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Abstract: The ability of space plasmas to self-regulate through mechanisms involving self-generated
fluctuations is a topic of high interest. This paper presents the results of a new advanced quasilinear
(QL) approach for the instability of electromagnetic ion-cyclotron modes driven by the relative alpha-
proton drift observed in solar wind. For an extended parametric analysis, the present QL approach
includes also the effects of intrinsic anisotropic temperatures of these populations. The enhanced
fluctuations contribute to an exchange of energy between proton and alpha particles, leading to
important variations of the anisotropies, the proton-alpha drift and the temperature contrast. The
results presented here can help understand the observational data, in particular, those revealing the
local variations associated with the properties of protons and alpha particles as well as the spatial
profiles in the expanding solar wind.
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1. Introduction

In collision-poor plasmas in space, e.g., solar wind and planetary magnetospheric
environments, the dynamics of plasma particles, and implicitly their macroscopic proper-
ties, are expected to be constrained by the wave turbulence and the enhanced fluctuations,
which are important components of these hot and dilute plasmas [1–3]. Very intriguing
is the ability of these natural plasmas to self-regulate any deviation from kinetic isotropy,
e.g., drifts, beams or anisotropic temperatures in velocity space, most likely, due to the
inexorable implication of the self-generated instabilities [4–6].

In solar plasma outflows, protons (subscript p) are dominant, with a very high relative
density np > 90%, while alpha particles (subscript α) are highly contrasting, with only
nα < 8%, and a drift relative to protons of the order of local Alfvén speed [7–9]. These
relative drifts may ignite the so-called ion-beam instabilities of various electrostatic (ion-
acoustic) or electromagnetic (EM) modes (Alfvénic, magnetosonic). The resulting en-
hanced fluctuations can evolve fast enough so as to affect the regulation of ion drifts and
their anisotropies [10,11], but may also contribute to the preferential heating of minor
ions [5,12–14]. Their number densities, and the relative proton-alpha drift are indeed
observed to decline with heliospheric distance [15,16], most probably due to scattering of
the beaming particles involving self-generated instabilities.

The evolution of growing fluctuations, as well as the effects of their interaction with
anisotropic plasma particles, cannot be captured by a linear theory of dispersion and
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stability, but needs more elaborate modeling and investigation using quasilinear (QL) ap-
proaches or/and numerical simulations [10,17,18]. In this paper, an advanced quasilinear
(QL) approach of the EM ion-cyclotron (EMIC) instabilities, driven by the proton-alpha
relative drifts, is presented as recently predicted by linear theory [11]. Such an extensive
QL analysis is apt to characterize the amplification and saturation of the growing fluctua-
tions in time, but also the relaxation effects on macroscopic properties of ion populations,
including their relative drift speed [10,19]. A QL approach based on velocity moments,
provides a reliable and straightforward description of the EM instabilities driven by the
kinetic anisotropies of plasma particles [20,21], i.e., combinations of ion beams and intrinsic
temperature anisotropies, typically observed in solar wind. The evolution of the main ve-
locity moments, such as drifting or beaming speeds, and temperature components (parallel
and perpendicular to the magnetic field) is confirmed by the numerical simulations, which
also show that transient deformations of the distributions fade over time, while their initial
shape (e.g., bi-Maxwellian with lower drifts for drifting components) is mainly restored
during the relaxation [10,21–24]. More elaborate QL diffusion theories attempting to repro-
duce transient deformations of the anisotropic distribution [25] are however complicated
and restricted thus far to a limited approximation of treating the wave spectral intensity
as fixed and not evolving in time, which make their implementation to fully describe the
saturation of the fluctuations and relaxation of the anisotropic distribution not yet feasible.

