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Free Convection of a Bingham Fluid in a Differentially-Heated
Porous Cavity: The Effect of a Square Grid Microstructure
D. Andrew S. Rees

Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK; ensdasr@bath.ac.uk

Abstract: We examine how a square-grid microstructure affects the manner in which a Bingham
fluid is convected in a sidewall-heated rectangular porous cavity. When the porous microstructure is
isotropic, flow arises only when the Darcy–Rayleigh number is higher than a critical value, and this
corresponds to when buoyancy forces are sufficient to overcome the yield threshold of the Bingham
fluid. In such cases, the flow domain consists of a flowing region and stagnant regions within which
there is no flow. Here, we consider a special case where the constituent pores form a square grid
pattern. First, we use a network model to write down the appropriate macroscopic momentum
equations as a Darcy–Bingham law for this microstructure. Then detailed computations are used
to determine strongly nonlinear states. It is found that the flow splits naturally into four different
regions: (i) full flow, (ii) no-flow, (iii) flow solely in the horizontal direction and (iv) flow solely in
the vertical direction. The variations in the rate of heat transfer and the strength of the flow with the
three governing parameters, the Darcy–Rayleigh number, Ra, the Rees–Bingham number, Rb, and the
aspect ratio, A, are obtained.

Keywords: Bingham fluid; porous media; free convection; anisotropic

1. Introduction

There is considerable interest in determining how Bingham fluids flow through a
porous medium. The modelling of such flows is complicated greatly by the presence of a
yield stress wherein the fluid remains stagnant whenever it is acted upon by an applied
stress that is smaller than that yield stress. Many studies exist which use experimental,
numerical and averaging techniques to develop a replacement for Darcy’s law, which is
valid for a Newtonian fluid. Examples include the works by Pascal [1], Bourgeat and
Mikelić [2], Chevalier et al. [3], Chevalier and Talon [4], Nash and Rees [5], Bauer et al. [6],
and Liu et al. [7], However, even for unidirectional flows in tube bundles, Nash and Rees [5]
showed that there is no general Darcy–Bingham law. Rather, both the dependence of the rate
of flow on the applied pressure gradient and the value of the pseudo-threshold compared
with the yield threshold both vary in a way which is a function of the microstructure.
Moreover, Rees [8] also showed that a Bingham fluid that occupies a square network that is
composed of identical channels has an anisotropic response to an applied pressure gradient.
Specifically, both the direction and the strength of the flow, which are induced by a pressure
gradient of a given magnitude, vary with the direction of that pressure gradient. The rate
of flow is maximised when the pressure gradient is aligned with the channels and it is
minimised when at 45◦ to the channels. This is a yield-stress-induced anisotropy, whereas
such a network is isotropic when the saturating fluid is Newtonian. Further work by
Rees [9] considers a variety of both regular and random networks, and it strongly suggests
that isotropy cannot be attained for a two-dimensional porous medium occupied by a
Bingham fluid.

The present paper is the latest in a sequence that investigates how classical convective
flows in a porous medium are affected by saturating it with a Bingham fluid. Typically,
such flows will be governed by a Darcy–Rayleigh number, Ra, and the Rees–Bingham
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number, Rb. The former is well-known for convective flows in porous media but the latter
is very substantially different from other Bingham numbers because it is defined in terms
of a threshold pressure gradient (rather than a threshold stress) and the thermal diffusivity.
Thus, it could also be described as a porous convective Bingham number.

In [10], I considered the flow in a sidewall-heated square cavity and he showed that,
for a given value of Rb, there is a critical value of Ra above which convection arises. Thus
buoyancy forces need to be strong enough to overcome the microscopic yield stresses. For
a Newtonian fluid, convection occurs whenever Ra is nonzero. A similar observation may
be made for cavities that are heated internally; see [11].

The Darcy–Bénard problem corresponds to a horizontal layer that is heated from
below. For a Newtonian fluid, there exists a critical Darcy–Rayleigh number above which
convection arises. When the porous medium is occupied by a Bingham fluid, its stability
properties are also modified qualitatively. There is no longer a linear stability threshold
because disturbances now need to be of finite magnitude in order to overcome the yield
threshold. However, nonlinear convection remains possible; see [12] for further details.

