θ

2
q3

)
+

(
cos

θ

2
q1 + sin

θ

2
q2

)
e1+

+

(
cos

θ

2
q2 − sin

θ

2
q1

)
e2 +

(
cos

θ

2
q3 + sin

θ

2
q0

)
e3 ,

(A69)

gives simultaneous rotations in (q0 − q3) and (q1 − q2) planes by the same angle θ/2.
Note that the left products of q by a conjugate unit quaternions α∗ change the direction
of rotations,

α∗t (θ)q = αt(−θ)q . (A70)

So, the single product on a unit quaternion α always rotates q by the same angle in
two independent planes at once. Moreover, one of the two planes always include the axis
of unit element q0. This is not what we want for three-dimensional vector rotation; we need
to be able to rotate in just one plane. It turns out that swapping the order of multiplication
of two quaternions, i.e., the right product,

qR = qαt =

(
cos

θ

2
q0 − sin

θ

2
q3

)
+

(
cos

θ

2
q1 − sin

θ

2
q2

)
e1+

+

(
cos

θ

2
q2 + sin

θ

2
q1

)
e2 +

(
cos

θ

2
q3 + sin

θ

2
q0

)
e3 ,

(A71)

will reverse the direction of rotation in one of the two planes—namely in (q1 − q2) plane
that does not contain the axis of unit element q0. At the same time,

qα∗t (θ) = qαt(−θ) . (A72)

Thus, to get a rotation of vector part of split quaternion that only affects a single plane,
one has to apply the quaternion twice, multiplying on both the left and on the right (with
its inverse), as in transformation (17). The rotation we want gets done twice (and the one
we do not want gets canceled out), so one has to halve the angle θ going in to make up for
it. Finally, for rotation of vector split quaternion:

αt q α∗t = cos
θ

2

(
cos

θ

2
q0 − sin

θ

2
q3

)
+ sin

θ

2

(
cos

θ

2
q3 + sin

θ

2
q0

)
+

[
cos

θ

2

(
cos

θ

2
q1 + sin

θ

2
q2

)
+ sin

θ

2

(
cos

θ

2
q2 − sin

θ

2
q1

)]
e1

+

[
cos

θ

2

(
cos

θ

2
q2 − sin

θ

2
q1

)
− sin

θ

2

(
cos

θ

2
q1 + sin

θ

2
q2

)]
e2

+

[
cos

θ

2

(
cos

θ

2
q3 + sin

θ

2
q0

)
− sin

θ

2

(
cos

θ

2
q0 − sin

θ

2
q3

)]
e3

= q0 + (cos θq1 + sin θq2)e1 + (cos θq1 − sin θq2)e2 + q3e3 ,

(A73)

Appendix D.2. Boosts

Now let us consider the boosts along the space-like axes e1 and e2 represented by the
unit quaternions αy and αx, respectively, which can be obtained from the definition (A68)
by replacing the basis element e3 with e1 or e2 and θ with a hyperbolic angle φ. For example,
rotations of q around the space-like axis e2 in the (e1 − e3)-plain, or boosts along e1 by
the ’velocity’ v, can be done using the time-like unit split quaternion with the space-like
vector part,

αy = cosh
φ

2
− sinh

φ

2
e2 . (A74)
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Here, the hyperbolic angle φ relates to the velocity by the standard relativistic expressions,

cosh φ =
1√

1− v2
, sinh φ = vs. cosh φ , (A75)

where the units c = 1 is used. Left transformation of q by αy has the form:

q′ = αyq = q′0 + q′1e1 + q′2e2 + q′3e3 , (A76)

where

q′0 = cosh
φ

2
q0 − sinh

φ

2
q2 ,

q′1 = cosh
φ

2
q1 + sinh

φ

2
q3 ,

q′2 = cosh
φ

2
q2 − sinh

φ

2
q0 ,

q′3 = cosh
φ

2
q3 + sinh

φ

2
q1 .

(A77)

For the right boosts, one has:

q′′ = qαy = q′′0 + q′′1 e1 + q′′2 e2 + q′′3 e3 , (A78)

where

q′′0 = cosh
φ

2
q0 − sinh

φ

2
q2 ,

q′′1 = cosh
φ

2
q1 − sinh

φ

2
q3 ,

q′′2 = cosh
φ

2
q2 − sinh

φ

2
q0 ,

q′′3 = cosh
φ

2
q3 − sinh

φ

2
q1 .

