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Abstract: In this paper, the validity of the shell-evolution picture is investigated on the basis of
shell-model calculations for the atomic mass number 25 . A . 55 neutron-rich nuclei. For this
purpose, the so-called SDPF-MU interaction is used. Its central, two-body spin–orbit, and tensor
forces are taken from a simple Gaussian force, the M3Y (Michigan 3-range Yukawa) interaction, and a
π + ρ meson exchange force, respectively. Carrying out almost a complete survey of the predicted
effective single-particle energies, it is confirmed here that the present scheme is quite effective for
describing shell evolution in exotic nuclei.
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1. Introduction

One of the most important results obtained by investigating exotic nuclei (those
from the β stability) is the evolution of the shell structure, which is often called the shell
evolution [1]. The evolution sometimes occurs in a more drastic way than as predicted
by the standard Woods–Saxon potential model: some of the conventional neutron magic
numbers, such as N = 8, 20, and 28, disappear, and new magic numbers, such as N = 16
and 34, appear.

These phenomena indicate a mechanism of shell evolution beyond the potential mod-
els, and the role of effective interactions has recently received much attention. Historically,
this idea was developed in the context of the shell model, dating back to 1960 when Talmi
and Unna accounted for the inversion of single-particle levels in the p-shell nuclei [2]. Later,
a similar expression was derived in Ref. [3], in which the effect of two-body interactions
was formulated with what is now called the monopole interaction [4].

The impact of the monopole interaction on nuclear structure has been investigated
with the development of large-scale shell-model calculations [4–6], in which p f -shell nuclei
are very successfully described by using Kuo–Brown interactions with a few monopole
matrix elements appropriately modified. The single-particle energy that includes the effect
of the monopole interaction is often referred to as the effective single-particle energy [7,8].

One of the remaining issues concerning shell evolution is the general properties of
the monopole interaction and their origin. One of the earliest attempts in this direction
was carried out by Federman and Pittel [9], who indicated that the central force causes a
sharp drop of the neutron 1g7/2 orbital with the proton 1g9/2 orbital occupied. With more
data on exotic nuclei accumulated in the 1990s, the spin-isospin dependence of the effective
interaction was highlighted in Ref. [10]. This property well accounts for the monopole
interaction that was phenomenologically introduced in Ref. [11] to describe the shifting
magic number from N = 16 to 20. Finally, Otsuka et al. demonstrated [12] that the tensor
force significantly increases or decreases spin–orbit splitting depending on the relative
direction of the spin and orbital angular momenta that the last nucleons have.

Physics 2022, 4, 185–201. https://doi.org/10.3390/physics4010014 https://www.mdpi.com/journal/physics

https://doi.org/10.3390/physics4010014
https://doi.org/10.3390/physics4010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/physics
https://www.mdpi.com
https://orcid.org/0000-0001-5404-7320
https://doi.org/10.3390/physics4010014
https://www.mdpi.com/journal/physics
https://www.mdpi.com/article/10.3390/physics4010014?type=check_update&version=2


Physics 2022, 4 186

For a unified description of the shell evolution, in [13], it was proposed that the central
and tensor forces are the major sources of shell evolution, whereas the two-body spin–orbit
force plays a unique role in the monopole matrix elements between specific orbitals [14]. The
same conclusion was drawn from the spin-tensor decomposition of an effective interaction
fitted to the experimental data [15]. In Ref. [13], shell evolution is described by an interaction
that consists of a simple Gaussian central force and a π + ρ meson exchange tensor force,
whose choice is supported by “renormalization persistency” [16]. This interaction, named
the monopole-based universal interaction, VMU, and its variant were successfully applied to
constructing effective interactions for shell-model calculations [17,18], whose focuses were
placed on many-body properties, such as the onset of deformation due to the tensor force.

The aim of the present study is to quantitatively examine to what extent the shell
evolution is described by such a simple scheme. To this end, the SDPF-MU interaction [18]
is employed here whose cross-shell part is made of a variant of the VMU interaction with
the two-body spin–orbit force included, and the validity of its shell evolution is carefully
examined by comparing with the relevant experimental data.

In this paper, neutron-rich nuclei with the atomic mass number 25 . A . 55 are
considered, where several doubly-closed-shell nuclei are known, including 24O, 34Si, 36S,
40Ca, 48Ca, 52Ca, and 54Ca. Hence, configuration mixing within the major shell is relatively
suppressed along the atomic number, Z, and N = 20 chains, for instance, which makes
easier to identify the monopole matrix element most relevant to the shell evolution under
debate. Here, a rather complete survey that covers both the proton and neutron shell
evolution is conducted, thus, enabling to separate the unique roles of the central, spin–orbit,
and tensor forces.

This paper is organized as follows. In Section 2, the VMU interaction is introduced as
used in the SDPF-MU interaction, and the different characteristics of the central, spin–orbit,
and tensor forces are quantitatively presented with regard to the monopole matrix element.
Section 3 dicusses how the shell evolution, caused by this interaction, can be validated by
experimental data. Sections 3.1 and 3.2 are devoted to proton shell evolution with varying
neutron number and neutron shell evolution with varying proton numbers, respectively.
Section 4 gives conclusions of the study.

2. Shell Evolution Caused by the SDPF-MU Interaction
2.1. Monopole Matrix Elements

The SDPF-MU interaction was constructed in Ref. [18] to describe the structure of
neutron-rich nuclei around N = 28 whose Fermi surface is located in the sd shell for protons
and the p f shell for neutrons. Hence, the proton–neutron cross-shell interaction, i.e., the
part of the interaction that is relevant to both the sd shell and the pf shell is responsible for
the shell evolution occurring in this region.

The cross-shell part of the SDPF-MU interaction is provided by a minor modification
of the VMU interaction [13]. The VMU interaction was proposed to give a universal behavior
of shell evolution over the nuclear chart, consisting of a Gaussian central force and a π + ρ
meson exchange tensor force. In the SDPF-MU interaction, the following refinements to the
original VMU interaction are introduced:

1. the central force includes density dependence;
2. the two-body spin–orbit force is included in addition.

