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Abstract: In this paper, the improved and the new analytical and semi-analytical expressions for
calculating the magnetic vector potential, magnetic field, magnetic force, mutual inductance, torque,
and stiffness between two inclined current-carrying arc segments in air are given. The expressions are
obtained either in the analytical form over the incomplete elliptic integrals of the first and the second
kind or by the single numerical integration of some elliptical integrals of the first and the second
kind. The validity of the presented formulas is proved from the particular cases when the inclined
circular loops are addressed. We mention that all formulas are obtained by the integral approach,
except the stiffness, which is found by the derivative of the magnetic force. The novelty of this paper
is the treatment of the inclined circular carting-current arc segments for which the calculations of the
previously mentioned electromagnetic quantities are given.
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1. Introduction

In general, a field circular coil of arbitrary geometry may be made from finite circular
current-carrying arc segments of the conductor for which the magnetic field can be calcu-
lated by the sum over the partial fields generated by each segment [1–16]. This assumption
significantly simplifies studying the current-carrying coils of the complex shape. In this pa-
per, we study the inclined circular current-carrying arc segments to calculate the magnetic
force, the magnetic torque, the mutual inductance, and the stiffness between them. The
goal of this paper is the calculation of these electromagnetic quantities using the magnetic
field of the current-carrying arc segment. The magnetic vector potential and the magnetic
field of the current-carrying segment can be considered as the auxiliary functions for the
simplified calculation of the previously mentioned quantities. Even though in the literature
on can find many methods for calculating the magnetic vector potential and magnetic field
of different current coils, we give the simplified formulas for calculating them, which will
be the crucial auxiliary functions because they are given in the analytical form over the
incomplete elliptic integrals of the first and second kind.

Several analytical, semi-analytical and numerical methods in the calculation of param-
eters of electric circuits such as the self and the mutual inductance and force interaction
between their elements play a significant role in power transfer, wireless communication,
sensing and actuation, and are applied in different fields of science, including electrical
and electronic engineering, medicine, physics, nuclear magnetic resonance, mechatron-
ics, and robotics [17–38]. These calculations are obtained in the form of double integrals,
complete or incomplete integrals of the first, second and third kind, Bessel and Struve
functions, hypergeometric series, and other special functions, so that it is difficult for the
potential user to obtain fast and precise calculation. Additionally, many of these methods
use filament methods which study coaxial circular coils or circular coils with parallel axes.
In this paper we give a quite simple method for calculating the magnetic force and the
mutual inductance between two inclined circular current-carrying arc segments in air,
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which can be used to calculate these parameters for inclined circular coils by using the
filament method [20]. We give simple formulas for the magnetic force and the mutual
inductance in the form of the single integral whose kernel functions are the incomplete
integrals of the first and second kind as well as the elementary functions. Finally, we give
new formulas for the calculation of the magnetic torque and the stiffness between two
inclined circular current-carrying arc segments in air. They are obtained in the form of the
single integral whose kernel functions are the incomplete integrals of the first and second
kind. To our knowledge, these formulas appear for the first time in the literature. In all
formulas, the angles of the current-carrying arcs are arbitrary. The validity of all formulas
is verified with the corresponding calculations for the inclined circular loops. For the
convenience of the reader, all the derived formulas were programmed using Mathematica.
The Mathematica files with the implemented formulas are available from the author.

2. Basic Expressions

Let us take into consideration two current-carrying arc segments as shown in Figure 1,
where the center of the larger segment (primary coil) of the radius RP is placed at the plane
XOY whose center is O (0, 0, 0). The smaller circular segment (secondary coil) of the radius
RS is placed in an inclined plane whose general equation is:

λ ≡ ax + by + cz + d = 0, (1)

where a, b and c are the components of the normal
→
N on the inclined plane in the center of

the secondary circular segment C (xC, yC, zC). The current-carrying arc segments are with
currents IP, IS. For circular segments (see Figure 1), we define [22–24]:
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Figure 1. Two inclined current-carrying arc segments.

(1) The primary circular segment of radius RP is placed in the plane XOY (Z = 0) with
the center at O (0, 0, 0). An arbitrary point P (xP, yP, zP) of this segment has parametric
coordinates,

xP = RP cos(t), yP = RP sin(t), zP = 0, t ∈ (ϕ1, ϕ2). (2)

(2) The differential of the primary circular segment is given by

d
→
l P = RP {− sin(t), cos(t), 0}dt, t ∈ (ϕ1, ϕ2). (3)
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(3) The secondary circular segment of radius RS is placed in the inclined plane (1)

with the center at C (xc, yc, zc). The unit vector
→
N (the unit vector of the axis z’) at the point

C, which is the center of the secondary circular segment, lying in plane λ is defined by

→
N =

{
a
L

,
b
L

,
c
L

}
, L =

√
a2 + b2 + c2 . (4)

(4) The unit vector between two points C and S which are placed in plane (1) is:

→
u =

{
ux, uy, uz

}
=

{
− ab

Ll
,

l
L

,− bc
Ll

}
, l =

√
a2 + c2. (5)

(5) We define the unit vector
→
v as the cross product of the unit vectors

→
N and

→
u as

follows:
→
v =

→
N ×→u =

{
vx, vy, zz

}
=
{
− c

l
, 0,

a
l

}
. (6)

(6) An arbitrary point S (xS, yS, zS) of the secondary circular segment has parametric
coordinates,

xs = xC + Rs ux cos(θ) + Rsvx sin(θ),

ys = yC + Rs uy cos(θ) + Rsvy sin(θ),

zs = zC + Rsuz cos(θ) + Rs vz sin(θ),

θ ∈ (ϕ3, ϕ4).