(A79)

Acting from both side on q by αy and α∗y, the hyperbolic rotations in (q0 − q2)-plane
cancels out and we left with the one parameter (the hyperbolic angle φ) group of boosts in
(q3 − q1)-plane.

For completeness note that, analogous to the case of rotations (A70) and (A72), for
boosts there exist the relations

α∗y(v)q = αy(−v)q , qαy(v) = qα∗y(−v) . (A80)

Appendix D.3. Boosts by Extra ’Time’

Above, it was shown that the αqα∗-type two-side products by unit quaternions α and
their conjugates α∗ represent rotations of the vector parts of quaternions (which not affect
the unit element q0). These transformations form automorphism group of quaternions,
which for the case of split quaternions is SO(2, 1), the sub-group of SO(2, 2) ∼= SO(2, 1)×
SO(2, 1).

The second SO(2, 1) subgroup of SO(2, 2), which mix the real time-like axis q0 with
the other three axes e1, e2 and e3, can be represented by two-side products with the same
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unit quaternion, i.e., αqα. Indeed, the two-side product of q by the unit quaternion (A68)
rotates into each other the two time-like axes q0 and q3:

αtqαt = cos
θ

2

(
cos

θ

2
q0 − sin

θ

2
q3

)
− sin

θ

2

(
cos

θ

2
q3 + sin

θ

2
q0

)
+

[
cos

θ

2

(
cos

θ

2
q1 + sin

θ

2
q2

)
− sin

θ

2

(
cos

θ

2
q2 − sin

θ

2
q1

)]
e1

+

[
cos

θ

2

(
cos

θ

2
q2 − sin

θ

2
q1

)
+ sin

θ

2

(
cos

θ

2
q1 + sin

θ

2
q2

)]
e2

+

[
cos

θ

2

(
cos

θ

2
q3 + sin

θ

2
q0

)
+ sin

θ

2

(
cos

θ

2
q0 − sin

θ

2
q3

)]
e3

= (cos θq0 − sin θq3) + q1e1 + q2e2 + (cos θq3 + sin θq0)e3 ,

(A81)

Analogous relations are valid for boosts along the axes e1 and e2.

Appendix E. Decomposition of Split Quaternions

In order to define quaternionic spinors, one needs to decompose a split quaternions (7),
which in general contain four distinct real parameters q0 and qk. To do this, at first let us
introduce special elements of split quaternions, called zero divisors.

In split algebras the special singular objects, zero divisors, can be constructed [9]. These
critical elements of the algebra, which are similar to light-cone variables in Minkowski
space-time, could serve as the unit signals characterizing physical events. The norms of
split quaternions (13) have (2 + 2)-signature and, thus, one gets two different types of
’light-cones’. Correspondingly, two types of zero divisors, idempotent elements (projection
operators) and nilpotent elements (Grassmann numbers) [9].

Appendix E.1. Idempotents

At first let us consider the idempotent quaternions, which have the property that they
coincide with their squares. A non-zero split quaternion D fulfills this condition if and
only if ND = 0 and q0 = 1/2. In the algebra there exist two classes (totally four) primitive
idempotents,

D±1 =
1
2
(1± e1) , D±2 =

1
2
(1± e2) . (A82)

These two classes do not commute with each other. The commuting ones with the
standard properties of projection operators:

D±D∓ = 0 , D±D± = D± , (A83)

are only the pairs (D+
1 , D−1 ), or (D+

2 , D−2 ).
The operators D+

1,2 and D−1,2 differ from each other by the reflection of hyper-complex
basis element and thus correspond to the direct and reverse critical signals along one of the
two real directions, e1 or e2, and turn into each other by quaternionic conjugations,

(D±1 )∗ =
1
2
(1∓ e1) = D∓1 , (D±2 )∗ =

1
2
(1∓ e2) = D∓2 . (A84)

The conjugations satisfy the following conditions:

D+
1 + D−1 = D+

2 + D−2 = 1 . (A85)