2. Quasilinear Kinetic Theory of Proton-Alpha Drift and Anisotropy Instabilities
2.1. Dispersion Relation and Wave Properties

Below, the EMIC-like instabilities, driven either by temperature anisotropies of ion
populations (Section 3.1), or an alpha-proton (small) drift (Section 3.3), or the interplay of
this drift and intrinsic temperature anisotropy (Section 3.2), are examined. Let us start by
overviewing the linear wave properties associated with a plasma in which the ions are
made of majority protons and alpha particles as the minor species. The basic theoretical
framework was already discussed in a recent paper by Rehman et al. [11], but we hereby
give a brief overview for the sake of completeness. The low-frequency waves of interest
satisfy the cold-plasma dispersion relation specified by

c2k2

ω2
pp

=
ε+ε−

ε
,

ε± =
ω

ω±Ωp
+

nα

np

ω∓Ωp ±Ωα
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,
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Ω2

p

ω2 −Ω2
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+
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np

Ω2
p

ω2 −Ω2
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, (1)

where ωpp = (4πnpe2/mp)1/2, Ωp = eB0/mpc, and Ωα = Ωp/2 represent the proton
plasma frequency, proton cyclotron frequency, and the cyclotron frequency associated
with the alpha-particles, respectively, e, np, mp, B0, and c denoting the unit electric charge,
proton number density, proton mass, ambient magnetic field intensity, and the speed of
light in vacuum, respectively. In Equation (1), ω and k stand for the angular frequency and
the wave number, respectively. Assuming that the ambient magnetic field lies along z axis,
B0 = ẑ B0, the wave vector may be assumed to lie in xz plane without loss of generality,
k = x̂ k⊥+ ẑ k‖ = x̂ k sin θ + ẑ k cos θ, where k⊥ and k‖ are perpendicular and parallel wave
vector components with respect to the ambient magnetic field vector, k = (k2

⊥ + k2
‖)

1/2 and

θ = cos−1(k‖/k) being the magnitude of the wave vector and the wave propagation angle,
respectively. Note that the dispersion relation (1) supports the proton-cyclotron resonance
(ω∼Ωp) and the alpha-cyclotron resonance (ω∼Ωα). Instabilities may take place in the
vicinity of these cyclotron frequencies when the appropriate free energies are available.

Among the useful properties of low-frequency waves is the polarization vector.
The unit electric field vector ê = δE/|δE|, where δE denotes the perturbed wave electric
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field, may be defined with respect to three orthogonal vectors, e1 = [(b̂× k̂)× k̂]/|k̂× b̂|,
ê2 = (b̂ × k̂)/|k̂ × b̂|, and ê3 = k̂, where k̂ = k/|k| and b̂ = B0/|B0|. For the ge-
ometry of interest, namely, B0 = ẑ B0 and k = x̂ k sin θ + ẑ k cos θ, one can express
e1 = t̂(sin θ/| sin θ|), ê2 = â(sin θ/| sin θ|), and ê3 = κ̂, where κ̂ = x̂ sin θ + ẑ cos θ, â = ŷ,
and t̂ = x̂ cos θ − ẑ sin θ. In short, the unit electric field vector can be expressed by

ê(k) =
δEk
|δEk|

=
Kκ̂ + Tt̂ + iâ

(1 + K2 + T2)1/2 . (2)

Thus, the polarization of the wave electric field is determined through the coefficients
K and T. If K = ∞, then the wave is characterized as the longitudinal mode. If either K = 0
or T = ∞, then the mode is a transverse mode. Rehman et al. [11] show that these constants
are determined from the dispersion relation as follows:
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where ε is defined in Equation (1).
Another useful linear wave property is the magnitude of the group velocity,
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Rehman et al. [11] show that the quantity (∂/∂ω)(ck/ωpp)2 is given by
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2.2. Proton-Alpha Drift and Anisotropy Instability Growth Rate

The (quasi)-linear growth/damping rate is generally given by [26]
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where n0 = np + nα denotes the net ambient plasma density, Jn(x) is the Bessel function of
the first kind of order n, and the quantities K, T, and R are given in Equations (3) and (5).