(7)

This is the known parametric equation of a circle in 3D space. The filamentary circular
segments are the part of this circle.

(7) The differential element of the secondary circular segment is given by

d
→
lS = RS

{
lxS, lyS, lzS

}
dθ, θ ∈ (ϕ3, ϕ4), (8)

where
lxS = −ux sin(θ) + vx cos(θ),

lyS = −uy sin(θ) + vy cos(θ),

lzS = −uz sin(θ) + vz cos(θ).

3. Magnetic Vector Potential Calculation at Point S (xS, yS, zS)

The magnetic vector potential
→
A (S) produced by the primary circular arc segment of

radius RP carrying current IP, can be calculated at the point S (xS, yS, zS) by [6]

→
A (S) =

µ0

4π

∫ IPd
→
l P

rPS
, (9)

where
→
r PS = (xS − xP)

→
i + (yS − yP)

→
j + (zS − zP)

→
k ,

r2
PS = (xS − xP)

2 + (yS − yP)
2 + (zS − zP)

2 = x2
S + y2

S + z2
S + R2

P−

−2RP

√
x2

S + y2
S cos(t− γ),

cos(γ) =
xS
p

, sin(γ) =
yS
p

, tan(γ) =
yS
xS

, p =
√

x2
S + y2

S .

→
i ,
→
j and

→
k are the unit vectors of axes x, y, and z, respectively.
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From Equations (3) and (9) one has:

Ax (S) = −µ0 IPRP
4π

ϕ2∫
ϕ1

sin(t)
rPS

dt, (10)

Ay (S) =
µ0 IPRP

4π

ϕ2∫
ϕ1

cos(t)
rPS

dt, (11)

Az (S) = 0. (12)

Let us introduce the following substitution t− γ = π − 2β.
Equations (10)–(12) become:

Ax (S) = −µ0 IP
√

RP
4πp
√

p
k

β2∫
β1

sin(γ− 2β)

∆
dβ, (13)

Ay (S) =
µ0 IP
√

RP
4πp
√

p
k

β2∫
β1

cos(γ− 2β)

∆
dβ, (14)

Az (S) = 0, (15)

∆ =
√

1− k2 sin2(β) , k2 =
4RP p

[RP + p]2 + z2
S

, p =
√

x2
S + y2

S.

The final solutions for Equations (13)–(15) can be obtained analytically in the form of
the incomplete elliptic integrals of the first and the second kind and the simple elementary
functions (Appendix A).

Finally,

Ax (S) = −µ0 IP
√

RP
4πkp

√
p

Ix , (16)

Ay (S) =
µ0 IP
√

RP
4πkp

√
p

Iy , (17)

Az (S) = 0, (18)

where

Ix =
{

yS

[ (
k2 − 2

)
F (β, k) + 2E (β, k)

]
+ 2xS∆

} β2
|
β1

,

Iy =
{

xS

[ (
k2 − 2

)
F (β, k) + 2E (β, k)

]
+ 2yS∆

} β2
|
β1

,

β1 =
π

2
+

γ− ϕ1

2
, β2 =

π

2
+

γ− ϕ2

2
.

F (β, k) and E (β, k) [39,40] are the incomplete elliptic integrals of the first and the
second kind.

These expressions are valid for z = 0 and xS 6= RP cos(t), yS 6= RP sin(t).

3.1. Special Cases
3.1.1. ϕ1 = 0, ϕ2 = 2π

Ax (S) = −A0 sin(γ), (19)
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Ay (S) = A0 cos(γ), (20)

Az (S) = 0, (21)

A0 =
µ0 IP
√

RP
2πk
√

p

[ (
2− k2

)
K (k) − 2E (k)

]
, k2 =

4RP p

[RP + p]2 + z2
S

,

where K (k) and E (k), refs. [39,40] are the complete integrals of the first and the second
kind. Expressions (19)–(21) are valid for zS = 0.

3.1.2. Z-axis (xS = yS = 0, zS 6= 0)

Ax (zS) =
µ0 IPRP

4π
√

z2
S + R2

P

[cos(ϕ2) − cos(ϕ1)], (22)

Ay (zS) =
µ0 IPRP

4π
√

z2
S + R2

P

[sin(ϕ2) − sin(ϕ1)], (23)

Az (S) = 0. (24)

3.1.3. xS = RP cos(t), yS = RP sin(t), zS = 0, ϕ ∈ (ϕ1, ϕ2)

This is the singular case. The point S is between ϕ1 and ϕ2 on the circle what is
shown in Figure 2.
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S = R2

P.