One can characterize D1 and D2 as primitive idempotent quaternions, since, in contrast
to 1, may no longer be decomposed into the sum of idempotents and non-zero quaternions.
One can show that D−1 and D−2 are the only primitive quaternion that is independent of
D+

1 and D+
2 , respectively.
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Appendix E.2. Nilpotents

In the algebra of split quaternions, there are also two classes (totally four) of primitive
nilpotents,

G±1 =
1
2
(e2 ± e3) =

1
2
(1± e1)e2 , G±2 =

1
2
(e1 ∓ e3) =

1
2
(1± e2)e1 , (A86)

with the properties

G±G∓ = D± , D±G± = G±D∓ = G± ,

G±G± = D±G∓ = G±D± = 0 ,
(A87)

for each index, 1 or 2. Quaternionic conjugations of the nilpotents give the same element
with the opposite signs,

(G±1 )∗ = −1
2
(e2 ± e3) = −G±1 , (G±2 )∗ = −1

2
(e1 ∓ e2) = −G±2 . (A88)

Appendix E.3. Matrix Representation of Zero Divisors

By means of commuting zero divisors any split quaternion q can be written in the
form:

q =
[
(q0 + q1) + G+

1 (q2 + q3)
]
D+

1 +
[
(q0 − q1) + G−1 (q2 − q3)

]
D−1

=
[
(q0 + q2) + G+

2 (q1 + q3)
]
D+

2 +
[
(q0 − q2) + G−2 (q1 − q3)

]
D−2 .

(A89)

Using the matrix representation of quaternionic units, (A1) and (A5), one can find the
matrix form of idempotents and nilpotents. For the case of real SL(2, R)-matrix representa-
tion (A1), idempotents and nilpotents (A82) and (A86) labeled by 1 are:

D+
1 =

1
2
(1 + e1) =

(
1 0
0 0

)
, D−1 =

1
2
(1− e1) =

(
0 0
0 1

)
,

G+
1 =

1
2
(e2 + e3) =

(
0 1
0 0

)
, G−1 =

1
2
(e2 − e3) =

(
0 0
1 0

)
.

(A90)

Similar SL(2, R)-matrix representation of zero divisors labeled by the second index 2
has the form:

D+
2 =

1
2
(1 + e2) =

1
2

(
1 1
1 1

)
, D−2 =

1
2
(1− e2) =

1
2

(
1 −1
−1 1

)
,

G+
2 =

1
2
(e1 + e3) =

1
2

(
1 1
−1 −1

)
, G−2 =

1
2
(e1 − e3) =

1
2

(
1 −1
1 −1

)
.

(A91)

In the SU(1, 1)-matrix representation (A5) the zero divisors (A82) and (A86) labeled
by 1 are:

D+
1 =

1
2
(1 + e1) =

1
2

(
1 −i
i 1

)
, D−1 =

1
2
(1− e1) =

1
2

(
1 i
−i 1

)
,

G+
1 =

1
2
(e2 + e3) =

1
2

(
−i 1
1 i

)
, G−1 =

1
2
(e2 − e3) =

1
2

(
i 1
1 −i

)
.

(A92)
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Similar SU(1, 1)-matrix representation of zero divisors labeled by the index 2 has the
form:

D+
2 =

1
2
(1 + e2) =

1
2

(
1 1
1 1

)
, D−2 =

1
2
(1− e2) =

1
2

(
1 −1
−1 1

)
,

G+
2 =

1
2
(e1 + e3) =

i
2

(
−1 −1
1 1

)
, G−2 =

1
2
(e1 − e3) =

i
2

(
1 −1
1 −1

)
.

(A93)

Note that a matrix D represents a primitive idempotent quaternion if and only if its
determinant is zero and the trace equals 1,

detD = 0 , TrD = 1 , (A94)

while for the primitive nilpotent quaternion matrix G, both the determinant and the trace
should be zero,

detG = TrG = 0 . (A95)

Appendix E.4. Left Decomposition

Using primitive idempotent quaternions D±, where, for simplicity, the index is omit-
ted, one can define two left-invariant and two right-invariant subalgebras of split quater-
nions. Most obvious is to do this in matrix representation. Then spinors can be represented
as ideal elements of quaternions, what is almost identical to their representation as col-
umn matrices. The correspondence of a quaternion with a column spinor is most easily
accomplished by means of the following algorithm: express quaternion in matrix form,
then column spinor is given by its product with idempotent element.