In ref. [11], it is assumed that both the alpha particles (“j = α”) and protons (“j = p”)
are described by drifting Maxwellian distribution functions, but in the present analysis, we
extend the model to include temperature anisotropy. Hence, we keep the electrons cold,
minimizing their influence, and assume that both protons and alpha particles are described
by the drifting bi-Maxwellian distribution functions [27],

f j =
1

π3/2α2
⊥jα‖j

exp

(
−

v2
⊥

α2
⊥j
−

(v‖ −Vj)
2

α2
‖j

)
, (7)

where f j is normalized to unity (
∫

dv f j = 1); Vj is the drifting velocity along the background
magnetic field, and thermal velocities α⊥,‖j (which may evolve in time) defined in terms of
the corresponding kinetic temperatures T⊥,‖j are

α⊥j =

√
2kBT⊥j

mj
, α‖j =

√
2kBT‖j

mj
. (8)

The assumption of drifting bi-Maxwellian distribution functions is well supported by
observations [28]. In the present discussion the temperature is defined in the unit of energy.
As such, the Boltzmann constant can be set equal to unity kB = 1.

Under the assumption of drifting isotropic Maxwellian model, in ref. [11], the linear
growth/damping rate (6) is derived by carrying out the velocity integration. Under the
more general model (7), the same calculation as that carried out in [11], is repeated. The re-
sult is a straightforward generalization,

γ
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(
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j

)2
]

, (9)

where mα = 4mp is the alpha-particle mass; M and R are defined in Equations (3) and (5),
respectively, and

ηn
j =

1
k‖α‖j

[
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k2
⊥α2
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2Ω2
j

. (10)

Here, In(x) is the modified Bessel function of the first kind of order n.
In the present analysis, it is assumed that the proton and alpha-particle distribution

functions essentially retain their drifting bi-Maxwellian form throughout the time evolution
of the instability whether it be driven by the proton-alpha relative drift or the temperature
anisotropies. This is, of course, an approximation, but as already discussed in the Introduc-
tion, such an approach is well supported by validation against the numerical simulation.
The time evolution of the particle distributions are controlled by the dynamical evolution
of the temperature and drift velocities, T⊥,‖j and Vj, which is discussed below. We note
that the wave energy density evolution is dictated by the QL wave kinetic equation,
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∂

∂t

( 〈
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2.3. Quasilinear Particle Kinetic Equation and Velocity Moment Equations

The QL evolution of the particle velocity distribution function f j can be described by
the general velocity space diffusion equation for the particles as given by [19,21,26]
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The temporal evolution of velocity moments of the distribution function, such as drift
velocities of the species j and their temperature components T⊥j and T‖j, are given by

dVj
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2 f j.

Upon substituting the kinetic Equation (12) to the right-hand sides of Equation (14),
and taking partial derivatives, one gets:
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.

Making explicit use of the definitions for diffusion coefficients (13) as well as the
drifting bi-Maxwellian distribution for f j, defined by Equation (7), it is possible to show,
after some straightforward albeit tedious mathematical manipulations, that the velocity
moment kinetic equations that describe the time evolution of Vj, T⊥j and T‖j are given by
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where the dynamical Equation (16) are now expressed in terms of perturbed magnetic field
energy density, 〈

δB2
〉

k
=

c2k2

ω2

〈
δE2
〉

k
. (17)

Equation (16) together with the wave kinetic Equation (11) describe the dynamics of
the instability, whose growth rate is given by Equation (9) at each time step.

Here we should caution the readers that the assumption of drifting bi-Maxwellian
velocity distribution functions for all time for both protons and alpha particles while simply
calculating for the time evolution of velocity moments that define these distributions is
a highly idealized approach. It is known that for an electrostatic bump-on-tail instability
problem under a one-dimensional approximation, the quasilinear theory predicts a local
deformation of the resonant range of velocity space that leads to the velocity space plateau
formation. For an electromagnetic instability driven by the temperature anisotropy, on the
other hand, it is also known that the quasilinear diffusion takes place, not along the parallel
velocity space, but rather along a circularly path centered around the wave phase speed,
which leads to the pitch-angle space diffusion and the resultant isotropization of the initial
anisotropic temperatures [29,30]. For the present problem of EMIC instability driven
by either the proton-alpha relative drift or the temperature anisotropies, the situation
is more akin to the pitch-angle diffusion saturation picture as discussed by the above-
referenced early literature rather than the velocity space plateau formation. Besides, recent
papers by Harding et al. [31], Melrose et al. [32] discuss that the velocity plateau formation
is relevant only for strictly one-dimensional problems and that for three-dimensional
situations, the quasilinear process involved in the bump-on-tail instability also leads to the
pitch-angle diffusion, which leads to the isotropic velocity distribution function. We thus
believe that our assumption of the drifting bi-Maxwellian velocity distribution functions
with time-varying velocity moments are justified.