3.1.4. xS = RP cos(t), yS = RP sin(t), zS = 0, ϕ ∈ (ϕ2, ϕ1 + 2π)

Ax (S) = −µ0 IP
4π

{
sin(γ) ln | tan

ϕ1 − γ

ϕ2 − γ
| − 2 sin

ϕ1 + γ

2
+ 2 sin

ϕ2 + γ

2

}
, (25)

Ay (S) =
µ0 IP
4π

{
sin(γ) ln | tan

ϕ1 − γ

ϕ2 − γ
| + 2 cos

ϕ1 + γ

2
− 2 cos

ϕ2 + γ

2

}
, (26)

Az (S) = 0. (27)
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Point S is between ϕ2 and ϕ1 + 2π on the circle (See Figure 2).

3.1.5. For xS = 0, Plane x = 0. One Needs to Put γ = π/2 and Use Equations (16)–(18)

Thus, all results are obtained in the closed form over the incomplete elliptic integrals
of the first and the second kind as well as over some elementary functions.

4. Magnetic Field Calculation at the Point S (xS, yS, zS)

The magnetic field
→
B (S) produced by the primary circular segment of the radius RP

carrying the current IP, can be calculated at an arbitrary point S (xS, yS, zS) by [6],

→
B (S) =

µ0 IP
4π

∫ d
→
l P ×

→
r PS

r3
PS

. (28)

From Equations (2), (3) and (28) the components of the magnetic field are:

Bx (S) =
µ0 IPRPzS

4π

ϕ2∫
ϕ1

cos(t)
r3

PS
dt, (29)

By (S) =
µ0 IPRPzS

4π

ϕ2∫
ϕ1

sin(t)
r3

PS
dt, (30)

Bz (S) =
µ0 IPRP

4π

ϕ2∫
ϕ1

RP −
√

x2
S + y2

S cos(t− γ)

r3
PS

dt, (31)

where rPS, γ and p are previously given.
Let us introduce the following substitution t − γ = π − 2β. Equations (29)–(31)

become:

Bx (S) =
µ0 IPzSk3

16πp
√

pRP

ϕ2∫
ϕ1

cos(γ− 2β)

∆3 dβ, (32)

By (S) =
µ0 IPzSk3

16πp
√

pRP

ϕ2∫
ϕ1

sin(γ− 2β)

∆3 dβ, (33)

Bz (S) = − µ0 IPk3

16πp
√

pRP

β2∫
β1

RP +
√

x2
S + y2

S cos(2β)

∆3 dβ, (34)

where β1 and β2 are previously given.
The final solutions for Equations (32)–(34) can be obtained analytically in the form

of the incomplete elliptic integrals of the first and second kind and simple elementary
functions (See Appendix B).

Bx (S) =
µ0 IPzSk

16πp2
√

RP p (1− k2)
Ixx, (35)

By (S) =
µ0 IPzSk

16πp2
√

RP p (1− k2)
Iyy, (36)

Bz (S) = − µ0 IPk
16π p

√
RP p (1− k2)

Izz, (37)

where
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Ixx = xS

{ (
k2 − 2

)
E (β, k) +

(
2− 2k2

)
F (β, k) + k2(2− k2)

sin(β) cos(β)

∆

} β2
|
β1

+
2yS
∆

(
1− k2

) β2
|
β1

,

Iyy = yS

{ (
k2 − 2

)
E (β, k) +

(
2− 2k2

)
F (β, k) + k2(2− k2)

sin(β) cos(β)

∆

} β2
|
β1

− 2xS
∆

(
1− k2

) β2
|
β1

,

Izz =
{[

k2 (Rp + p
)
− 2p

]
E (β, k) +

(
2p− 2pk2

)
F (β, k) + k2(2p−

(
Rp + p

)
k2)

sin(β) cos(β)

∆

} β2
|
β1

,

where ∆ and k2 are previously given.
Thus, for the given point S (xS, yS, zS) the magnetic field produced by the circular

segment with the current IP can be calculated analytically over the incomplete elliptic
integrals of the first and the second kind Equations (35)–(37).

4.1. Special Cases
4.1.1. zS = 0

Bx (S) = 0, (38)

By (S) = 0, (39)

Bz (S) = − µ0 IPk0

16πp
√

RP p
(
1− k2

0
) Iz (k0), (40)

k2
0 =

4RP p

[RP + p]2
, x2

S + y2
S = R2

p.

Iz (k0) is given by Izz from (34) where zS = 0.

4.1.2. zS = 0, x2
S + y2

S = R2
p and ϕ ∈ [ϕ1, ϕ2]

This is the singular case, (see Figure 2) where point S is between ϕ1 and ϕ2.

4.1.3. zS = 0, x2
S + y2

S = R2
p and ϕ ∈ (ϕ2, ϕ1 + 2π)

Bx (S) = 0, (41)

By (S) = 0, (42)

Bz (S) =
µ0 IP
4πRp

ln | tan
ϕ1 − γ

ϕ2 − γ
| . (43)

Point S is between ϕ2 and ϕ1 + 2π on the circle (see Figure 2).