Let us as an example consider decomposition of a split quaternion q by the idempotent
D±1 (A90) in SL(2, R)-matrix representation (A2). Corresponding complex SU(1, 1)-matrix
representation can be obtained using the transformations (A12). Equation (A85) allows one
to write:

q = q(D+ + D−) = qD+ + qD− = q+ + q−

=

(
(q0 + q1) (q2 + q3)
(q2 − q3) (q0 − q1)

)[(
1 0
0 0

)
+

(
0 0
0 1

)]
=

(
(q0 + q1) 0
(q2 − q3) 0

)
+

(
0 (q2 + q3)
0 (q0 − q1)

)
=

1
2
[(q0 + q1) + (q2 − q3)e2](1 + e1) +

1
2
[(q0 − q1) + (q2 + q3)e2](1− e1) .

(A96)

The split quaternions q+ and q− fulfill the equations:

q+D+ =

(
(q0 + q1) 0
(q2 − q3) 0

)(
1 0
0 0

)
=

(
(q0 + q1) 0
(q2 − q3) 0

)
= q+ , q+D− = 0 ,

q−D− =

(
0 (q2 + q3)
0 (q0 − q1)

)(
0 0
0 1

)
=

(
0 (q2 + q3)
0 (q0 − q1)

)
= q− , q−D+ = 0 ,

(A97)

which define two left-invariant subalgebras, left ideals inside of the algebra of split quater-
nions. Since, any split quaternion q can be uniquely decomposed into quaternions that
belongs to left ideals the algebra of split quaternions is the sum of the two left-invariant
subalgebras.
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Appendix E.5. Right Decomposition

By means of the idempotent quantity (A90) one can also perform the right decomposi-
tion of an arbitrary split quaternion q, namely:

q = (D+ + D−)q = D+q + D−q = +q + −q

=

[(
1 0
0 0

)
+

(
0 0
0 1

)](
(q0 + q1) (q2 + q3)
(q2 − q3) (q0 − q1)

)
=

(
(q0 + q1) (q2 + q3)

0 0

)
+

(
0 0

(q2 − q3) (q0 − q1)

)
=

1
2
(1 + e1)[(q0 + q1) + (q2 + q3)e2] +

1
2
(1− e1)[(q0 − q1) + (q2 − q3)e2] .

(A98)

Here, the split quaternions +q and −q fulfill the equations:

D+ · +q =

(
1 0
0 0

)(
(q0 + q1) (q2 + q3)

0 0

)
= +q , D− · +q = 0 ,

D− · −q =

(
0 0
0 1

)(
0 0

(q2 − q3) (q0 − q1)

)
= −q , D+ · −q = 0 ,

(A99)

which define two right-invariant subalgebras, right ideals inside of the algebra of split
quaternions.

Appendix F. Quaternionic Spinors

The study of spinors is of great physical relevance, since fermionic fields are repre-
sented by spinorial fields or by tensor products of spinor fields. Therefore, spinors play a
central role in the theory of particles and fields. Particularly, in supersymmetric theories
the parameters that label the supersymmetry transformations are always given by spinors.
In addition, spinors are of great geometrical relevance, since they carry the fundamental
representation of the space-time group and can be used to build all other representations
of this group. In this sense, spinors are the most fundamental objects of a space endowed
with a metric.

Spinors are numbers which represents a rotation and cannot be defined without
reference to vectors, since commonly definition of spinor involves the idea of a 2π rotation
resulting in some sort of an inversion, so that a 4π rotation is needed to recover identity. This
property of spinors explains the half-angle form of the two side vector-type transformations,
αqα∗, which is generated by the spinorial one-side products with unit half-angle split
quaternions α(θ/2). Indeed, the definition of quaternionic vector transformations (17)
suggests the introduction of two types of split quaternions, which transform according to
the following schema:

ξ ′ = αξ , ξ ′∗ = ξ∗α∗ , (A100)

and
χ′ = χα∗ , χ′∗ = αχ∗ . (A101)

Split quaternions that transforms according to schema (A100) and (A101) will be called
spinors of the first and second kind, respectively. From transformations (A100) and (A101),
one can see that for the case of the real quaternions, transformation laws of the conjugated
spinor split quaternions are identical with the laws for the dual split quaternions,

ξ ′∗ ⇔ χ′ , χ′∗ ⇔ ξ ′ . (A102)

Then, the 4-component quantity,

Ψ =

(
ξ
χ

)
, (A103)
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will be the Majorana spinor in (2 + 1) space. Thus, quaternions are able to give spinor
representation of the SO(2, 2) group (and its subgroup SO(2, 1)) by one-side products,
which transform all four components of split quaternions.