In a fourth paper [13], I considered the equivalent of the Wooding problem, which,
similar to the Darcy-Bénard problem, considers heating from below. This configuration
has the porous medium occupying an effectively semi-infinite domain, which is bounded
below. This bounding surface is heated from below, but a steady-state thermal field of
finite thickness is maintained by a constant suction velocity into the surface. The classical
Newtonian form of the Wooding problem exhibits subcriticality, and strongly nonlinear
convection is extinguished suddenly when a slowly decreasing Darcy–Rayleigh number
passes through a critical value. This happens when the curve displaying the variation
of the convection amplitude with the Darcy–Rayleigh number passes around a turning
point. When saturated by a Bingham fluid, such curves exhibit more than one turning
point, and therefore, there are ranges of values of Ra where two different flows with the
same wavenumber are possible stable solutions, and multiple instances of hysteresis are
possible. Once more, we see that the presence of a yield stress alters the qualitative nature
of the resulting flow from that which arises for a Newtonian fluid.

All of the above nonlinear computations have assumed that the Darcy–Bingham law
is isotropic, whereas the tentative conclusion of [9] is that this might be very difficult to
achieve in practical cases. Therefore, the present paper will adopt a microstructure that
is based on a uniform set of horizontal and vertical channels. This means that it is now
possible for horizontal stagnation to occur whilst the fluid is free to flow vertically and vice
versa. It is, of course, also possible for full stagnation to occur. The present paper considers
a sidewall-heated rectangular cavity, and it is, therefore, a modification to the paper [10].

2. Governing Equations

We begin with a brief recapitulation of the modelling of the convective flow of a
Bingham fluid in a porous medium by considering one which is composed solely of
identical horizontal and vertical microchannels. Each channel is of width, h, and the
centrelines of neighbouring channels are a distance, H, apart where h � H. When a
constant horizontal pressure gradient is applied to this network, the resulting flow is purely
horizontal apart from small-scale two-dimensional circulations at the junctions between
the channels; these occupy a very small region, and therefore, they may be neglected
at the leading order. When such channels are saturated by a Newtonian fluid then it is
well-known that the superficial velocity that is induced is

u = −φh2

12µ

dp
dx
≡ −K

µ

dp
dx

, (1)

(see [5] for example) where

K =
φh2

12
and φ = h/H (2)
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are the permeability and the porosity, respectively, x is the horizontal coordinate, µ is the
dynamical viscosity, and p is the pressure. On the other hand, when this porous medium is
saturated by a Bingham fluid, Equation (1) is replaced by,

u = −K
µ

dp
dx

f (σ), (3)

where σ is the ratio of the pressure gradient and its threshold value (which is denoted here
by G),

σ = −dp
dx

/
G. (4)

For each channel forming the present microstructure, the threshold pressure gradient is
given by,

G =
2τ0

h
, (5)

where τ0 is the yield stress of the Bingham fluid. We may quote three possible forms
for f (σ):

f (σ) = 1− 4
3|σ| +

1
3|σ|4

f (σ) = 1− 3
2|σ| +

1
2|σ|3

f (σ) = 1− 1
|σ|

(6)

first: Hagen-Poiseuille, second: plane-Poiseuille, third: Pascal [1].
These formulae are valid only when |σ| ≥ 1. When |σ| < 1 then f (σ) = 0 because the

applied pressure gradient is smaller in magnitude than the threshold value for flow. We
note that Nash and Rees [5] also derived the equivalent formulae for different distributions
of pore width within the one-dimensional context.

The first expression for f (σ) in Equation (6) is the well-known Buckingham–Reiner
formula, which corresponds to bundles of tubes with circular cross-sections [14,15]. The
second expression is the plane channel equivalent, while the third is Pascal’s model where
the induced flow (which is proportional to σ f (σ) is linear once the yield threshold is
exceeded. In the present paper, Pascal’s model is used.

Now, we are in a position to write down the appropriate Darcy–Bingham equations for
convective flow in a porous medium with a square-grid microstructure. Given the form of
the microstructure, one may simply apply Equation (3) in each of the coordinate directions
but with the inclusion of buoyancy as a body force in the vertical direction. We have,

u = − f (σx)
K
µ

∂p
∂x

, (7)

w = − f (σz)
K
µ

[∂p
∂z
− ρ f gβ(T − Tref)

]
, (8)

where

σx = −∂p
∂x

/
G, σz = −

[
∂p
∂z
− ρ f gβ(T − Tref)

]/
G, (9)

In the expression for σz, the buoyancy term has been included because, like the pressure
gradient, it represents a body force.