3. Numerical Results

In order to aid the numerical analysis Equations (11) and (16) are considered in
dimensionless form. Thus, the normalized quantities equations of relevance are:

τ =Ωpt, x =
ω

Ωp
, q =

ck
ωpp

,

β⊥,‖j =
8πnjT⊥,‖j

B2
0

, β0j =
4πnpmpV2

j

B2
0

, W(x, θ) dq =
4πnpe2

mpc2

〈
δB2〉

k
B2

0
dk, (18)

which stand for non-dimensional time, normalized wave frequency, normalized wave
number, perpendicular and parallel beta’s as well as the squared dimensionless drift speed
for each species, and normalized wave magnetic field energy density. We solved the set
of equations by numerical means. The basic time stepping method is the standard leap
frog scheme. In the numerical analysis, the wave spectrum was separated into the forward
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(θ > 90◦) and backward (90◦ < θ < 180◦) components since the finite drift velocity breaks
the symmetry associated with the forward versus backward wave propagation directions.

Below in this Section, a parametric analysis of the unstable modes, obtained as nu-
merical exact solutions of the system of QL equations, are given. First, simple cases of
instabilities, driven by temperature anisotropies of protons and alpha particles, are con-
sidered, and, then, the complexity of the study is gradually increased by introducing the
cumulative effect of the alpha drift velocity.

3.1. Proton and Alpha Temperature Anisotropy-Driven Cyclotron Instabilities

In order to test the QL derivations obtained here, let us start with three cases describing
cyclotron instabilities, driven either by the anisotropic protons with Ap ≡ T⊥p/T‖p = 2
(case 1). or by the anisotropic alpha particles Aα = 4 (case 2), or, cumulatively, by the
protons with Ap = 2 and alpha particles with Aα = 4 (case 3). The input parameters are
as follows:

• case 1: Ap = 2, β‖p = 2, Aα = 1, β‖α = 0.2;
• case 2: Ap = 1, β‖p = 2, Aα = 4, β‖α = 0.2;
• case 3: Ap = 2, β‖p = 2, Aα = 4, β‖α = 0.2.

Common plasma parameters in these cases are nα/np = 0.05, T‖α/T‖p = 2,
and β0p,α = V2

p,α/v2
A = 0.

Figure 1 presents the results of the QL temporal evolution for the enhanced magnetic
fluctuations δB2/B2

0 =
∫

dk(δBk/B0)
2 (top row), and their effects on the macroscopic

plasma parameters, i.e., proton plasma betas β⊥,‖p (middle), alpha plasma betas β⊥,‖α
(bottom), for the initial plasma parameters corresponding to case 1 (left), 2 (middle), and
3 (right).

Figure 1. Quasilinear (QL) temporal variations for cases 1–3: the magnetic field energy density (top
row), plasma beta parameters for protons (middle row), and alpha particles (bottom row). See text
for details.

For case 1 (left column), the proton cyclotron instability is driven by the initially
anisotropic protons Ap(0) = 2, and enhances the magnetic wave fluctuations δB2/B2

0 . As a
direct consequence, protons are subjected to perpendicular cooling and parallel heating,
as indicated by, respectively, the perpendicular (red solid line) and parallel (red dashed
line) components of the proton beta parameter β⊥,‖p. On the other hand, initially isotropic
[Aα(0) = 1] alpha particles are subjected to perpendicular heating and parallel cooling as
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shown by, respectively, the perpendicular (blue solid line) and parallel (blue dashed line)
alpha beta parameters.

For case 2, the initially anisotropic alpha particles [Aα(0) = 4] excite the alpha cy-
clotron instability. The enhanced wave fluctuations (δB2/B2

0) determine a perpendicular
cooling and parallel heating of alpha particles, as reflected by the perpendicular (blue solid
line) and parallel (blue dashed line) alpha beta parameters β⊥,‖α, respectively. In this case
plasma beta parameters of the initially isotropic protons experience perpendicular heating
(red solid line) and parallel cooling (red dashed line).