The transformations (A100) and (A101) are orthogonal, since α are unit split quater-
nions. The norms of the split quaternion of the first and second kinds, ξ∗ξ and χ∗χ, are
then invariants under SO(2, 2). Furthermore, for the spinor quaternions of the first and
second kinds, the product χξ is an invariant,

(χξ)′ = χ α∗α ξ = χξ , (A104)

while ξχ (observe the order of the terms) transforms like a vector quaternion,

(ξχ)′ = α(ξχ)α∗ . (A105)

Appendix F.1. Matrix Representation

To obtain matrix representation of the covariant quaternionic spinors ξ let us perform
the left decomposition of a split quaternion q in the SL(2, R)-matrix representation (A3) by
idempotents (A96):

q =

(
a1 b1
a2 b2

)
(1 + e1) +

(
a1 b1
a2 b2

)
(1− e1) = ξ+ + ξ− , (A106)

where

a1 =
1
2
(q0 + q1) , a2 =

1
2
(q2 − q3) ,

b1 =
1
2
(q2 + q3) , b2 =

1
2
(q0 − q1) ,

(A107)

are some real parameters and

ξ+ =

(
a1 0
a2 0

)
, ξ− =

(
0 b1
0 b2

)
(A108)

are the elements of the two left ideals of the algebra of split quaternions.
To define the transformation properties of (A108) note that the unit split quaternions,

which are used to represent rotations, themselves are SL(2, R) matrices with the determi-
nant equal to one,

α =

(
(α0 + α1) (α2 + α3)
(α2 − α3) (α0 − α1)

)
(α2

0 − α2
1 − α2

2 + α2
3 = 1). (A109)

Then, any left product of ξ+ by a unit split quaternion α,

αξ+ = ξ ′+ =

(
a′1 0
a′2 0

)
=

(
(α0 + α1)a1 + (α2 + α3)a2 0
(α2 − α3)a1 + (α0 − α1)a2 0

)
, (A110)

generates the covariant spinor-type transformations(
a′1
a′2

)
= α

(
a1
a2

)
=

(
(α0 + α1)a1 + (α2 + α3)a2
(α2 − α3)a1 + (α0 − α1)a2

)
, (A111)

or
ξ ′+A = α B

A ξ+B , (A, B = 1, 2) (A112)

where the spinorial indices, A, B = 1, 2, are introduced.
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Similarly, for the second covariant spinor-like object q−:(
b′1
b′2

)
= α

(
b1
b2

)
=

(
(α0 + α1)b1 + (α2 + α3)b2
(α2 − α3)b1 + (α0 − α1)b2

)
, (A113)

and
ξ ′−A = α B

A ξ−B . (A114)

Thus, the general spinor split quaternion of the first kind ξ, which transforms according
to the rule (A100), depends on four real parameters and has the matrix representation:

ξ = ξ+ + ξ− =

(
a1 + b1
a2 + b2

)
. (A115)

By means of idempotent quantities D±, one can also perform the right decomposition
of an arbitrary split quaternion q:

q = (1 + e1)

(
a1 b1
a2 b2

)
+ (1− e1)

(
a1 b1
a2 b2

)
= χ+ + χ− , (A116)

where

χ+ =

(
a1 b1
0 0

)
, χ− =

(
0 0
a2 b2

)
. (A117)

Then, the transformation of χ+ by the inverse unit matrix,

α−1 =

(
(α0 + α1) (α2 + α3)
(α2 − α3) (α0 − α1)

)−1

= α∗ =

(
(α0 − α1) −(α2 + α3)
−(α2 − α3) (α0 + α1)