The central force of the shell-model effective interaction is subject to complicated
renormalization and many-body effects. The basic strategy of VMU is to determine the
central force so that its monopole matrix elements are close to those of a reliable effective
interaction. Here, the monopole matrix element between the orbitals j1 and j2 is defined by

Vm
T (j1, j2) =

∑J(2J + 1)〈j1 j2; JT|V|j1 j2; JT〉
∑J(2J + 1)

, (1)
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where J runs over all the possible angular-momentum coupling that the Pauli principle
allows, and T is the isospin coupling. In constructing the original VMU interaction, the
GXPF1A interaction [19] was used as a reference, and a reasonable but not perfect agreement
was achieved. Namely, while most of the monopole matrix elements agree within 0.2 MeV,
a few matrix elements differ by 0.5 MeV or more; see Figure 1 of Ref. [13]. To obtain a better
result, the central force of the SDPF-MU interaction has the form of

VC(1, 2) = D(R)∑
S,T

fS,T PS,T exp
(
−(r/µ)2

)
, (2)

where S and T denote the spin and isospin coupling, respectively, and PS,T is the projection
operator onto a given (S, T). The~r and ~R are the relative and center-of-mass coordinates,
respectively: ~r = ~r1 − ~r2 and ~R = (~r1 + ~r2)/2. The D(R) is the density dependent part
that was newly introduced in the refined VMU, and its form was taken from the FPD6
interaction [20] as

D(R) = 1 + Ad{1 + exp((R− R0)/a)}−1 (3)

with R0 = 1.2A−1/3 MeV and a = 0.6 fm. The interaction, thus, has six free parameters, fS,T ,
µ, and Ad. They were chosen to be f0,0 = −140 MeV, f1,0 = 0, f0,1 = 0.6 f0,0, f1,1 = −0.6 f0,0,
µ = 1.2 fm, and Ad = −0.4. The resulting agreement with the monopole matrix elements
of the central force of GXPF1B is quite good, as illustrated in Figure 1 of Ref. [21].

The two-body spin–orbit force in the SDPF-MU interaction was taken from that of
the M3Y (Michigan 3-range Yukawa) interaction [22]. The two-body spin-orbit force plays
a minor role on shell evolution compared with the central and tensor forces, as far as
a restricted region of the nuclear chart is considered: see Table 1 and discussion below.
However, some specific evolutions of shell gaps are dominated by the two-body spin–orbit
force, thus, included here for completeness.

The overall strength of the SDPF-MU interaction is scaled by a factor A−0.3 in the same
way as the USD (Universal sd) [23] and GXPF1 [24] interactions.

Table 1. Proton–neutron monopole matrix elements between the sd and p f orbitals obtained by the
SDPF-MU interaction for the atomic mass number A = 42. The second to the fifth columns list the
central (C), tensor (T), spin–orbit (LS), and the total values (in MeV), respectively. The sixth to ninth
columns indicate the hierarchy of the C + T monopole matrix elements. The texts in red (blue) are
to highlight the correspondence between the most attractive matrix elements of the central (tensor)
force and ∆n = 0 (spin direction). See text for details.

C T LS Total ∆n Spin
Direction Label C + T

1d5/2-1 f5/2 −1.10 −0.19 +0.05 −1.24 0 antiparallel −− −1.29
1d3/2-1 f7/2 −1.10 −0.21 −0.04 −1.34 0 antiparallel −− −1.31
2s1/2-2p3/2 −1.15 0 −0.09 −1.24 0 no direction −0 −1.15
2s1/2-2p1/2 −1.15 0 +0.17 −0.98 0 no direction −0 −1.15
1d5/2-1 f7/2 −1.16 +0.14 −0.03 −1.05 0 parallel −+ −1.02
1d3/2-1 f5/2 −1.18 +0.28 +0.04 −0.86 0 parallel −+ −0.91
1d5/2-2p1/2 −0.68 −0.06 −0.05 −0.78 1 antiparallel +(−) −0.74
1d3/2-2p3/2 −0.68 −0.05 +0.06 −0.66 1 antiparallel +(−) −0.72
2s1/2-1 f7/2 −0.88 0 −0.02 −0.90 1 no direction +0 −0.88
2s1/2-1 f5/2 −0.88 0 +0.03 −0.84 1 no direction +0 −0.88
1d5/2-2p3/2 −0.69 +0.03 −0.03 −0.70 1 parallel +(+) −0.66
1d3/2-2p1/2 −0.71 +0.09 +0.05 −0.57 1 parallel +(+) −0.61

Table 1 presents the proton–neutron cross-shell monopole matrix elements, calculated
with the SDPF-MU interaction, for central, tensor, and spin–orbit forces. The proton–
neutron monopole matrix element for a pair with (n1, l1) 6= (n2, l2) is given by

Vm
pn(j1, j2) =

1
2
{Vm

T=0(j1, j2) + Vm
T=1(j1, j2)}. (4)
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The second column of Table 1 indicates that the strengths of the central matrix elements
can be grouped into two categories: one has ∼ −1.1 MeV, and the other has much weaker
strengths. As explained [1,13], this difference occurs because two orbitals with the difference
of the number of nodes, ∆n = 0, have a large spatial overlap, thus, gaining much attraction
through short-range forces. Comparing the second and the sixth columns, one finds a good
correspondence between ∆n and the strength of the central matrix elements.

The monopole matrix elements of the tensor force are characterized by the relative
spin direction between the two orbitals considered, as pointed out in Ref. [12]. When the
spins of two orbitals (with l > 0) are parallel, i.e., j> - j′> or j< - j′< (j> and j< stand for
j = l + 1/2 and j = l − 1/2, respectively), the tensor monopole matrix element is positive
and otherwise negative. The third and the seventh columns of Table 1 exactly point to this
property. This fact is accepted now, [1,12], and quantitative aspects of the tensor monopole
matrix elements are as follows.

1. Similar to the central force, the strengths for the ∆n 6= 0 orbitals are weaker than those
of ∆n = 0.

2. Although the absolute values of the tensor matrix elements are much smaller than
those of the central force, the difference between the largest matrix element and the
smallest one reaches ∼ 0.5 MeV, equivalent to that of the central force.

From the point 2, one concludes that the tensor force plays a role as important as the
central force in shell evolution.

On the basis of the above arguments, let us label the orbital pairs to simply estimate
the strengths of the monopole matrix elements due to the central and tensor forces without
numerical calculations.

• The label consists of two characters: the first and the second ones are intended to
grade the central and tensor monopole matrix elements, respectively. The net effect of
these two characters stands for a rough estimate of the total monopole matrix element.

• Each part is evaluated on a scale of five levels defined by −, (−), 0, (+), and +, to
indicate relative attraction within each type of force. The ”−” character is given to the
most attractive (i.e., largest negative) pairs, and the ”+” character is given to the least
attractive (or most repulsive) pairs among the whole monopole matrix elements of the
central or tensor force.