In case 3, plasma beta parameters for protons and alphas are subjected to perpen-
dicular cooling and parallel heating by the enhanced wave fluctuations. The interplay of
protons and alpha particles temperature anisotropies inhibits the perpendicular cooling of
alpha particles—see the bottom right panel. It is worth noting that all these results are in
agreement with those reported in [10] for different plasma conditions.

Figure 2 summarizes the discussion on the cooling and heating of plasma ions by the
means of temperature anisotropy for protons (red) and alpha particles (blue) Ap,α ≡ β⊥/β‖
in the left panels, and alpha-proton parallel temperature ratio T‖α/T‖p in the right panels.
For case 1, the temperature anisotropy of protons is relaxed as a function of time (τ = Ωpt),
while the initially isotropic alpha particles ended up with large temperature anisotropy
in the perpendicular direction Aα(τmax) > 1. An opposite situation is observed in case 2,
the temperature anisotropy of alpha particles is relaxed in time, while the initially isotropic
protons gain small anisotropy in perpendicular direction Ap(τm) & 1. For case 3, both
proton and alphas anisotropies are relaxed, under action of the enhanced magnetic wave
fluctuations of the accumulated proton and alpha cyclotron instabilities. Moreover, a relax-
ation for the alpha-proton temperature ratio T‖α/T‖p is observed associated only with the
excitation of the proton cyclotron instability (case 1), while in the other two cases (cases 2
and 3) one finds an enhancement of this temperature contrast mainly determined by the
anisotropic alpha particles.

Figure 2. Temporal evolution for cases 1–3: temperature anisotropies (left column) and alpha-proton
temperature ratio (right column). See text for details.

3.2. Interplay of Temperature Anisotropies and Alpha-Proton Drifts

Here, the complexity of the analysis is increased by considering a finite drift velocity
of alpha particles (parallel to the background magnetic field) as an additional source of free
energy. In order to show the effects induced by the drift, the same initial plasma parameters
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as in cases 1, 2 and 3 are considered, but with finite alpha drifts, which here are named
cases 4, 5, and 6, respectively:

• case 4: Ap = 2, Aα = 1, β0α =
V2

α

v2
A
= 1;

• case 5: Ap = 1, Aα = 4, β0α =
V2

α

v2
A
= 0.25;

• case 6: Ap = 2, Aα = 4, β0α =
V2

α

v2
A
= 1.

Figure 3 shows the effects of the drift velocity of alpha particles on the temporal
profiles of the macroscopic plasma parameters associated with the excitation of the proton
cyclotron instability (case 4, left column), alpha cyclotron instability (case 5, middle column),
and proton and alpha cyclotron cumulative instabilities (case 6, right column). Similar
to case 1, the temporal evolution of the proton plasma beta parameters in case 4 are not
affected by the drift velocity of alpha particles. Both alpha plasma beta parameters are
increased in time, but the alphas are heated more in perpendicular direction, and become
anisotropic at the final stage, that is, Aα(τm) > 1. For case 5, only parallel plasma beta
parameter for protons is subjected to heating for a finite alpha drift. The interplay of the
drift velocity and anisotropy of alpha particles enhance the cooling and heating mechanisms
for the perpendicular and parallel alpha plasma betas, respectively; and alpha particles
become less anisotropic, compared to case 2. For case 6, the interplay of three sources of
free energies is considered, i.e., temperature anisotropies of protons and alphas, and the
drift velocity of alpha particles. In this case, there are two opposite effects on the temporal
profiles of the alpha plasma parameters (the first effect is already shown in Figure 1), such
that temperature anisotropy inhibits the relaxation of the temperature anisotropy of alpha
particles in the perpendicular direction, while the second effect is induced by the alpha
drift velocity, markedly stimulating the cooling and heating mechanisms on alpha particles,
which become isotropic at later time, i.e., Aα(τ)∼1. By comparing cases 5 and 6, one can
state that the isotropization of the alpha particles is markedly enhanced with increasing
the drift velocity, i.e., for Vα/vA = 0.5 in case 5, and Vα/vA = 1 in case 6.