)
, (A118)

takes the form:

χ′+ =

(
a′1 b′1
0 0

)
= χ+α∗ =

(
(α0 − α1)a1 − (α2 − α3)b1 −(α2 + α3)a1 + (α0 + α1)b1

0 0

)
, (A119)

which is equivalent to the contravariant spinor-type transformations,

χ′+A =

(
a′1
b′1

)
= α∗

(
a1
b1

)
=

(
(α0 − α1)a1 − (α2 − α3)b1
−(α2 + α3)a1 + (α0 + α1)b1

)
=
(
α∗
) A

B χ+B . (A120)

Analogously for the second contravariant spinor χ−:

χ′−A =

(
a′2
b′2

)
=

(
(α0 − α1)a2 − (α2 − α3)b2
−(α2 + α3)a2 + (α0 + α1)b2

)
=
(
α∗
) A

B χ−B . (A121)

Thus, the general spinor split quaternion of the second kind χ, which transforms
according the rule (A101), also depends on four real parameters and has the matrix repre-
sentation:

χ = χ+ + χ− =

(
a1 + a2
b1 + b2

)
. (A122)

Since the unit split quaternion α∗ is the inverse of α:

α B
A
(
α∗
) C

B = δ C
A , (A123)

the contraction χAξA is an invariant,

χAξA = χC(α∗) A
C α D

A ξD = χCξC . (A, B, C, D = 1, 2) (A124)
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The rules for raising and lowering spinor indices are:

ξA = εABξB , ξA = εABξB , (A125)

where the ’metric spinor’

εAB = εAB =

(
0 1
−1 0

)
, εACεBC = δ A

B , (A126)

is left invariant by spin transformations.

Appendix F.2. Quaternions in Cone Basis

Using idempotent and nilpotent elements, the general vector-type or spinor-type split
quaternion (7) can be written in the form:

q = q0 + qnen = a1D+ + a2G− + b1G+ + b2D− , (A127)

where the real parameters a1,2 and b1,2 were introduced in Equations (A107). Then, the
covariant quaternionic spinors have the general structure,

ξ+ = a1D+ + a2G− (q0 = q1, q2 = −q3) ,

ξ− = b1D− + b2G+ (q0 = −q1, q2 = q3) ,
(A128)

while the contravariant quaternionic spinors are:

χ+ = c1D− + c2G− (q0 = −q1, q2 = −q3) ,

χ− = d1D+ + d2G+ (q0 = q1, q2 = q3) .
(A129)

One can check that products of only covariant or only contravariant quaternionic
spinors, (A128) and (A129), do not give a vector-type quaternion (A127), for example,

ξ+ξ− = (a1D+ + a2G−)(b1D− + b2G+) = a2b2D− + a1b2G+ = ξ ′− ,

χ+χ− = (c1D− + c2G−)(d1D+ + d2G+) = c2d2D− + c2d1G− = χ′+ .
(A130)

At the same time the left products of covariant quaternionic spinors on contravariant
spinors with different labels,

ξ+χ− = (a1D+ + a2G−)(d1D+ + d2G+) = a1d1D+ + a2d1G− + a1d2G+ + a2d2D− ,

ξ−χ+ = (b1D− + b2G+)(c1D− + c2G−) = b2c2D+ + b1c2G− + b2c1G+ + b1c1D− ,
(A131)

lead to the structures of the vector split quaternion (A127), while the left products of
covariant spinors on contravariant quaternionic spinors with same labels are zero,

ξ+χ+ = ξ−χ− = 0 . (A132)

The first and second kind quaternionic spinors, ξ and χ, contain the same number
of parameters (four) than that of a quaternionic vector q. Then, depended on the trans-
formation properties, the four real parameters, q0 and qk, may form a vector or spinors.
Transformations of these quantities may be effected by using of the unit quaternion multipli-
cations α, which for the case of the vector transformations (by means of two side half-angle
products) naturally separates SO(2 + 1) subgroup of SO(2, 2), rotations of only vector
part of the split quaternion (7).