The set of governing equations is completed by the equation of continuity,

∂u
∂x

+
∂w
∂z

= 0, (10)
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and the heat transport equation,

(ρC) f

(ρC)pm

∂T
∂t

+ u
∂T
∂x

+ w
∂T
∂z

= α

[
∂2T
∂x2 +

∂2T
∂z2

]
, (11)

where all of the terms are defined in the Nomenclature.
The nondimensional form of these equations may be obtained using the following

transformations,

(x, z)→ L(x, z), (u, w)→ α

L
(u, w), p→ αµ

K
p,

t→
(ρC) f L2

(ρC)pmα
t, T = (Th − Tc)θ + Tref.

(12)

Thus we obtain,
∂u
∂x

+
∂w
∂z

= 0, (13)

u = − f (σx)
∂p
∂x

, (14)

w = − f (σz)

[
∂p
∂z
− Ra θ

]
, (15)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
=

∂2θ

∂x2 +
∂2θ

∂z2 . (16)

In Equations (14) and (15), we have:

σx = −∂p
∂x

/
Rb, σz = −

[
∂p
∂z
− Ra θ

]/
Rb. (17)

The governing parameters are the Darcy–Rayleigh and the Rees–Bingham numbers, which
are given by,

Ra =
ρ f gβ(Th − Tc)KL

µα
and Rb =

KL
µα
G. (18)

The former is the appropriate form of the Rayleigh number for convective flows in porous
media. The latter may be referred to as a form of Bingham number, which is also suitable for
convective flows in porous media, and it is effectively the ratio of the threshold gradient (G)
and a typical pressure gradient, (µα/KL). Thus, a large value of Rb will require relatively
large buoyancy forces to initiate fluid motion.

At this point it is usual to transform these equations by the introduction of a stream-
function, but this is impossible due to the fact f (σ) is zero when−1 ≤ σ ≤ 1. Therefore, we
shall follow the spirit of the analysis of Papanastasiou [16] by introducing a regularisation.
Consequently, Equations (14) and (15) are replaced by,

u + Rb tanh(cu/Rb) = −px, (19)

w + Rb tanh(cw/Rb) = −pz + Ra θ, (20)

with c being the regularisation parameter.
It is straightforward to show that an asymptotically large value of c is equivalent to

Pascal’s law, while sufficiently small velocities yield a situation where the effective viscosity
is (1 + c)µ. Therefore, large values of c mean that the fluid is Newtonian but of a very high
viscosity when the flow is slow, but more discussion of the role played by c is given in
Appendix A.
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It is now possible to introduce the streamfunction, ψ, using,

u = −∂ψ

∂z
, w =

∂ψ

∂x
, (21)

which means that the equation of continuity is satisfied. The pressure may be eliminated
from between Equations (19) and (20) and we obtain:[

1 + c sech2(cψx/Rb)
]
ψxx +

[
1 + c sech2(cψz/Rb)

]
ψzz = Ra θx, (22)

while the heat transport Equation (16) becomes,

∂θ

∂t
+

∂ψ

∂x
∂θ

∂z
− ∂ψ

∂z
∂θ

∂x
=

∂2θ

∂x2 +
∂2θ

∂z2 . (23)

Finally, the boundary conditions are that,

x = 0 : ψ = 0, θ = 1,
x = A : ψ = 0, θ = 0,

z = 0, 1 : ψ = 0,
∂θ

∂z
= 0,

(24)

where A is the aspect ratio.

3. Numerical Method

At the outset it was assumed that the resulting flows would always be steady and
unique for a given parameter set and consisting of a single circulating cell. This is the case
when a porous vertical channel is saturated by a Newtonian fluid (see papers by Gill [17],
Straughan [18], Lewis et al. [19]) where no instabilities that could cause multi-cellular
motion will arise. Further reasons against the existence of instability are (i) the presence of
the upper and lower boundaries of the present cavity, which restrict the flow, and (ii) the
saturation by a Bingham fluid, which reduces the strength of the resulting flow and yields
regions of stagnation.