4.1.4. Z− axis S(0, 0, zS)

Bx (S) =
µ0 IPRpzS

4π
2
√ (

R2
P + z2

S
)3

[sin(β2) − sin(β1)], (44)

By (S) =
µ0 IPRpzS

4π
2
√ (

R2
P + z2

S
)3

[cos(β1) − cos(β2)], (45)
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Bz (S) =
µ0 IPR2

P

4π
2
√ (

R2
P + z2

S
)3

[β2 − β1]. (46)

4.1.5. ϕ1 = 0 and ϕ2 = 2π

Bx (S) = B0
zS
p

{[
R2

P − p2 − z2
S

(RP − p)2 + z2
S

]
E (k) − K (k)

}
cos(γ), (47)

By (S) = B0
zS
p

{[
R2

P − p2 − z2
S

(RP − p)2 + z2
S

]
E (k) − K (k)

}
sin(γ), (48)

By (S) = B0

{[
R2

P + p2 + z2
S

(RP − p)2 + z2
S

]
E (k) + K (k)

}
, (49)

B0 =
µ0 IPk

4π
√

RP p
, k2 =

4RP p

[RP + p]2 + z2
S

, p =
√

x2
S + y2

S. (50)

4.1.6. For xS = 0, Plane x = 0. One Needs to Put γ = π/2 and Use Equations (35)–(37)

This is a known expression [11] obtained in the form of the complete elliptic integrals
of the first and second kind K(k) and E(k) [39,40].

5. Magnetic Force Calculation between Two Inclined Current-Carrying Arc Segments

The magnetic force between two inclined arc segments with the radii RP and RS, and
the corresponding currents IP and IS, can be calculated by [25,26]

→
F =

µ0 IP IS
4π

ϕ2∫
ϕ1

ϕ4∫
ϕ3

d
→
l s ×

(
d
→
l P ×

→
r PS

)
r3

PS
, (51)

where
→
r PS is the vector between point P of the primary arc segment and point S of the

second arc segment (oriented to S) and d
→
l P and d

→
l s are the elementary current-carrying

elements of the primary and the secondary arc segment given by Equations (3) and (7) (see
Figure 1).

Equation (51) can be written as follows:

→
F = IS

ϕ4∫
ϕ3

d
→
l S ×

→
B (S), (52)

where
→
B (S) is the magnetic field produced by primary current IP in the first arc segment,

acting at point S of the second arc segment.
Previously, we calculated the magnetic field whose components are given by Equa-

tions (35)–(37). Using Equations (7), (35)–(37) and (52) the components of the magnetic
forces are as follows:

Fx = ISRS

∫ ϕ4

ϕ3

[
lySBz (S) − lzSBy (S)

]
dθ, (53)

Fy = −ISRS

ϕ4∫
ϕ3

[lxSBz (S) − lzSBx (S)]dθ, (54)
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Fz = ISRS

ϕ4∫
ϕ3

[
lxSBy (S) − lySBx (S)

]
dθ. (55)

Thus, the calculation of the magnetic force is obtained by the simple integration where
the kernel functions are given in the analytical form over the incomplete elliptic integrals
of the first and the second kind. These expressions are much easier than those in [25,26].

5.1. Special Cases
5.1.1. a = c = 0

This case is the singular case. The first arc segment lies in the plane z = 0 and the
second in the plane y = constant. There are two possibilities for this case because of two
symmetric points of the inclined segment regarding its center C.

5.1.2.
→
u = {−1, 0, 0}, →v = {0, 0,−1}

Unit vector for the singular case.

5.1.3.
→
u = {0, 0,−1}, →v = {−1, 0, 0}

Unit vector for the singular case.
These vectors must be used in Equations (53)–(55).

6. Magnetic Torque Calculation between Two Inclined Current-Carrying
Arc Segments

Torque is defined as the cross product of a displacement and a force. The displacement
is from the center for taking torque, which is arbitrarily defined, to point S of the application
of the force to the body experiencing the torque [20],

d
→
τ =

→
r CS × d

→
F (S). (56)

In Equation (56)
→
r CS = (xS − xC)

→
i + (yS − yC)

→
j + (zS − zC)

→
k is the vector of

displacement between the center C of the second arc segment and the point S of the
application of this segment.

Previously, we calculated the magnetic force between two current-carrying arc seg-
ments.

Where the analytical expressions of the magnetic field at the at the point S of the
second arc segment were used. The magnet field is produced by the current in the primary
arc segment. We use the same reasoning for the torque and then from Equation (56):

d
→
τ = ISRS

→
r CS ×

(
d
→
l S ×

→
B (S)

)
, (57)

or,

→
τ = ISRS

ϕ4∫
ϕ3

→
r CS ×

(
d
→
l S ×

→
B (S)

)
. (58)

Using Equations (7) and (35)–(37) and developing the double cross product in Equation (58),
one obtains the final components of the torque between two inclined current segments
with the radii RP and RS, and the corresponding currents IP and IS:

τx = ISRS

ϕ4∫
ϕ3

Jxdθ, (59)
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τy = ISRS

ϕ4∫
ϕ3

Jydθ, (60)

τz = ISRS

ϕ4∫
ϕ3

Jxdθ, (61)

where

Jx = −
[
(yS − yC)lyS + (zS − zC)lzS

]
Bx (S) + (yS − yC)lxSBy (S) + (zS − zC)lxSBz(S),

Jy = (xS − xC)lySBx (S) − [(zS − zC)lzS + (xS − xC)lxS]By (S) + (zS − zC)lySBz (S),

Jz = (xS − xC)lzSBx (S) + (yS − yC)lzSBy (S) −
[
(xS − xC)lzS + (yS − yC)lyS

]
Bz (S).