• The first character gets ”−” for ∆n = 0, or ”+” for ∆n 6= 0.
• When the first character is ”−”, the second character gets either ”−”, 0 or ”+” depend-

ing on the relative spin direction mentioned above. When the first character is ”+”,
the second character is replaced by (−), 0, or (+).

These labels are listed in the eighth column of Table 1. The actual sum of the central
and tensor monopole matrix elements shown in the ninth column of Table 1 rather well
follows this ordering, except for a few cases with ∆n = 1 in which the tensor force is
less dominant.

Next, the two-body spin–orbit force is examined whose monopole matrix elements
are presented in the fourth column of Table 1. The strengths of the elements are usually
rather weak (see details in Supplemental Material in Ref. [1]), and the typical order of the
monopole matrix elements is ∼ 20A−5/3 MeV≈ 0.04 MeV at A = 42. The signs of the
elements are determined so that the inner nucleon (usually with lower orbital angular
momentum, l) produces the normal spin–orbit splitting to the outer orbitals. Namely, when
the inner and the outer orbitals are labeled i and j, respectively, their monopole matrix
elements satisfy Vm

pn(i, j) < 0 for j = l + 1/2 and Vm
pn(i, j) > 0 for j = l − 1/2.

More specifically, when monopole matrix elements between the sd and 1 f orbitals are
considered, the sd orbitals are located closer to the center and thus can be regarded as the
inner orbitals. Hence, this rule causes negative and positive monopole matrix elements
for the 1 f7/2 and 1 f5/2 orbitals, respectively. One can also find that the monopole matrix
elements between the 2s and 2p orbitals are much larger than the others. This is because
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this pair, having a relative orbital angular momentum Lrel = 1 alone, gains much energy
due to the short-range nature of the two-body spin–orbit force.

2.2. Effective Single-Particle Energies

Once the cross-shell monopole matrix elements are determined the above-described
way, one can obtain proton and neutron shell evolutions. The shell evolution is character-
ized by the effective-single-particle energy (ESPE), which includes the effects of valence
nucleons on the single-particle energy. While the ESPEs can be defined for any wave
function (see Ref. [1]), they are often estimated by filling configurations, so that one can
directly connect monopole matrix elements to shell evolution. To simplify the discussion,
a case of mass-independent two-body interactions is considered here. The ESPE of the
neutron orbital, jn, changes by filling protons in the orbital jp as

ενjn(π jp : filled) = ενjn(π jp : empty) + (2jp + 1)Vm
pn(jn, jp). (5)

When one defines the change of the ESPE of νjn with filling π jp as

∆π jp ενjn ≡ ενjn(π jp : filled)− ενjn(π jp : empty), (6)

the evolution of the shell gap between νjn and νj′n with filling π jp is expressed as

∆π jp(ενjn − ενj′n) = (2jp + 1){Vm
pn(jn, jp)−Vm

pn(j′n, jp)}. (7)

Figure 1 provides a schematic illustration of what is represented in Equation (7). One
of the most important properties of ∆π jp(ενjn − ενj′n) is that this quantity does not depend
on the choice of the core to define the ESPE. For example, the evolution of the N = 34 shell
gap can be probed not only by the systems with the N = 34 core but also by those with
the N = 28 core or the N = 20 core. This means that one can investigate a specific shell
evolution for very neutron-rich isotones by using that of less neutron-rich ones, which will
be utilized in some cases considered in Section 3.
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Figure 1. Schematic illustration of what is investigated in this paper. The blue and green lines are,
respectively, the effective single-particle energies (ESPEs) of the neutron orbital, jn and j′n, that change
with the proton orbital, jp, filled. The evolution of the shell gap, denoted as ∆π jp (ενjn − ενj′n ), is the
main focus of this paper.

When one uses a mass-dependent interaction, Equation (7) is not exact but it is still
useful for estimating shell evolution from monopole matrix elements.

3. Comparison to Experimental Data

The main objective of this paper is to examine how well the shell evolution described
by Equation (7) is supported by experimental data. In Figure 2a,b, the proton shell evolu-
tion with neutrons occupying the p f shell, and the neutron shell evolution with protons
occupying the sd shell are plotted, respectively. The former and the latter are examined in
Sections 3.1 and 3.2, respectively. In the following, for brevity, the quantum number n are
omitted and only the other quantum numbers like d5/2 are given.
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Figure 2. Evolution of the ESPEs calculated with the SDPF-MU interaction with the tensor force
included (solid lines) and not included (dashed lines). (a) Proton orbitals measured from 1d3/2 for
the atomic number Z = 20 isotopes and (b) neutron orbitals measured from 1 f7/2 for the neutron
number N = 28 isotones. The ESPEs are obtained by assuming filling configurations whose orders
are indicated at the bottom of the figure.

In Figure 2, also the ESPE with the tensor force removed is plotted. One can immedi-
ately find that the proton d5/2 orbital (Figure 2a) and the neutron f5/2 orbital (Figure 2b)
have the largest effect from the tensor force. Since the ESPEs shown are measured from the
d3/2 and f7/2 orbitals, respectively, this result is a manifestation of a general property that
the tensor force strongly affects the spin–orbit splitting (see Figure 1a of Ref. [12]).

To be more specific, when the proton orbital j′ is filled, the evolution of the neutron
spin–orbit splitting between j< and j> is expressed, by using Equation (7), as ∆π j′(ενj< −
ενj>) = (2j′ + 1){Vm

pn(j<, j′)− Vm
pn(j>, j′)}. The Vm

pn(j<, j′) and Vm
pn(j>, j′) values for the

tensor force are always of the opposite sign due to the identity (2j> + 1)Vm
T (j>, j′) +

(2j< + 1)Vm
T (j<, j′) = 0 (valid for any isospin coupling T) [12], thus, magnifying the

∆π j′(ενj< − ενj>) value.
In addition to evaluating the ESPE, we conducted large-scale shell-model calculations

to more directly compare to the data. The procedure of the calculation was the same as
that employed earlier [18,25]. The valence shell consists of the full sd and p f shells. The
basis states considered are truncated to allow only 0h̄ω (with h̄ being the reduced Planck
constant and ω the angular frequency) excitations for natural-parity states and to allow
1h̄ω excitations for unnatural-parity states. Note that, in the present case, nh̄ω excitation is
equivalent to n-particle-n-hole excitation across the N = Z = 20 shell gap.