The steady-state form of the governing partial differential equations given in
Equations (22) and (23) were first discretized using straightforward second-order accu-
rate central difference approximations. The resulting difference equations were then solved
using Successive over-Relaxation to iterate towards the steady state. Convergence was
deemed to have been achieved when the maximum absolute difference between the temper-
ature field from two successive iterates was less than 10−10 for 500 successive iterates. Gen-
erally, this yielded more than five significant figures of accuracy of the discretised system.

In the present paper, we have considered the four aspect ratios, A = 0.5, 1, 1.5 and
A = 2, andlthough we limited our attention to Ra ≤ 150 and Rb ≤ 40. A detailed account
of how the regularisation parameter, c, is chosen is given in Appendix A.

In all cases, the grid spacings are identical in the x and z-directions. For A = 0.5,
we used a 96× 192 grid while, for A = 1, 1.5 and 2, we used 128× 128, 192× 128 and
256× 128 grids. Such grids are finer than are used in most papers, but this was deemed to
be essential here because of the presence of stagnant regions and the need to determine
these regions quite accurately. Although we shall not quote any data here, we note that
the Rb = 0 case forms the least accurate solution as Rb varies. This is because the presence
of a yield stress serves to decrease the effectiveness of buoyancy to generate flow. In turn,
this weakens and widens any boundary layer that has formed on the outer surfaces, and
therefore, these will be resolved more easily than when Rb = 0. Given that the Rb = 0 case
was studied in fine detail in [20], where it was shown that an 80× 80 grid provides between
three and four significant figures of accuracy, we conclude that the present 128× 128 grid
is in excess of what is required for good accuracy.
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The tanh-regularisation that has been used becomes increasingly accurate as c in-
creases, but when c is too large for a chosen grid then first the computations begin to lose
accuracy because the tanh function varies too quickly from one grid point to the next, and
then the iteration scheme itself begins to stall. Thus, for a chosen grid, there is a maximum
value of c, that may be employed.

4. Results

Figure 1 shows the streamlines and isotherms for a representative selection of values
of Ra and Rb. Three different values of Ra are considered, Ra = 40, 100 and 200, and each
row of frames that corresponds is characterised by having identical values of Rb/Ra. The
continuous lines are the streamlines, while the dotted lines correspond to the isotherms.
In all cases there is a clockwise circulation due to the fact that the left-hand boundary is
heated. The shaded regions indicate the three different types of stagnation that exist. The
red regions correspond to vertical stagnation, and therefore, the flow is purely horizontal
along the horizontal channels. On the other hand, the yellow regions display where there
is horizontal stagnation, and hence, the flow is purely vertical. We refer to these red and
yellow regions as being semi-stagnant in order to distinguish them from the orange regions,
which are fully stagnant.

The uppermost row of frames shows the streamfunction and temperature fields when
the fluid is Newtonian (Rb = 0). The circulation is quite strong even when Ra = 40 and
it increases in strength as Ra increases. This increasing strength is accompanied by an
increasing deformation of the isotherms away from being vertical (when Ra = 0, for which
θ = 1− x) towards the horizontal. We also note the very intense boundary layer formation
on the sidewalls when Ra = 200, as evidenced by the tightly packed streamlines.

The second row of frames corresponds to when Rb/Ra = 0.01 and this might be said
to be a weakly plastic flow since the influence of a yield threshold is small. In one sense the
pattern of the stagnant and semi-stagnant regions is not a surprise because they are placed
about the loci where the streamlines for Rb = 0 have vertical or horizontal tangents. Such
semi-stagnant regions do not have counterparts when the Darcy–Bingham equations are
isotropic (see [10]). However, the fully stagnant regions occupy a small region in the centre
of the cavity, and the only difference between the present flows and the analogous flows
in [10] is in the detailed shape of the stagnant region.