Thus, the calculation of the magnetic torque is obtained by the simple integration
where the kernel functions are given in the analytical form over the incomplete elliptic
integrals of the first and the second kind. As we know, these expressions appear for the
first time in the literature.

6.1. Special Cases
6.1.1. a = c = 0

This case is the singular case. The first arc segment lies in the plane z = 0 and the
second in the plane y = constant. There are two possibilities for this case.

6.1.2.
→
u = {−1, 0, 0}, →v = {0, 0,−1}

Unit vector for the singular case.

6.1.3.
→
u = {0, 0,−1}, →v = {−1, 0, 0}

Unit vector for the singular case.
These vectors must be used in Equations (59)–(61).

7. Mutual Inductance Calculation between Two Current-Carrying Arc Segments with
Inclined Axes

The mutual inductance between two current-carrying arc segments with inclined axes
with the radii RP and RS, and the corresponding currents IP and IS , in air can be calculated
by [1]

M =
µ0

4π

ϕ2∫
ϕ1

ϕ4∫
ϕ3

d
→
l P · d

→
lS

rPS
, (62)

where d
→
l P, d

→
lS and rPS are previously given.

From, Equations (3), (7) and (62) the mutual inductance can by calculated by

M =
µ0RPRS

4π

ϕ2∫
ϕ1

ϕ4∫
ϕ3

−lxS sin(t) + lyS cos(t)√
x2

S + y2
S + z2

S + R2
P − 2RP

√
x2

S + y2
S cos(t− γ)

dtdθ. (63)

We take the substitution t− γ = π − 2β that leads to final solution for the mutual
inductance (see Appendix C):

M =
µ0RS

√
RP

4π

ϕ4∫
ϕ3

V
kp
√

p
dθ, (64)
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where

V =
[
lysxS − lxs yS

] {[ (
k2 − 2

)
F (β, k) + 2E (β, k)

]} β2
|

β1

− 2∆
[
lysyS + lxs xS

] β2
|

β1

.

Thus, the calculation of the mutual inductance is obtained by the simple integration
where the kernel functions are given in the analytical form over the incomplete elliptic
integrals of the first and the second kind.

7.1. Special Cases
7.1.1. a = c = 0

This case is the singular case. The first arc segment lies in the plane z = 0 and the
second in the plane y = constant. There are two possibilities for this case.

7.1.2.
→
u = {−1, 0, 0}, →v = {0, 0,−1}

Unit vector for the singular case.

7.1.3.
→
u = {0, 0,−1}, →v = {−1, 0, 0}

Unit vector for the singular case.
These vectors must be used in Equation (64).
All previous electromagnetic quantities are obtained by using the integral approach.

8. Stiffness Calculation between Two Inclined Current-Carrying Arc Segments

The stiffness is the extent to which an object resists deformation in response to an
applied force. Knowing the magnetic force between two inclined current-carrying arc
segments with the radii RP and RS, and the corresponding currents IP and IS, the corre-
sponding stiffness between them can be calculated by the derivate of the corresponding
components as follows [27]:

kxx = −∂Fx

∂x
, kxy = −∂Fx

∂y
, kxz = −

∂Fx

∂z
, (65)

kyy = −
∂Fy

∂y
, kyx = −

∂Fy

∂x
, kyz = −

∂Fy

∂z
, (66)

kzz = −
∂Fz

∂z
, kzx = −∂Fz

∂x
, kzy = −∂Fz

∂y
. (67)

Thus, the first derivative of the corresponding force components over the correspond-
ing variable leads to the corresponding stiffness. Obviously, it is not easy work because
of the complicate kernel functions which are the analytical functions given in the form of
incomplete elliptic integrals of the first and the second kind and some elementary functions.
Even though this is tedious work, we give only the stiffness kzz from Equation (66) which is
the axial stiffness. This developed formula can serve potential readers in calculating other
stiffness, by Mathematica or MATLAB programming. The calculation of other stiffness
will be the subject of our future work. In this paper we give the benchmark example for
calculating the axial stiffness between two coaxial current circular loops.

The magnetic force between two coaxial circular loops is [26]:

Fx = 0, (68)

Fy = 0, (69)

Fz =
µ0 IP IS

4
√

RPRS

zk
1− k2 Φ (k), (70)
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where
k2 =

4RPRS

[RP + RS]
2 + z2

,

Φ (k) = 2
(

1− k2
)

K (k) −
(

2− k2
)

E (k).