Let us stress that this truncation scheme (restricted to the lowest h̄ω space) is intro-
duced not only to make numerical computation possible but also to be in accordance with
the way how the SDPF-MU interaction is constructed (see also Section 2.2 of Ref. [21]):
(i) the central force of the cross-shell interaction in SDPF-MU is fitted to the GXPF1B interac-
tion and (ii) the intra-shell interactions employed in the SDPF-MU interaction are based on
USD for the sd shell and GXPF1B for the p f shell. The USD and the GXPF1B interactions are
intended for the use of the 0h̄ω model space. As shown in Ref. [18], the binding energies of
neutron-rich nuclei in this region are well reproduced in this framework. The Hamiltonian
matrices spanned by those basis states are numerically diagonalized by using the KSHELL
code [26].
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3.1. Proton Shell Evolution
3.1.1. From N = 20 to N = 28

As shown in Figure 2a, the most distinct property by filling the ν f7/2 orbital is that the
Z = 16 shell gap sharply diminishes and that the order of πs1/2 and πd3/2 is finally inverted
at the 48Ca core. The change of this shell gap is expressed as ∆ν f7/2

(επd3/2
− επs1/2) ≈

8{Vm
pn(d3/2, f7/2) − Vm

pn(s1/2, f7/2)}. Since the d3/2- f7/2 and s1/2- f7/2 pairs are labeled
{−−} and {+0}, respectively, according to the rule, introduced in Section 2.1, this value
is a large negative value. The actual number calculated with the SDPF-MU interaction
is −3.32 MeV. If the tensor force is omitted from the interaction, this value decreases to
−1.71 MeV, pointing to almost equal contributions of the central and tensor forces.

Experimentally, the evolution of the Z = 16 shell gap is well examined by the first
excitation energies of 39K and 47K, which can be regarded as a proton hole in the 40Ca
and 48Ca cores, respectively, from very large spectroscopic factors for the lowest two
levels. The measured values of E(1/2+1 ) − E(3/2+1 ) for 39K and 47K are 2.52 MeV and
−0.36 MeV, respectively.

Hence, if one assumes the pure single-hole states for the 1/2+1 and 3/2+1 states in
39K and 47K, the ∆ν f7/2

(επd3/2
− επs1/2) value estimated from these experimental data

is −2.88 MeV. The corresponding value obtained from large-scale shell-model calcula-
tions is −3.33 MeV, which is somewhat overestimated; however, the sharp decrease of
E(1/2+1 )− E(3/2+1 ) in going from 39K to 47K is well explained. Note that this number
is very close to that evaluated from the ESPE (−3.32 MeV; see the first paragraph of this
Subsection) because the first two levels of 47K are very close to single-proton-hole states.

Another important property in filling the ν f7/2 orbital is that the proton spin–orbit
splitting for the d orbitals sharply decreases. This is caused almost solely by the tensor
force (Figure 2a) because the central force gives similar monopole matrix elements between
the d3/2- f7/2 and d5/2- f7/2 pairs: those are {−−} and {−+} pairs, respectively. Hence,
quantifying the spin–orbit splitting is the key to extracting the tensor-force driven shell
evolution. By using the SDPF-MU interaction, the proton spin–orbit splittings for the d
orbital are obtained to be 7.42 and 5.05 MeV for the 40Ca and 48Ca cores, respectively,
indicating a more than 2 MeV reduction.

Unlike the cases of d3/2 and s1/2, the d5/2 proton hole does not appear as a nearly
pure single-hole state because the excitation energy is much higher than other low-lying
levels, making the hole state fragmented over many levels. For the present purpose, the
distribution of spectroscopic factors provides crucial information. The one-proton removal
spectroscopic factors from 40Ca and 48Ca were measured with reactions, such as (d, 3He)
and (e, e′p). Although the (e, e′p) reaction gives more reliable spectroscopic factors, those
measured for 40Ca are concerning only a few low-lying states. Thus, the (d, 3He) data were
used to estimate the spin–orbit splitting for Ca isotopes from the centroid of the measured
spectroscopic factors, as discussed in Refs. [27,28].

The centroid of the spectroscopic factors, actually, provides the exact single-particle
energy. However, there are many energy levels that cannot be detected by the actual
experiment because their spectroscopic factors are too small to be measured. Although
each of these undetected levels has a tiny contribution to the centroid, the total effect is not
negligible because the number of such levels is very large. In this sense, the centroid of
the spectroscopic factors that is obtained from experiment cannot be free from uncertainty
associated with the limited experimental sensitivity. Hence, in order to validate theoretical
single-particle energies, it is rather helpful to compare between experiment and theory
regarding how major peaks are distributed. The results are shown in Figure 3, in which the
spectroscopic factor C2S(j) for the orbital j is defined as

C2S(j) =

∣∣∣〈ΨB||a†
j ||ΨA〉

∣∣∣2
2JB + 1

, (8)



Physics 2022, 4 192

where ΨA and ΨB are the wave functions of the nuclei A and B, respectively (here, A and
B correspond to Ca and K isotopes, respectively), and JB is the angular momentum of B.
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Figure 3. Distribution of the one-proton removal spectroscopic strengths (see Equation (8)) from
48Ca (left) and 40Ca (right) comparing experimentalal results (”Expt.”) with shell-model calculations
(”Calc.”). The spectroscopic factors shown are divided by 2j + 1 to normalize to unity for fully
occupied orbitals. The bin widths are 0.25 MeV. Data are from Refs. [29] (48Ca) and [30] (40Ca). See
text for details.

For 48Ca, the calculations were carried out with the SDPF-MU interaction in the
0h̄ω model space [18]. The present calculation successfully captures the characteristics of
the measured distribution. For s1/2 and d3/2, although the strengths are dominated by
the lowest states, some strengths remain in the states slightly below 4 MeV due to the
coupling to the 2+1 state. Note that the sum of the experimental strengths for d3/2 exceeds
the sum-rule limit [29], indicating non-negligible uncertainties due to the reaction model
employed. For d5/2, the calculation well reproduces three major peaks located at 3–4, 5–6,
and 7–8 MeV, although the calculated peaks are located a few hundred keV lower than
those of the experiment. If the tensor force is omitted, the calculated weight of the d5/2
strengths is shifted higher and fails to reproduce the data as presented in [18].