As the value of Rb/Ra increases on the successive rows in Figure 1, the regions of semi-
stagnation and full stagnation continue to increase in size. The yield threshold is becoming
stronger relative to buoyancy, and thus the circulation weakens and the rate of heat transfer
across the cavity decreases. The latter may be deduced from the fact that the isotherms are
tending back towards being vertical. This is particularly noticeable in the last row of frames
for which Rb/Ra = 0.2. In this case, the flow is essentially confined to a racetrack along
edges of the cavity. Most of the circulation itself takes place either in the vertical or the
horizontal direction, i.e., in regions of semi-stagnation, while the fluid changes direction
in relatively small regions near the corners. For this type of microstructure, we may state
unequivocally that the whole cavity becomes fully stagnant once Rb/Ra = 0.25. A different
viewpoint is that, for a given value of Rb (i.e., for a given fluid), buoyancy forces become
strong enough to overcome the yield threshold once Ra has risen to 4Rb. These statements
are based on the network model described in detail in [8], where the factor, 4, arises because
it is the length of the perimeter of the cavity.
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Ra=40

Rb = 0

Ra=100

Rb = 0

Ra=200

Rb = 0

Rb = 0.4 Rb = 1 Rb = 2

Rb = 2 Rb = 5 Rb = 10

Rb = 4 Rb = 10 Rb = 20

Rb = 6 Rb = 15 Rb = 30

Rb = 8 Rb = 20 Rb = 40

Figure 1. Streamlines (continuous) and isotherms (dashed) using a square-network-based anisotropic
model and with the given parameters. Red indicates vertical stagnation, yellow for horizontal
stagnation and orange for total stagnation. Ra is the Darcy–Rayleigh number and Rb is the the
Rees–Bingham number.
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Figure 2 shows the effect of having different aspect ratios on the flow and temperature
profiles for the case Ra = 10 and Rb = 15. All four aspect ratios display a moderately large
stagnation region in the centres of the respective cavities, but it is interesting to note that
the red semi-stagnant regions decrease in thickness as the aspect ratio increases. Thus, the
A = 2 case is closer to being in a state of full stagnation than all of the other cases, and it is
worth predicting at what aspect ratio one would obtain full stagnation. While the network
analysis [8] does not cover anything other than a unit aspect ratio cavity, it is clear from
that analysis that incipient stagnation arises when

Ra
Rb

= 2(A + 1), (25)

where the right hand side is, once more, the perimeter of the cavity. The perimeter plays
such a prominent role in the network model of Rees [8] because the buoyancy forces
induced along the sidewalls must be sufficiently large to enable fluid to travel all the way
around the channels that are on the boundary but not strong enough to cause it to travel
along the next innermost set of channels just inside the boundary. Therefore, for the choice
of Ra and Rb represented in Figure 2, namely, Ra = 100 and Rb = 15, the cavity will be
stagnant when A ≥ 2 1

3 .

Figure 2. Streamlines (continuous) and isotherms (dashed) using a square-network-based anisotropic
model and showing the effect of having different cavity aspect ratios when Ra = 100 and Rb = 15.

Figures 3–6 show how that maximum value of the streamfunction and the Nusselt
number vary with Ra for a range of values of Rb and for four different aspect ratios. Given
the symmetry of the cavity and the governing equations, the maximum value of ψ is the
value at the centre of the cavity. The Nusselt number is defined as

Nu = A
∫ 1

0
− ∂θ

∂x

∣∣∣
x=0

dz, (26)
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where the derivative was approximated using a second-order accurate formula and the
integration used the trapezium rule. The reason for the scaling (A) was to ensure that
Nu = 1 for the conductive state for all aspect ratios.

It is important to note that the curves shown in Figures 3–6 have been processed to
eliminate as much as is possible the effects of the weak flow that exists for relatively small
values of Ra due to the use of the regularisation; see Appendix B for details of how this
was achieved.

0 20 40 60 80 100 120 140
0

1

2

3

4

ψmax

Nu

Rb = 0 5 10 15

A = 0.5

Figure 3. For an aspect ratio, A = 0.5, the variation with Ra of the maximum value of the stream-
function, ψmax (black) and the Nusselt number, Nu (red) as Rb increases in steps of 5 from Rb = 0 to
Rb = 40. Rb increases towards the right for ψmax and downwards for Nu.