IP and IS are the currents in the primary and secondary loop.
RP and RS are the corresponding radii of loops.
Obviously, we can find analytically only the stiffness kzz because others are zero.
This stiffness kzz for the coaxial loops is given by,

kzz = −
∂Fz

∂z
(71)

or
kzz = −

µ0 IP IS

4
√

RPRS
T0 (72)

where
dk
dz

=
zk3

4RPRS

1 + k2

(1− k2)
2 , (73)

T0 =
d
dz

[
zk

1− k2 Φ(k)
]

=
k

1− k2 Φ(k) + z
d
dk

[
k

1− k2

]
dk
dz

Φ (k) +
zk

1− k2
dΦ(k)

dk
dk
dz

=

=
k

1− k2 Φ(k)− z2k3

4RPRS

1 + k2

(1− k2)
2 Φ(k)− z2k4

4RPRS

1
1− k2

dΦ{k)
dk

.
(74)

From Equations (71)–(74) the axial stiffness kzz is:

kzz (coaxial loops) = −
µ0 IP IS

4
√

RPRS

k
1− k2

{[
1− z2k2

4RPRS

1 + k2

(1− k2)

]
Φ(k)− 3z2k4

4RPRS
Ψ (k)

}
, (75)

where
Ψ (k) = E (k) − K (k).

As mentioned before, this Formula (74) will serve as the benchmark example to verify
the validity of the general expression for the stiffness kzz. In Appendix D, the complete
expressions of this axial stiffness are given.

Here, we give only final expressions of kzz:

kzz = −
∂Fz

∂zs
= −µ0 IP ISRS

16π
√

RP

ϕ4∫
ϕ3

k
(1− k2) 2

√
p5

[
lxSTzz1 − lySTzz2

]
dθ, (76)

where

Tzz1 = Iyy −
z2

Sk3

pRP

1 + k2

1− k2 Iyy −
z2

Sk4

pRP
Vy

Tzz2 = Ixx −
z2

Sk2

pRP

1 + k2

1− k2 Ixx −
z2

Sk4

pRP
Vx,

(77)

Ixx = xS S + 2yS

(
1− k2

)[ 1
∆

]
, (78)

Iyy = yS S− 2xS

(
1− k2

)[ 1
∆

]
, (79)
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S =
(

k2 − 2
)

E (β, k) +
(

2− 2k2
)

F (β, k) + k2
(

2− k2
) sin(2β)

2∆
,

Vy = yS b1 + 2xS b2,

Vx = xS b1 − 2yS b2,

b1 = 3[E (β, k) − F (β, k)]
β2
|

β1

+

{[
sin(2β)

∆

] (
1− 2k2

)
+

[
sin(2β) sin2 (β)

∆3

]
k2 (2− k2)

2

} β2
|,
β1

b2 =

[
2
∆

] β2
|

β1

−
(

1− k2
)[ sin2(β)

∆3

] β2
|

β1

.

8.1. Special Cases
8.1.1. a = c = 0

This case is the singular case. The first arc segment lies in the plane z = 0 and the
second in the plane y = constant. There are two possibilities for this case.

8.1.2.
→
u = {−1, 0, 0}, →v = {0, 0,−1}

Unit vector for the singular case.

8.1.3.
→
u = {0, 0,−1}, →v = {−1, 0, 0}

Unit vector for the singular case.
These vectors must be used in Equation (76).

9. Numerical Validation

To verify the validity of the new formulas, the following set of examples are considered.
The particular cases are discussed. The results obtained using the presented formulas are
compared with those known in the literature.

Example 1. Calculate the magnetic vector potential produced by the current-carrying arc segment
of the radius RP = 3 m at the point S (xS, yS, zS) = S (3 m, 4 m, 5 m). The current IP = 1 A.

Let us begin with the circular loop for which is ϕ1 = 0 and ϕ2 = 2π.
From Equations (16)–(18), one has the components, and the total magnetic vector

potential as follows:
Ax (S) = −28.61844373019504 nT·m,

Ay (S) = 21.46383279764628 nT·m,

Az (S) = 0 T·m,

A (S) = 35.7730546627438 nT·m.

From [11], one obtains the same results for the total magnetic vector potential.
Obviously, these are the known formulas for the current loop.
Let us take ϕ1 = π/3 and ϕ2 = 5π/4. From Equations (16)–(18), one finds:

Ax (S) = −60.73902566793771 nT·m,

Ay (S) = −54.76725580732807 nT·m,

Az (S) = 0 T·m,

A (S) = 81.78436004368871 nT·m.

Thus, the analytic form of the magnetic vector potential is found for the different angle
positions.
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Example 2. Calculate the magnetic field produced by the current-carrying arc segment of the radius
RP = 3 m at the point S (xS, yS, zS) = S (3 m, 4 m, 5 m). The current IP = 1 A.

Let us start with the circular loop for which is ϕ1 = 0 and ϕ2 = 2π.
From Equations (35)–(37), one finds the components, and the total magnetic field

as follows:
Bx (S) = 6.590422756026894 nT,

By (S) = 8.787230341369193 nT,

Bz (S) = 5.554432293082448 nT,

B (S) = 12.30856641830695 nT.