For 40Ca, as seen in Figure 3, the d5/2 strengths are highly fragmented as in 48Ca. This
property is impossible to reproduce with the same setup as 48Ca, since only one 5/2+ state
appears in the 0h̄ω calculation. It is also found that the 2h̄ω calculation was not sufficient
to obtain enough fragmentation because of much smaller level densities compared with the
data. To resolve this problem, the large-scale shell-model calculations were done to allow
many-particle many-hole excitations across the N = Z = 20 core. Since it is still difficult
to perform such calculations in the full sd-p f valence shell, the p1/2 and f5/2 orbitals are
omitted from the valence shell, thus enabling 6h̄ω calculations with the KSHELL code [26].

The effective interaction is taken from Ref. [31], a modified SDPF-M interaction whose
single-particle energies are fine-tuned to reproduce the correct one-neutron separation
energies of 40,41Ca. Note that the original SDPF-M interaction [11] was designed for the full
sd + f7/2 + p3/2 model space. One expects that the 6h̄ω truncation is sufficient to achieve
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convergent results. The resulting spin–orbit splitting of the d orbitals for the 40Ca core is
close to that of SDPF-MU, 7.49 MeV, estimated from the ESPE.

Figure 3 presents the results of the calculations. Similar to 48Ca, the agreement with
experiment is quite satisfactory. For d3/2 and s1/2, the strengths near the 2+1 level of 40Ca
(∼4 MeV) are much smaller than those for 48Ca, in good accordance with the measured
distribution [30]. For d5/2, the calculated three major peaks at 5–6, ∼6, and 7–8 MeV
well correspond to the measured peaks, although the highest peak is more fragmented in
the experiment.

The above detailed comparisons of spectroscopic distributions confirm that a large
reduction of the spin–orbit splitting, which amounts to ∼2 MeV, occurs in reality as a π + ρ
meson exchange tensor force produces.

3.1.2. From N = 28 to N = 32 and Beyond

As the neutron number increases from N = 28, the Fermi surface moves to p3/2,
which causes a different proton shell evolution from that for 20 ≤ N ≤ 28. Figure 2a
indicates that the most prominent is that s1/2 goes down relative to d3/2. This is caused by a
positive ∆πp3/2(ενd3/2

− ενs1/2) = 4{Vm
pn(d3/2, p3/2)−Vm

pn(s1/2, p3/2)} because the d3/2-p3/2
and s1/2-p3/2 pairs are labeled ”{+(−)}” and ”{−0}”. Although the tensor force causes
attraction for the former pair, the central force that favors the latter surpasses this effect
due to a larger spatial overlap. It is thus predicted that the d3/2 orbital becomes the highest
in the sd shell again at N = 32, leading to the reinversion of the s1/2-d3/2 level ordering.

Similar to that of Section 3.1.1, K isotopes play a key role in probing this level ordering
from experiment. The observed hyperfine structure ruled out a 1/2+ ground state for the
N = 32 isotope 51K [32], and its measured g-factor of +0.3420(15) [32] is very close to
that of the single-proton hole in d3/2. From these data, it is concluded in Ref. [32] that the
ground state of 51K must be a 3/2+ state that is dominated by the π(d3/2)

−1 configuration.
The predicted reinversion has thus been confirmed by experiment.

A deeper understanding of shell evolution can be obtained from excitation energies. In
Figure 4, the energies of the 1/2+1 levels, measured from the 3/2+1 levels in neutron-rich K
isotopes, are compared to theory. Very recently, the first excited levels in 51,53K (N = 32, 34)
were measured to be 0.74 and 0.84 MeV, respectively [33]. These states are assigned to
be 1/2+ from the observed parallel momentum distributions of the 51,53K residues after
(p, 2p) reactions.

As shown in Figure 4, the measured values are lower than the shell-model results with
the SDPF-MU interaction, 1.40 and 1.74 MeV, respectively. Although the calculated levels
are located lower than those estimated from the ESPE, 1.71 and 2.50 MeV, respectively;
the deviation from the experimental data may indicate the need of refining the monopole
matrix elements, related to the shell evolution under discussion.

In Ref. [33], a modified SDPF-MU interaction was introduced (named SDPF-MUs) in
which Vm

T=0(s, p) is shifted by +0.4 MeV, equivalent to a +0.2 MeV shift for the proton–
neutron channel. The resulting 1/2+1 levels in 51,53K are improved to be 0.85 and 0.79 MeV,
respectively. These SDPF-MUs levels are also somewhat lower than those estimated from its
ESPE, 0.95 and 1.38 MeV, respectively. This difference is caused by a many-body correlation,
which makes single-hole strengths fragmented. Experimentally, three more levels are
observed from the 52Ca(p, 2p)51K reaction [33], which may indicate some deviation from
the single-hole nature for 1/2+1 or proton d5/2 hole states fragmented.

As shown in Figure 4, the E(1/2+1 )− E(3/2+1 ) value evolves in a non-monotonic way;
that is, it decreases until N = 28 and then turns to increase. This evolution, following
the ESPE, is caused by that of the ESPE of πd3/2 measured from πs1/2. The reinversion
of the 1/2+1 -3/2+1 level ordering is a consequence of the non-monotonic evolution of
single-particle level spacings.
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K isotopes between experiment and theory. The red circles represent experimental data, and the blue
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SDPF-MU and the SDPF-MUs interactions, respectively. The dashed lines in blue and green are the
corresponding values evaluated from the ESPE (i.e., επ(s1/2)−1 − επ(d3/2)−1 = επd3/2

− επs1/2 ) for the
SDPF-MU and the SDPF-MUs interaction, respectively.

Let us point out that such a non-monotonic evolution constitutes a strong evidence
for the dominance of the effective interaction in shell evolution because simple one-body
potential models like the Woods–Saxon ones always produce monotonic evolution of
level spacings with changing mass number. Furthermore, in this particular case, the
non-monotonic evolution is caused by the central force. To account for this, let us first
remind one that the changes of επd3/2

− επs1/2 for N = 20–28 and for N = 28–32 amounts,
respectively, to ∆E1 = 8{Vm

pn(d3/2, f7/2)−Vm
pn(s1/2, f7/2)} and ∆E2 = 4{Vm

pn(d3/2, p3/2)−
Vm

pn(s1/2, p3/2)}.
For the tensor force, Vm

pn(s1/2, f7/2) = Vm
pn(s1/2, f7/2) = 0 holds, and only the first

terms contribute to ∆E1 and ∆E2. As shown in Table 1, both of them are negative, and
the επd3/2

− επs1/2 value keeps decreasing. On the other hand, the central-force contribu-
tions to ∆E1 and ∆E2 are negative and positive, respectively, thus producing a kink in
E(1/2+1 )− E(3/2+1 ) and επd3/2

− επs1/2 . Since this non-monotonic evolution is dominated
by the central force, any microscopic model, with a reasonable two-body force, is able
to describe that. In fact, both nonrelativistic and relativistic mean-field models produce
similar effects [34,35].