0 20 40 60 80 100 120 140
0

1

2

3

4

ψmax

Nu

Rb = 0

5 10 15 20 25

A = 1

Figure 4. For an aspect ratio, A = 1, the variation with Ra of ψmax (black) and the Nusselt number,
Nu (red) as Rb increases in steps of 5 from Rb = 0 to Rb = 25. Rb increases towards the right for
ψmax and downwards for Nu.
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0 20 40 60 80 100 120 140
0

1

2

3

4

ψmax

Nu

Rb = 0

5 10 15 20

A = 1.5

Figure 5. For an aspect ratio, A = 1.5, the variation with Ra of ψmax (black) and the Nusselt number,
Nu (red) as Rb increases in steps of 5 from Rb = 0 to Rb = 25. Rb increases towards the right for
ψmax and downwards for Nu.

0 20 40 60 80 100 120 140
0

1

2

3

4

ψmax

Nu

Rb = 0

5 10 15

A = 2

Figure 6. For an aspect ratio, A = 2, the variation with Ra of ψmax (black) and the Nusselt number,
Nu (red) as Rb increases in steps of 5 from Rb = 0 to Rb = 25. Rb increases towards the right for
ψmax and downwards for Nu.

5. Conclusions

We have computed the effects of having a porous microstructure consisting of hor-
izontal and vertical channels on the patterns of convection in a sidewall-heated porous
cavity where a Bingham fluid saturates the pores. The macroscopic governing equations
were derived briefly, and the numerical method was described in some detail. In particular,
the main difficulties associated with a parameter set that is close to the onset of convection
were considered in detail in Appendix A. While the resulting computations yield clear
streamline and isotherm contours, the accurate evaluation of the maximum value of the
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streamfunction, ψmax, and the Nusselt number, Nu, required a Richardson extrapolation-
like process between two solutions using different values of the regularisation constant in
order to emulate Pascal’s law solution much more closely.

In general, it was found that convection, when it arises, splits the cavity into nine
regions: one with full stagnation, two each with either vertical stagnation (i.e., purely
horizontal motion) or horizontal stagnation (i.e., purely vertical motion), and four where
the fluid is fully non-stagnant. Our numerical simulations have verified the network model
of Rees [8], which states that convection occurs only when Ra > 4Rb for a unit-aspect-ratio
cavity. The simulations have also confirmed the more general result, Ra > (2 + 2A)Rb, for
a cavity with aspect ratio, A, for which (2 + 2A) is the perimeter.

Funding: This research received no external funding.
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Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

Latin letters
A aspect ratio of the cavity
C specific heat
c regularisation parameter
f function of the scaled body force
G the negative of the pressure gradient
g gravity
H distance between the neighbouring channels centerlines
h channel width
K permeability
L height of the cavity
Nu Nusselt number
p pressure
Ra Darcy–Rayleigh number
Rb Rees–Bingham number
T temperature
u horizontal Darcy velocity
w vertical Darcy velocity
x horizontal coordinate
z vertical coordinate

Greek letters
α thermal diffusivity
β coefficient of cubical expansion
∆T temperature difference
θ dimensionless temperature
µ dynamic viscosity
ρ density
σ the ratio of the pressure gradient to its threshold value
φ porosity
ψ streamfunction

Other symbols
c cold boundary
h hot boundary
ref reference value
x, z partial derivatives with respect to x and z, respectively



Physics 2022, 4 213

Appendix A. The Approach to Stagnation: A Numerical Assessment for Suitable
Values of c

In this Appendix, we demonstrate the difficulty in obtaining accurate solutions in
terms of the streamlines when the flow is weak, i.e., when Ra is only just above its critical
value for the chosen value of Rb or, equivalently, when Rb is just below that value when the
flow ceases for a given value of Ra. We have chosen to use the case, Ra = 40 and Rb = 9,
for a square cavity with a 256× 256 grid, and for a selection of values of the regularisation
parameter, c. This is a finer grid than those which are often used used elsewhere, and it
was chosen in order to be able to increase the value of c to much larger values.

Figure A1 shows four such cases with c = 100, c = 200, c = 800 and c = 1600 in turn.
When c = 100, the streamlines are very clearly in error because they resemble a low-Ra flow
of a Newtonian fluid. Our chosen method for determining the regions of semi-stagnation
and stagnation is also in error because a large number of streamlines appear in what should
be a stagnant region in most of the cavity. Another problem lies with the fact that any
two adjacent semi-stagnant regions do not admit flow between them, which is unphysical.
Ideally, we should be reproducing the qualitative results that were found in the network
model of Rees [8], namely that flow is confined solely to a narrow track around the edge of
the cavity.

c = 100 c = 200

c = 800 c = 1600

Figure A1. Streamlines (continuous) and isotherms (dashed) for the case Ra = 40, Rb = 9 and A = 1
using the following values of c: 100, 200, 800 and 1600.