Appendix F.3. Spinor Basis

Now, let us find spinorial representations of the vector-like basis units of split quater-
nions. The SL(2, R)-matrix representations of the idempotent and nilpotent elements of
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split quaternions (A90) labeled by the index 1 can be written as a direct (tensor) product of
the covariant ξ± (columns) and contravariant χ± (rows) unit spinors,

ξ+ =

(
1
0

)
, χ+ =

(
1 0

)
,

ξ− =

(
0
1

)
, χ− =

(
0 1

)
,

(A133)

which constituting a normalized bi-orthogonal basis satisfying the conditions,

χ±ξ± = 1 , χ±ξ∓ = 0 , (A134)

in the form:

D+ =
1
2
(1 + e1) = ξ+χ+ =

(
1
0

)(
1 0

)
=

(
1 0
0 0

)
,

D− =
1
2
(1− e1) = ξ−χ− =

(
0
1

)(
0 1

)
=

(
0 0
0 1

)
,

G+ =
1
2
(e2 + e3) = ξ+χ− =

(
1
0

)(
0 1

)
=

(
0 1
0 0

)
,

G− =
1
2
(e2 − e3) = ξ−χ+ =

(
0
1

)(
1 0

)
=

(
0 0
1 0

)
.

(A135)

Using representations (A135), it is straight to verify that one couple of spinors is a
sufficient basis for construction of the complete set of quaternionic hyper-complex units,
which in SL(2, R)-matrix representation have the forms:

1 = ξ+χ+ + ξ−χ− , e1 = ξ+χ+ − ξ−χ− ,

e2 = ξ+χ− + ξ−χ+ , e3 = ξ+χ− − ξ−χ+ .
(A136)

To compare with the standard complex spinors, one finds, using the transformation
law (A12), the SU(1, 1)-matrix representation of basis elements by the spinors (A133),

1 = ξ+χ+ + ξ−χ− , e1 = iξ+χ− − iξ−χ+ ,

e2 = ξ+χ− + ξ−χ+ , e3 = iξ+χ+ − iξ−χ− .
(A137)

However, arbitrary complex SU(1, 1)-transformation matrices are thyself quaternions,

α =

(
α1 α2
α∗2 α∗1

)
(α1α∗1 − α2α∗2 = 1) ,

α−1 =

(
α∗1 −α2
−α∗2 α1

)
(α1 = q0 − iq3, α2 = q2 − iq1) ,

(A138)

and can be written in terms of the spinors ξ± and χ±. The transformations of covariant
spinors ξ± acquire the form:

ξ ′+ = αξ+ =

(
α1
α2

)
= α1ξ+ + α2ξ− ,

ξ ′− = αξ− =

(
α∗2
α∗1

)
= α∗2ξ+ + α∗1ξ− .

(A139)
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Meantime, for the transformations of contravariant spinors χ±, one has:

χ′+ = χ+α−1 =
(
α∗1 −α2

)
= α∗1χ+ − α2χ− ,

χ′− = χ−α−1 =
(
−α∗2 α1

)
= −α∗2χ+ + α1χ− .

(A140)

For example, consider the vector-type rotations around the time-like axis e3 by the
unit split quaternion,

αt = cos
θ

2
+ e3 sin

θ

2
, (A141)

for which
q0 = cos

θ

2
, q1 = q2 = 0 , q3 = sin

θ

2
, (A142)

or
α1 = cos

θ

2
− i sin

θ

2
, α2 = 0 . (A143)

One can see that the vector transformations by quaternion (A141) leave the vector e3
unchanged,

αte3α∗t =

(
cos

θ

2
+ e3 sin

θ

2

)
e3

(
cos

θ

2
− e3 sin

θ

2

)
= e3 . (A144)

But the transformations (A139) and (A140) of the spinors ξ± and χ± belonging (as
eigenvectors) to the unchanged vector e3 are not identical:

ξ ′± = αtξ
± =

(
cos

θ

2
∓ i sin

θ

2

)
ξ± = e∓iθ/2ξ± ,

χ′± = χ±α−1
t =

(
cos

θ

2
± i sin

θ

2

)
χ± = e±iθ/2χ± ,

(A145)

they are subject to a phase rotation by a half-angle. Equations (A145) inserted into basis
elements (A137) yield an ordinary rotation of the other two basis units by the angle θ,

1′ = ξ ′+χ′+ + ξ ′−χ′− = ξ+χ+ + ξ−χ− = 1 ,

e′1 = iξ ′+χ′− − iξ ′−χ′+ = ieiθξ+χ− − ie−iθξ−χ+

= i cos θ
(
ξ+χ− − ξ−χ+

)
− sin θ

(
ξ+χ− + ξ−χ+

)
= cos θe1 − sin θe2 ,

e′2 = ξ ′+χ′− + ξ ′−χ′+ = cos θe2 + sin θe1 ,

e′3 = iξ ′+χ′+ − iξ ′−χ′− = iξ+χ+ − iξ−χ− = e3 .