The magnetic field produced by the circular loop can be considered as axisymmetric
so that we need to calculate only the radial and azimuthal component. Applying equations
from [11], these components as well as the total magnetic field are as follows:

Br (S) = 10.98403792671149 nT,

Bz (S) = 5.554432293082448 nT,

B (S) = 12.30856641830695 nT.

From the previous calculations, the radial component of the magnetic field is:

Br (S) =
√

B2
x (S) + B2

y (S) = 10.98403792671149 nT.

Thus, we show the validity of Equations (35)–(37).
From [11], we obtained the same results for the magnetic field. Obviously, these are

the known formula for the current loop.
Now, let us apply these equations for the same problem but with the various positions

of angles, for example, ϕ1 = π/6 and ϕ2 = 3π/4. We obtain:

Bx (S) = 3.204077158320579 nT,

By (S) = 11.48651408884254 nT,

Bz (S) = −3.013457271456703 nT,

B (S) = 12.29987971797063 nT.

Thus, these examples for the arbitrary angles may serve as the benchmark example.
As one can see, the calculations of the magnetic vector potential and the magnetic field of
the current-carrying segments with arbitrary angles are obtained in the closed form and
expressed by the incomplete elliptic integrals of the first and the second kind. In the case
of the circular loops, these calculations are the known and obtained over the complete
elliptical integral of the first and the second kind. The analytical formula for the magnetic
field is crucial for calculating other electromagnetic quantities such as the magnetic force,
the magnetic torque, the mutual inductance, and the stiffness between inclined circular
current-carrying arc segments.

Example 3. Calculate the magnetic force between two arc currying-courant segments whose radii
are RP= 0.2 m and RS = 0.1 m, respectively. The first arc segment is placed in the plane XOY with
the center at the origin and the second in the plane x + y + z = 0.3 with the center C (0.1 m; 0.1 m;
0.1 m). The currents are units.

We begin with two inclined circular loops; see Figure 3.
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By using Ren’s method, [20], the components of the magnetic force are:

Fx = −0.10807277 µN,

Fy = −0.10807276 µN

Fz = −1.4073547 µN.

By using Poletkin’s method [31], the components of the magnetic force are as follows:

Fx = −0.108072965612845 µN,

Fy = −0.108072965612845 µN,

Fz = −1.40737206031365 µN.

From [25,26], the components of the magnetic force are:

Fx = −0.1080729656128444 µN,

Fy = −0.1080729656128444 µN,

Fz = −1.407372060313649 µN.

From the calculations, presented in this paper, using Equations (53)–(55), one has:

Fx = −0.1080729656128444 µN,

Fy = −0.1080729656128444 µN,

Fz = −1.407372060313649 µN.

Thus, the validity of the approach presented here is confirmed.
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Now, let us apply these equations for the same problem but with the various positions
of the segment angles, for example, ϕ1 = ϕ3 = π/6 and ϕ2 = ϕ4 = 3π/4. We obtain:

Fx = −137.7416772905457 µN,

Fy = −6.783844980209707 µN,

Fz = 32.30984917651751 µN.

Example 4. The center of the primary coil of the radius RP = 0.4 m is O (0; 0; 0) and the center of
the secondary coil of the radius RS = 0.05 m is C (0.1 m; 0.15 m; 0.0 m). The secondary coil is in
the plane 3x + 2y + z = 0.6. Calculate the magnetic force between coils. All currents are units. The
angles of segments are, respectively, ϕ1 = 0, ϕ2 = 2π and ϕ3 = 0, ϕ4 = 19π/10, 195π/100, 19,999
π/10,000, 2π. Investigate four cases for angle ϕ4.
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The first coil is the current loop. Using the method presented here, one has:
For ϕ4 = 19π/10,

Fx = −1.030225970922242 nN,

Fy = −5.151227163000918 nN,

Fz = 27.14297688555945 nN.

For ϕ4 = 195π/100,
Fx = 2.692181753461003 nN,

Fy = 1.173665675174731 nN,

Fz = 27.52894004960609 nN.

For ϕ4 = 19,999π/10,000,

Fx = 4.171134702846683 nN,

Fy = 6.514234771668451 nN,

Fz = 27.71528704863114 nN.

For ϕ4 = 2π,
Fx = 4.171776672650815 nN,

Fy = 6.523855691357912 nN,

Fz = 27.7154997521196 nN.

The last results for ϕ4 = 2π, are obtained in [25,26].
Thus, we show that the presented formulas for the magnetic force between two

inclined current-carrying segments with arbitrary angels are correct which is proved by
the limit case for the two inclined circular loops.

Example 5. The center of the primary coil of the radius RP = 0.3 m is O (0; 0; 0) and the center of
the secondary coil of the radius RS = 0.3 m is C (0.1 m; −0.3 m; 0.2 m). The secondary coil is in the
plane x − 2y + z = 0.9. All currents are units but of the opposite sign. The angles of segments are,
respectively, ϕ1 = 0, ϕ2 = π, 3π/2, 7π/24, 90π/46, 1999π/1000, 2 π and ϕ3 = 0, ϕ4 = π, 3π/2,
7π/24, 90π/46, 1999π/1000, 2 π. Calculate the magnetic force between these current segments.