When the regularisation constant is increased to c = 200 the shapes of the semi-
stagnant regions now assume a physically realistic form. Fluid moves around the edge
of the cavity and predominantly within semi-stagnant regions but also within small non-
stagnant regions at the four corners. However, there remains quite a large number of
streamlines occupying what has been deemed the stagnant region. A four-fold increase in c
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to c = 800 greatly reduces the number of streamlines in the stagnant zone, while a further
doubling to c = 1600 removes all but one streamline from the stagnant zone. For this
parameter set (Ra = 40, Rb = 9) this last c = 1600 case is beginning to exhibit’ convergence
difficulties. A further clearing out of the stagnant zone will require a larger value of c but a
finer grid will be essential in order to be able to iterate towards that solution.

Finally, we note that incipient flow is, perhaps, one of the more important aspects of a
Bingham fluid problem, and extraordinary lengths are needed in order to model this well.
On the other hand, when the fluid is flowing freely (e.g., the rest of the paper) such extreme
care does not need to be taken. Thus, the use of c = 100 in Figures 1 and 2 was sufficient
for the fully stagnant zones to be clear of streamlines apart from the final row in Figure 1,
which corresponds to weak flow.

Appendix B. Processing of the Numerical Data

The tanh-regularisation has enabled us to compute flows that correspond to the Pascal
model of a Bingham fluid in a porous medium. When the Darcy–Rayleigh number is well
above its critical value, the fluid flows strongly in much of the cavity, and the regions of
semi-stagnation and full stagnation are relatively small. The numerical solutions are also
quite accurate. A faithful simulation of the Pascal model would correspond to ψmax → 0
and Nu → 1 as Ra decreases from above towards the critical value. However, the tanh-
regularisation softens this approach and, when Ra is below its critical value, the large
values of c that we have mean that ψmax and Nu satisfy the following asymptotic relations,

ψmax ∝ (c + 1)−1 and Nu− 1 ∝ (c + 1)−2, (A1)

for a fixed value of Ra. Therefore, we are able to ‘clean up’ the variations of ψmax and Nu
with Ra by using solutions with two different values of c.

If we declare Q(c) to be the value of ψmax for a chosen value of c, then we are able
to almost eliminate the presence of the regularisation-induced linear regime at subcritical
values of Ra by using the following formula (which is very reminscent of Richardson’s
Extrapolation method):

Q ' (c2 + 1)Q(c2)− (c1 + 1)Q(c1)

c2 − c1
. (A2)

Likewise, we processed the Nusselt number according to,

Nu− 1 ' (c2 + 1)2(Nu(c2)− 1)− (c1 + 1)2(Nu(c1)− 1)
(c2 + 1)2 − (c1 + 1)2 . (A3)

An example of the use of these formulae are shown in Figure A2, which depicts the case
Rb = 10 and A = 1.5 where the variations of Q and Nu with Ra are shown (i) for c = 50,
(ii) for c = 100 and (iii) in the extrapolated forms calculated using Equations (A2) and (A3).
For reference, the critical value of the Darcy–Rayleigh number is 50 for this aspect ratio and
value of Rb; see Equation (25).
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Figure A2. For the aspect ratio, A = 1.5, the variation with Ra of the maximum value of the
streamfunction (black) and the Nusselt number, Nu (red) as Rb. Continuous lines correspond to
c = 50 and dashed lines to c = 100. The green lines correspond to the respective extrapolates.

The presumed linear dependence of Q on (c + 1)−1 is shown to be correct since the
extrapolated form given by Equation (A2) is indistinguishable from the horizontal axis for
subcritical values of Ra. It is interesting to contrast the linear variation of Q(c = 50) and
Q(c = 100) at subcritical values of Ra, which is consistent with a Newtonian flow, and the
quadratic variation of Q just above Ra = Rac, which is characteristic of the Bingham fluid
flow. On the other hand, there is very little difference between the three curves for Nu.
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