Here, let us comment on the idea behind the empirical shift of monopole matrix
elements employed in the SDPF-MUs interaction. As presented in Section 2.1, the cross-
shell part of the SDPF-MU interaction consists of the central, two-body spin–orbit, and
tensor terms. Among them, the tensor term is the most strongly supported by microscopic
theories in terms of the “renormalization persistency”, named in Ref. [16]. On the other
hand, the central term is constructed in a fully phenomenological way. The two-body
spin–orbit term is too small to tune.

On the basis of this general consideration, it seems that the most reasonable method of
monopole tuning is for the central term alone, with the other terms untouched. The SDPF-
MUs interaction is made to follow this policy. With respect to the cross-shell interaction,
the difference between SDPF-MU and SDPF-MUs is the shift of Vm

T=0(s, p). The shift,
∆Vm

T=0(s, p) = +0.4 MeV, is applied not only to the p3/2 orbital but also to the p1/2 orbital.
The latter change is needed to keep the tensor term unchanged after carrying out the
spin-tensor decomposition [36].
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Finally, let us mention that the Vm
pn(s, p)monopole matrix elements contain non-negligible

contributions from the two-body spin–orbit force. This feature is discussed in Section 3.2.2.

3.2. Neutron Shell Evolution

In this Subsection, the neutron shells that change with the proton number are consid-
ered, as illustrated in Figure 2b. Let us start with the 48Ca core, since its neutron p f -shell
energies are well established from the data. Next, the protons are removed from the
d3/2, s1/2, and d5/2 orbitals, and the relevant issues are discussed in Sections 3.2.1 to 3.2.3,
respectively.

3.2.1. From Z = 20 to Z = 16

As shown in Figure 2b, with protons removed from d3/2, the N = 28 shell gap changes
by −∆πd3/2

(ενp3/2 − εν f7/2
) ≈ 4{Vm

pn( f7/2, d3/2)−Vm
pn(p3/2, d3/2)}. Note that the negative

sign in−∆πd3/2
is needed because the shell evolution is considered with decreasing Z. Since

f7/2-d3/2 and p3/2-d3/2 are {−−} and {+(−)} pairs, respectively, this quantity should be
negative. As discussed in Section 3.1.1, the strongly attractive monopole matrix element of
Vm

pn( f7/2, d3/2) causes the rapid decrease of the Z = 16 shell gap in going from N = 20 to
N = 28.

The decrease of the N = 28 shell gap is difficult to evaluate from experimental data in
the vicinity of N = 28 isotones because the corresponding sulfur isotopes are deformed.
As emphasized in Section 2.2, however, this decrease can be probed from another isotone
chain. In this case, N = 20 isotones provide useful information since both 36S and 40Ca are
regarded as doubly-closed-shell nuclei with rather large first excitation energies (>3 MeV).

From the 36S(d, p)37S reaction data, the ν f7/2 and νp3/2 strengths are concentrated
in the ground state and the 0.646 MeV state, respectively, while some strengths remain
in the 3/2− state at 3.263 MeV with C2S ≈ 0.14 and in the 7/2− state at 3.443 MeV with
C2S ≈ 0.06 [37]. The measured spectroscopic strengths, thus, indicate a small N = 28
shell gap that is less than 1 MeV on top of the 36S core. The shell-model calculation with
the SDPF-MU interaction rather well reproduces this feature with C2S( f7/2) = 0.86 at
Ex = 0 MeV, C2S(p3/2) = 0.77 at Ex = 0.56 MeV, C2S(p3/2) = 0.19 at Ex = 2.97 MeV, and
C2S( f7/2) = 0.07 at Ex = 3.21 MeV. The calculated N = 28 shell gap for the 36S core is
0.32 MeV.

Similar data exist for the 40Ca core. The p3/2 strengths are fragmented into the states
at 1.94, 2.46, and 4.60 MeV, which is impossible to reproduce with the 0h̄ω calculations.
The centroids of the spectroscopic factors measured with the 40Ca(~d, p)41Ca reaction [38]
suggest that the N = 28 shell gap for 40Ca is 2.5 MeV. The SDPF-MU interaction produces
the N = 28 shell gap of 2.94 MeV, which is slightly larger than this value. Hence, a large
decrease of the N = 28 shell gap is confirmed, although the SDPF-MU interaction may
overestimate this decrease by a few hundred keV.

The reduction of the N = 28 shell gap should have a significant impact on the N = 28
closed-shell structure. The breaking of the N = 28 closure can be probed with one-neutron
removal spectroscopic strengths from p3/2: if no νp3/2 strengths are observed, then no
neutrons occupy the p3/2 orbital, implying a complete closure. Although summing up
all the p3/2 strengths are desirable for a quantitative evaluation, excited states available
in neutron-rich nuclei are limited. For this purpose, the strengths of the first 3/2− levels
between experiment and theory are compared and the results are shown in Figure 5.

It is natural that the strength for 48Ca is very small. As the proton number is away
from Z = 20, the strengths are naively expected to increase due to deformation caused by
valence proton particles or holes. If deformation is controlled by the number of valence
protons alone, those spectroscopic factors should be symmetric with respect to Z = 20.
However, the observed spectroscopic factors are rather large for the Z < 20 isotones,
whereas they remain small for the Z > 20 isotones.
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This behavior is well reproduced by the shell-model calculations with the SDPF-MU
interaction. The same trend is seen in the νp3/2 occupation numbers, which are the upper
limit of these spectroscopic factors. Hence, one concludes that the breaking of the N = 28
closure is much greater for Z < 20 than for Z > 20 and that the reduction of the N = 28
shell gap for lower Z works to enhance this property.