Figure 4 summarizes the relaxation of the relative drift and the induction of tempera-
ture anisotropies of proton and alpha particles (left), and the alpha-proton temperature
ratio (right). By contrasting with results in Figure 2, one can extract some effects induced
by a finite alpha drift velocity. In case 4, the relaxation of proton anisotropy is not affected
by the drift velocity of alpha particles, but the induced temperature anisotropy of alpha
particles is much lower in case 4 than that in case 1. Furthermore, the relaxation of the
alpha-proton temperature ratio is lower than that in case 1. For case 5, the alpha drift
velocity slightly enhances the relaxation of alpha particles compared to case 2 (with Vα = 0).
In case 5, the initially isotropic protons remain nearly isotropic over time Ap(τm) . 1.
In case 6, one can see the relaxation of the proton anisotropy is comparable to that in case 3.
However, the presence of alpha drift velocity markedly enhances the relaxation of the
anisotropy of alpha particles, which become isotropic at final stage Aα(τm)∼1. In cases 5
and 6, the induced alpha-proton temperature ratios are enhanced by the initial drift of alpha
particles. In all cases drift velocities are relaxed in time. It is worth to note that relaxation of
the proton anisotropy and alpha drift velocity, and the induction of the alpha temperature
anisotropy in case 4 (top left panel) are in good agreement with those obtained from the
two-dimensional hybrid simulation reported by [33] for different plasma conditions, see
Figure 1 therein.
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Figure 3. QL dynamical evolution for cases 4–6: the magnetic wave energy density (top row), plasma
beta parameters for protons (middle row), and alpha particles (bottom row). See text for details.

Figure 4. The relaxation of the drift velocity and the induced temperature anisotropies (left column),
and alpha-proton temperature ratio (right column) for cases 5 and 6.

3.3. Instability Driven by the Alpha-Proton Drift (Isotropic Temperatures)

In this Section, it is assumed that the protons and alpha particles are initially isotropic,
i.e., Aα,p(0) = 1, and study the alpha cyclotron instability driven by the alpha drift velocity,
and its consequences on the plasma particles. This case is summarized by the following
initial parameters:

• case 7: Ap = 1, β‖p = 0.05, Aα = 1, β‖α = 0.005, β0p =
V2

p

v2
A
= 0, β0α = V2

α

v2
A
= 4.

Figure 5 displays the temporal profiles for wave energy associated with the enhanced
fluctuations (top-left). In this case the beaming cyclotron instability is driven by finite
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alpha-proton drift. Figure 5 also plots the plasma beta parameters of protons (bottom-left)
and alpha particles (top-right), as well as their temperature anisotropies and drift velocity
(bottom-right). The enhanced fluctuations are evident only for the forward propagating
modes, meaning that the beam alpha cyclotron instability is excited in the direction parallel
to the background magnetic field vector. Both components of plasma betas for proton and
alpha particles are increased in time, i.e., as τ = Ωpt increases, but both species are heated
more along the perpendicular direction. Bottom-right panel of Figure 5 summarizes the
consequences of the enhanced fluctuations, presenting the temperature anisotropies of
protons (red) and alpha particles (blue), and alpha drift velocity (black). Both species gain
energy in perpendicular direction and become anisotropic at later stages with Aα,p(tm) > 1.
However, the induced temperature anisotropy of alpha particles is much larger than that
gained by the protons. The drift velocity is relaxed as τ increases. These results are in good
agreement with those obtained recently from 2.5D and 3D hybrid simulations for different
plasma conditions [22]; see Figure 1 in [22].

Figure 5. Case 7: QL dynamical evolution of the magnetic wave energy density (top left panel),
plasma beta parameters for protons (bottom left panel), and alpha particles (top right panel), and for
relaxing the drift velocity and inducing temperature anisotropies (bottom right panel). See text
for details.

For the same plasma parameters as in case 7, but for different initial plasma beta
parameters, the QL analysis is carried out further on:

• case 8: βp = 0.1, βα = 0.01, β0α ∈ [1, 2, dβ0α = 0.25];
• case 9: βp = 0.5, βα = 0.05, β0α ∈ [1, 2, dβ0α = 0.25];
• case 10: βp = 1.5, βα = 0.15, β0α ∈ [1, 2, dβ0α = 0.25].