(A146)

The phase transformation of spinors, eigenvectors of a quaternionic unit directed along
the axis of instant rotation (e3 in the case considered), comprises in itself full information on
any arbitrarily complicated rotation of a frame. Analogous vector and spinor Lorentz-type
transformations can be found around the space-like axes e1 and e2.

Appendix F.4. 3-ψ Rule

Now we want to show that the fundamental Fierz identity for spinors in some distin-
guished dimensions, (

ψ̄γµψ
)
γµψ = 0 , (A147)

appears as a simple consequence of the properties of the quaternionic spinors. This ‘3-ψ’s
rule [53], which restricts appearances of multi-spinor products and makes supersymmetry
in split quaternions (2 + 2) space, can be written as

(ξξ∗)ξ = χ(χ∗χ) = 0 , (A148)
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where brackets select the vector-type objects obtained from the quaternionic spinors. Let us
show validity of this identity for the real 2-component spinors ξ±, the general proof you
can find in [29].

According to definitions (A108), the quaternions for which ξD± = ξ and D±χ = χ
are true, lie in planes defined by aA and bA, A = 1, 2. These planes remain invariant under
all maps ξ ′ = αξ and χ′ = χα∗, since the quaternions ξ ′ and χ′ also lie in that planes.
Furthermore, any spinor quaternion of the first (second) kind can be decomposed into
two special spinor quaternions of the first (second) kind, each of which lies in an invariant
plane. This decomposition may be accomplished with the help of the primitive idempotent
quaternions D± by the formula

ξ = ξD+ + ξD− (A149)

for a spinor quaternion of the first kind and by the formula

χ = D+χ + D−χ (A150)

for the spinor quaternion of the second kind.
The spinor quaternion of the first (second) kind that lie in an invariant plane thus have

only two independent components. In the decomposition (A149) and (A150) the planes of
the spinors of the first kind (ξ±) and of the second kind (χ±) are orthogonal to each other,
i.e., vector type quaternions constructed by the products of the type ξ+ξ−∗ and χ+χ−∗ are
light-like, i.e., have zero norms. For instance, the covariant spinor quaternion ξ (with the
real components aA and bA) can be represented by a singular SL(2, R)-matrix,

ξ = ξ+ + ξ− =

(
a1 0
a2 0

)
+

(
0 b1
0 b2

)
.

(
det ξ = a1b2 − b1a2 = 0

)
(A151)

The ideals ξ± have the following representations:

ξ+ = a1D+ + a2G− =

(
a1 0
a2 0

)
, ξ+∗ = a1D− − a2G− =

(
0 0
−a2 a1

)
,

ξ− = b2D− + b1G+ =

(
0 b1
0 b2

)
, ξ−∗ = b2D+ − b1G+ =

(
b2 −b1
0 0

)
.

(A152)

One can see that

ξ+ξ+∗ = ξ+∗ξ+ = 0 , ξ−ξ−∗ = ξ−∗ξ− = 0 , (A153)

and
ξξ∗ = ξ+ξ−∗ + ξ−ξ+∗ , (A154)

where the products ξ+ξ−∗ and ξ−ξ+∗ correspond to vector-type split quaternions. Then,
using the relations (A153), the validity of the quaternionic 3-ψ rule (A148) can be checked:

(
ξξ∗
)
ξ = ξ+ξ−∗ξ+ + ξ−ξ+∗ξ− = ξ+

(
a1b2 − b1a2 0

0 0

)
+ ξ−

(
0 0
0 a1b2 − b1a2

)
= 0 . (A155)

Similarly, the validity of the second 3-ψ identity (A148) can be shown for the spinor of
the second kind χ.
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