From Figure 5, it may look unexpected that the C2S value for Z = 16 is only half the
neutron p3/2 occupation number of 44S unlike that for 46Ar. This is caused by a unique
nuclear structure of 44S. As pointed out in Ref. [25], sulfur isotopes around 44S have two
nearly degenerate deformed neutron orbitals on the Fermi surface with Ωπ = 7/2− and
3/2−, which make the Kπ = 7/2− and 3/2− bands in 43S, respectively, by one-neutron
occupation. Here, Ω and K are, respectively, single-particle and total angular-momentum
projection onto the symmetry axis, and π is parity. The 3/2−1 state in 43S is a Kπ = 3/2−

member. Due to the near degeneracy of the Ωπ = 7/2− and 3/2− orbitals, the ground state
of 44S has a strongly mixed configuration with two neutrons in Ωπ = 7/2− and those in
Ωπ = 3/2−. As a result, about half the ground-state wave function of 44S, i.e., the part with
two neutrons occupying the Ωπ = 3/2−, is able to contribute to populating the Kπ = 3/2−

band in 43S. The remaining fractions of C2S should be distributed to the excited 3/2− states,
which was indeed observed [41].

Let us comment on other shell gaps. The discussions of the N = 32 shell gap is given in
Section 3.2.2, and here, just a brief remark to be made about the N = 34 shell gap. A recent
54Ca(p, pn)53Ca measurement clarified that the N = 34 shell closure is rather good [42],
while the N = 34 shell gap for the 54Ca core was estimated to be ∼ 2.5 MeV from the
GXPF1Br interaction [43]. It was predicted that this shell gap enlarges with decreasing Z
and that the fingerprint of the enlargement can be seen in the 2+1 energies of the N = 34
isotones with Z < 20 [44,45].

This prediction was confirmed later by measuring the 2+1 level in 52Ar that is located
at 1.656(18) MeV [46]. Interestingly, this level is even higher than that of the N = 28
isotope, 46Ar. The change of the N = 34 shell gap from Z = 20 to 16 is expressed as
−∆πd3/2

(εν f5/2
− ενp1/2) ≈ 4{Vm

pn(d3/2, p1/2) − Vm
pn(d3/2, f5/2)}. The d3/2-p1/2 and d3/2-

f5/2 are {+(+)} and {−+} pairs, respectively. Since the former pair is the most unfavored
combination in energy in terms of both the central and tensor forces, this value is positive
leading to the enlargement of the N = 34 shell gap. Experimental evaluation of this
enhancement is difficult for N = 34 cores, but it is, however, possible for N = 20 cores
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through spectroscopic strengths. Although the measured f5/2 strengths are not complete for
the 36S core, such an enlargement possibly occurs from the existing data (Figure 3 of [14]).

3.2.2. From Z = 16 to Z = 14

Two protons are removed from the s1/2 orbital as moving from Z = 16 to Z = 14.
Although the N = 28 Si isotope, 42Si, is strongly deformed, the N = 20 isotope, 34Si, can be
regarded as a doubly closed-shell nucleus: its first excited state is 0+ (not 2+) and is located
as high as 2.719(3) MeV [47]. In addition, a proton knockout experiment from 34Si [48]
indicated small spectroscopic strengths of s1/2 below Ex ≈ 4 MeV, thus, suggesting a good
π(d5/2)

6 closure in 34Si. For this reason, it is a good approximation to substitute the yrast
levels in 35Si for the neutron effective single-particle energies on top of the 34Si core.

As shown in Figure 2b, the N = 28 shell gap changes by −∆πs1/2(ενp3/2 − εν f7/2
) ≈

2{Vm
pn(s1/2, f7/2)− Vm

pn(s1/2, p3/2)} from Z = 16 to Z = 14. The s1/2- f7/2 and s1/2-p3/2
pairs are {+0} and {−0}, respectively, since the tensor force does not contribute to the
monopole matrix elements for s1/2 . As discussed next, the spin–orbit force also adds a
negative value for the s1/2-p3/2, and therefore the N = 28 shell gap should enlarge. This
enlargement is estimated from the yrast levels in 35Si and 37S to be +0.264 MeV. The shell-
model calculations with the SDPF-MU interaction lead to +0.667 MeV, which is somewhat
too large.

On the other hand, when one uses the SDPF-MUs interaction [33]—the one intro-
duced in Section 3.1.2—to reproduce the 1/2+ levels in 51,53K, this value is modified to
be +0.317 MeV. Note that the −∆πs1/2(ενp3/2 − εν f7/2

) values estimated from the ESPEs of
SDPF-MU and SDPF-MUs are +0.78 and +0.37 MeV, respectively. These two indepen-
dent experimental data—K isotopes and N = 21 isotones—consistently require about a
+0.2 MeV modification of Vm

pn(s, p) matrix elements for the SDPF-MU interaction. This
looks like due to the uncertainty of the central force that is determined empirically with a
simple potential.

Next, the evolution of the N = 32 shell gap is discussed. The 34Si(d, p) reaction
experiment in inverse kinematics found two prominent l = 1 peaks at 0.910 and 2.044 MeV,
the former and the latter of which should be the 3/2− and 1/2− levels, respectively [14].
The interval of these two levels, 1.134 MeV, is much smaller than the corresponding value
of 37S, 1.911 MeV. If these values are identical with the spin–orbit splitting between the p
orbitals, the data point to a sharp reduction of 0.857 MeV. Since the matrix elements for the
s1/2-p3/2 and s1/2-p1/2 pairs have no tensor contributions and the same central strengths
(see Table 1), only the spin–orbit force can change this shell gap in terms of the shell model.

As pointed out in Section 2.1, the two-body spin orbit force produces particularly large
monopole matrix elements between the s and p orbitals. The reduction of the p orbital
splitting is evaluated from the ESPEs of the SDPF-MU interaction to be 0.54 MeV, while
the actual shell-model calculation produces a 0.758 MeV reduction of the 3/2−1 -1/2−1 level
splitting in going from 37S to 35Si. Hence, although the two-body spin–orbit force is the
dominant source of the observed reduction, correlation energy may account for the energy
of a hundred keV order.