The result is given Figure 6, where the QL dynamical evolution of the alpha drift
velocity (top), temperature anisotropies of protons (middle row) and alpha particles (bottom
row) as functions of β‖p(τ) (or β‖α(τ)) for different initial plasma betas β‖p(0) = 0.1 (case
8, left column), β‖p(0) = 0.5 (case 9, middle column), and β‖p(0) = 1.5 (case 10, right
column) are displayed. For each case the evolutions for five different initial values of the
alpha drift velocity β0α ∈ [1, 2, dβ0α = 0.25] are computed.

Top panels of Figure 6 show the relaxation of alpha drift velocity as a function of
β‖p(τ). The alpha-proton relative drift speed decreases to a very low level, i.e., Vα/VA → 0,
suggesting a complete relaxation of ion beams. Physically, ions can indeed be scattered
by the resulting fluctuations, contributing to their redistribution in velocity space. In all
these cases, the relaxation of the drift velocity is associated with a heating of protons in
parallel direction. Middle panels show the dynamical evolution of the proton temperature
anisotropy as a function of β‖p(τ).
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These dynamical evolution can be divided into two regimes, the first regime corre-
sponds to low plasma betas, β‖p∼0.1, when protons are slightly heated in the perpendicular
direction and become anisotropic with Ap > 1, confirming the results in Figure 5. The sec-
ond regime starts by increasing β‖p > 0.1 (cases 9 and 10), or when the dynamical evolution
of beta exceeds β‖p(τ) > 0.1. Increasing β‖p enhances the proton heating in parallel direc-
tion, and protons become (parallel) anisotropic at later stages with Ap(τm) < 1. The same
effects are observed for alpha particles in the bottom panels.

The dynamical evolution of the temperature anisotropy of alpha particles as a function
of β‖α(τ) can also be divided into two regimes. For low betas β‖α < 0.1, the alpha particles
are subjected to heating and cooling in the perpendicular and parallel directions, respec-
tively, and alphas become anisotropic at later stages with large anisotropy in perpendicular
direction Aα > 1, confirming the results in Figure 5. The induced temperature anisotropies
of alpha particles Aα > 1 are in general increasing as the drift velocity increases. The sec-
ond regime starts beyond βα = 0.1, when alpha particles gain (induced) temperature
anisotropies only in parallel direction, i.e., Aα < 1.
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Figure 6. Dynamical evolution of the alpha drift velocity (top row), temperature anisotropies of
protons (middle row) and alpha particles (bottom row) as functions of β‖p(τ) (or β‖α(τ)) for cases 8
(left column), 9 (middle column), and 10 (right column). See text for details.

4. Conclusions

In this paper, an advanced quasilinear (QL) analysis of the electromagnetic ion-
cyclotron (EMIC) instabilities, driven by the kinetic anisotropies of protons and alpha
particles, i.e., their relative drift, combined with or without the intrinsic temperature
anisotropies, is presented. Such plasma conditions are specific to the solar atmosphere at
short heliosphere distances, in the outer corona and solar wind. The long term evolution of
the growing fluctuations, triggered by cyclotron instabilities, and also the consequences of
their interaction were characterized with plasma particles, i.e., protons and alpha particles.
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The paper presents for the first time the consequences of both the forward and backward
fluctuations on the relaxation of the drift and temperature anisotropy of alpha and protons.
Comparing the results obtained here with those of [33], where the analysis refers to total
fluctuations, we were able to study the consequences of the backward fluctuations. The non-
uniform relaxation of the macroscopic quantities in Figures 4 and 6 can be explained as a
result of the competition between the backward and forward propagating modes and their
enhanced fluctuations, as explained in [33] based on the hybrid simulations, e.g., in [22].