The origin of the observed reduction is still controversial. It is claimed [49] that Woods–
Saxon potentials well account for the observed reduction of the spin–orbit splitting in going
from the 40Ca to 34Si and that this occurs due to weak binding for lower Z isotopes. This
effect causes a gradual reduction with decreasing Z, whereas the two-body spin–orbit force
affects the p orbital splitting primarily with s1/2 filled. Hence, one of the key issues to
discriminate these effects is to establish how sharp this reduction occurs from the 36S to 34Si
cores compared to that occurring from the 40Ca to 36S cores. Although one-neutron adding
spectroscopic factors are measured for the 36S and 40Ca cores, the experimental uncertainty
does not converge within the required accuracy (see the Supplemental Material of Ref. [1]).
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3.2.3. From Z = 14 to Z = 8

Finally, protons in d5/2 are removed from Z = 14 to Z = 8. As shown in Figure 2b,
the N = 28 shell gap sharply decreases again. Note that Figure 2b presents neutron ESPEs
for the N = 28 cores. When a similar figure is drawn for the N = 20 cores, the ESPE of
p3/2 shifts downward by ∼2 MeV , and the neutron f7/2 and p3/2 orbitals cross at around
Z = 11. In this Section, the evolution of the N = 28 shell gap is examined; other gaps are
difficult to access with the current experimental capability.

The change of the N = 28 shell gap with Z decreasing from 14 to 8 is estimated
to be −∆πd5/2

(ενp3/2 − εν f7/2
) ≈ 6{Vm

pn(d5/2, f7/2) − Vm
pn(d5/2, p3/2)}. The d5/2- f7/2 and

d5/2-p3/2 pairs are {−+} and {+(+)}, respectively. Although the tensor force produces a
slightly larger positive value for the former pair, the central attraction overrides this effect,
thus, causing a negative value in total.

For such proton deficient isotopes, one cannot obtain sufficient experimental informa-
tion from the nuclei around N = 28. Moreover, N = 20 isotones do not provide direct data
for the present purpose because some isotopes in the “island of inversion” are strongly
deformed. Hence, one relies on single-particle levels on top of the N = 16 cores, although
N = 16 does not form a good closed shell except for with oxygen.

In Figure 6, the 3/2−1 energy levels relative to 7/2−1 are compared for experiment vs.
theory. The data for 27Ne, 29Mg, and 31Si indicate a nearly linear change of these energies.
Since the relevant one-neutron adding spectroscopic factors are not large, i.e., typically
∼0.5, as measured [50–52], these energy differences cannot be identified with the N = 28
shell gap. However, the linear evolution reminds one of the famous “Talmi plot” [2], which
successfully predicted the 1/2+1 level in 11Be from the linearity. Thus, this behavior is
worthy of particular attention.

One can see from Figure 6 that the measurements are in a good agreement with
the calculations based on the SDPF-MU and SDPF-MUs interactions. The SDPF-MUs
interaction achieves better agreement because its N = 28 shell gap on for the 34Si core is
improved (see Section 3.2.2). These two interactions are quite successful in reproducing the
slope of Ex(3/2−1 )− Ex(7/2−1 ).
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Figure 6. Evolution of the N = 28 shell gap in going from Z = 8 to 14 estimated from the
Ex(3/2−1 )− Ex(7/2−1 ) values in the N = 17 isotones (solid lines) and from the ESPE calculations
(dashed lines). Data are from Refs. [50–52].

As one can also see from Figure 6, the slope is quite similar to what the ESPE predicts.
Since the Vm

pn(d5/2, f7/2) and Vm
pn(d5/2, p3/2) values are kept unchanged in making the

SDPF-MUs interaction based on SDPF-MU, the νp3/2 ESPEs are parallel. On the other hand,
these ESPEs are shifted downward in parallel from Ex(3/2−1 )− Ex(7/2−1 ) by ∼1.5 MeV.
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This difference arises from the assumption of the ν(d5/2)
6(s1/2)

2 closure taken here to
evaluate the ESPE.

However, in reality, a significant number of neutron excitations to d3/2 occur in the
27Ne, 29Mg, and 31Si eigenstates. These neutron excitations attract a neutron in the f7/2
orbital more than a one in p3/2 because the T = 1 monopole matrix element of d3/2- f7/2 is
more attractive than that of d3/2-p3/2, thus, shifting Ex(3/2−1 )− Ex(7/2−1 ) upward. Such
significant neutron excitation to d3/2 occurs similarly in the Ne, Mg, and Si isotopes. Hence,
the evolution of Ex(3/2−1 )− Ex(7/2−1 ) is predominantly changed by the ESPE, providing
evidence for the narrowing N = 28 shell gap caused by the monopole matrix element
Vm

pn(d5/2, f7/2)−Vm
pn(d5/2, p3/2).

It should be noted that the predicted Ex(3/2−1 )− Ex(7/2−1 ) at Z = 8 is closer to the
ESPE estimate than those of other isotopes. This is due to the fact that the assumed N = 16
closure works better at Z = 8 due to the occurrence of the N = 16 magic number.

4. Conclusions

In this paper, an almost complete survey of proton and neutron shell evolution for
atomic mass number 25 . A . 55 neutron-rich nuclei is performed on the basis of shell-
model calculations, in order to understand how well the observed evolution is explained
with a simple monopole-based universal interaction, VMU.

On the proton side, the observed one-proton removal spectroscopic distributions in
40,48Ca were very well reproduced with shell-model calculations, pointing to a ∼2 MeV
change of πd5/2-πd3/2 spin–orbit splitting. Since this change is caused almost solely by the
tensor force, this agreement quantitatively confirms the validity of a π + ρ meson exchange
tensor force in the VMU interaction. The 1/2+1 -3/2+1 level difference in K isotopes changes
the sign twice, with ν f7/2 filled and with νp3/2 filled.

As discussed, this change is caused by the “reinversion” of single-particle level or-
dering between πd3/2 and πs1/2 as a result of the non-monotonic evolution of these level
spacings. Such a manner of evolution cannot be produced by one-body potential models,
and therefore it is strong evidence for the dominant role of two-body forces in shell evolu-
tion. In this particular case, the non-monotonic evolution observed in K isotopes is driven
by the central force.

On the neutron side, the neutron-number N = 28 shell gap is reduced with protons
removed from the d3/2 and d5/2 orbitals, dominated by the central force. The relevant
single-particle-like levels are well reproduced by the shell-model calculation. In addition,
the central force causes the enhancement of the N = 34 shell gap for the atomic-number
Z < 20 isotopes. This effect well accounts for the recently observed 2+1 level in 52Ar.

In this way, the present scheme, based on VMU, provides a successful description of
the shell evolution. Neutron shell evolution in exotic nuclei is often argued in the context of
weak binding. In the present study, we were successful in obtaining not only neutron shells
but also proton shells that were free from weak binding. Thus, such a unified description
strongly indicates the dominance of the effective interaction in shell evolution, as far as the
region of the present study is concerned, including the narrowing N = 28 shell gap toward
a neutron-rich nuclei.
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