The results of the parametric study in Section 3 describe the effects from the interplay
of the alpha-proton relative drift velocity and their temperature anisotropies on the satu-
ration of the self-generated cyclotron instabilities and the relaxation of the non-thermal
distributions. For a non-drifting scenario (Figures 1 and 2), the enhanced EMIC fluctuations
are triggered by temperature anisotropy of protons or alphas, and on long term, show
multiple effects on the particles. In addition to a relaxation of the anisotropy to quasi-stable
states (below the thresholds of instability), the induction of a temperature anisotropy (in a
perpendicular direction) to the other initially isotropic species are also observed. The in-
duced temperature anisotropy of alpha particles is in general much larger than that of the
protons. It is also found that the interplay of temperature anisotropies of protons and alpha
particles has an inhibiting effect on the perpendicular cooling of alpha particles during
the relaxation. Moreover, the alpha-proton temperature contrast (T‖α/T‖p) is reduced only
during the excitation of the proton cyclotron instability, but it is enhanced in the presence
of the alpha instability fluctuations.

Comparing to the non-drifting scenario, an initial, relatively small alpha drift velocity
stimulates the enhanced fluctuations and implicitly the relaxation of the alpha tempera-
ture anisotropy (Figures 3 and 4). The relaxation of temperature anisotropy is markedly
enhanced with the increasing drift velocity of alpha particles, whose temperature becomes
isotropic at final stage Aα∼1. One the other hand, in the generation of the proton cyclotron
fluctuations the relaxation of the proton anisotropy is not affected by the alpha drift ve-
locity, but the induced temperature anisotropy of alpha particles is much lower than that
in the non-drifting scenario. In all the cases drift velocities are relaxed as time evolves,
and temporal profiles of the alpha-proton temperature contrast (T‖α/T‖α) are in general
similar to those obtained for the non-drifting populations. However, a finite alpha drift
may lead to an increase of this contrast in the excitation of the alpha cyclotron instability.

In Section 3.3, the QL temporal evolution of the beam alpha cyclotron instability,
driven by the alpha-proton relative drift, is described with both protons and alpha particles
considered initially isotropic (Figure 5). The enhanced fluctuations are associated only with
the forward propagating modes, parallel to the background magnetic field. These fluctua-
tions act back on the particles, reducing their drift velocity as time evolves. Concomitantly,
the instability effectively leads to the perpendicular heating of the protons and alphas,
so that at later stages, both species exhibit the perpendicular temperature anisotropies,
Ap,α > 1. The induced temperature anisotropy of alpha particles is in general much larger
than that gained by protons. Figure 6 displays the QL dynamical evolution of the macro-
scopic plasma parameters, i.e., alpha drift velocity, temperature anisotropies of alphas and
protons, and their temperature contrast, as a function of the parallel plasma betas β‖α,p.
The dynamical evolution shows the relaxation of the drift velocity being associated with a
heating of protons in parallel direction. One can distinguish two regimes conditioned by
the parallel plasma betas β‖α,p in this dynamical evolution of the temperature anisotropies
of protons and alpha particles. First, for β‖α,p < 0.1, protons and alpha particles are heated
in the perpendicular direction and become anisotropic with Ap,α > 1. The second regime
starts beyond β‖α,p = 0.1, when both protons and alpha particles gain induced anisotropy
in parallel direction, i.e., Ap,α < 1. These results are in good agreement with those obtained
from hybrid and PIC simulations reported in the literature, see for instance [10,22,33].

To conclude, the study shows that the interplay of different sources of free energy
present in solar wind has an important impact on the enhanced fluctuations, in particu-
lar those triggered by the EMIC instabilities, which in turn contribute to an exchange of
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energy between proton and alpha particles, leading to important variations of the temper-
ature anisotropies, the proton-alpha drift and the temperature contrast. Future studies
should also consider complementary conditions of more energetic beams (with higher
drifts), which may excite different (e.g., firehose-like, or electrostatic) instabilities, possi-
bly, with different consequences on the relaxation of the populations involved, especially,
on their temperatures [34]. The results obtained here clearly show that self-generated EMIC
instabilities can contribute to the regulation of drifts and anisotropies of ions present in the
solar wind. Note that the QL theory, considered here, contains both parallel and perpen-
dicular unstable solutions, although we do not give the detailed two-dimensional spectral
characteristics associated with the unstable mode. Recently, Liu et al. [35] investigated
the conditions when oblique instabilities are more competitive. In the future, it will be
interesting to compare the QL theory here presented with the findings in [35] by analyzing
the detailed 2D wave spectrum, but this is beyond the scope of the present study.
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