Using the presented method here, one finds:
ϕ1 = 0, ϕ2 = π, ϕ3 = 0, ϕ4 = π,

Fx = 0.1434856008022091 µN,

Fy = −0.1326852649109414 µN,

Fz = 0.02679590119992052 µN.

ϕ1 = 0, ϕ2 = 3π/2, ϕ3 = 0, ϕ4 = 3π/2,

Fx = 0.125846805955475 µN,

Fy = −0.1412059414594633 µN,

Fz = −0.008568308516912724 µN.

ϕ1 = 0, ϕ2 = 7π/4, ϕ3 = 0, ϕ4 = 7π/4,

Fx = 0.1971372403346838 µN,

Fy = −0.3359342255993592 µN,

Fz = −0.1029523519216523 µN.
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ϕ1 = 0, ϕ2 = 90π/46, ϕ3 = 0, ϕ4 = 90π/46,

Fx = 0.2298232863299166 µN,

Fy = −0.5316472767567059 µN,

Fz = −0.094553128442032 µN.

ϕ1 = 0, ϕ2 = 1999π/1000, ϕ3 = 0, ϕ4 = 1999π/1000,

Fx = 0.2292493650352244 µN,

Fy = −0.5614719226361647 µN,

Fz = −0.09253078729453428 µN.

Let us take the limit case of two inclined current loops. This approach gives:

Fx = 0.2292455704933025 µN,

Fy = −0.5621415690326643 µN,

Fz = −0.09249247340323912 µN.

The last results are obtained in [25,26].
Thus, when the segments lead to the circular loops, we can see the results that converge

to those of the circular loops.

Example 6. The center of the primary coil of the radius RP = 1 m is O (0; 0; 0) and the center of
the secondary coil of the radius RS = 0.5 m is C (2 m; 2 m; 2 m). Coils have perpendicular axes (see
Figure 4). The secondary coil is in the plane y = 2 m. Calculate the magnetic force between the coils.
All currents are units.

This case is the singular case because a = c = 0. Let us begin with two perpendicular
current loops [25,26], for which we found:
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Fx = −4.901398177052345 nN,

Fy = −1.984872313200137 nN,

Fz = −2.582265710169336 nN.

According to [20],
Fx = −4.9013835 nN,

Fy = −1.9848816 nN,

Fz = −2.5821969 nN.
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Using this paper, case 5.1.2 [
→
u = {−1, 0, 0}, →v = {0, 0,−1}] and Equations (53)–(55),

one has:
Fx = 4.901398177052345 nN,

Fy = 1.984872313200137 nN,

Fz = 2.582265710169336 nN.

Using this paper, case 5.1.3 [
→
u = {0, 0,−1}, →v = {−1, 0, 0}] and Equations (53)–(55)

one has:
Fx = −4.901398177052345 nN,

Fy = −1.984872313200137 nN,

Fz = −2.582265710169336 nN.

Thus, we obtained for case 5.1.3 the same results as in [25,26,31]. For case 5.1.2 we
obtain the same results as in [25,26] but with opposite signs for each component, because
in this case we did not take into consideration other unit vectors.

Let us take case 5.1.3. and ϕ1 = π/6, ϕ2 = 5π/6, ϕ3 = π/4, ϕ4 = 5π/4. The approach
presented here gives:

Fx = −12.06294047887778 nN,

Fy = 5.242872781049669 nN,

Fz = 7.708406091689127 nN.

Let us take case 5.1.3. and ϕ1 = π/1000, ϕ2 = 1999π/1000, ϕ3 = π/1000, ϕ4 = 1999π/1000.
The approach presented here gives:

Fx = −4.901398087973561 nN,

Fy = −1.977166719062928 nN,

Fz = −2.553525470247053 nN.

For ϕ1 = ϕ3 = 0 and ϕ2 = ϕ4 = 2π we approach the limit case (see the first calculation
in this example).

Thus, this singular case, where the angles are arbitrary, can be used as the benchmark
example which in the limit leads to the case of the perpendicular circular loops.

Example 7. Calculate the torque between two inclined current-carrying arc segments for which
RP = 0.2 m and RS = 0.1 m. The first arc segment is placed in the plane XOY and the second in the
plane x + y + z = 0.3 with center C (0.1 m; 0.1 m; 0.1 m). The currents are units.

Let us begin with two inclined circular loops for which ϕ1 = 0, ϕ2 = 2π, ϕ3 = 0 and
ϕ4 = 2π (see Figure 3).

By using Ren’s method [20], the components of the magnetic torque are as follows:

τx = −27.861249 nN·m,

τy = 27.861249 nN·m,

τz = 0 N·m.

By using Poletkin’s method [31], the components of the magnetic force are as follows:

τx = −27.8620699713 nN·m,

τy = 27.8620699713 nN·m,

τz = −5.65233285126159× 10−14 ≈ 0 N·m.
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Using the approach presented in this paper, Equations (59)–(61), one finds:

τx = −27.86206997129496 nN·m,

τy = 27.86206997129496 nN·m,

τz = 5.007385868157401× 10−64 ≈ 0 N·m.

All the results are in an excellent agreement. Thus, the validity of the approach
presented here is confirmed.

Let us take ϕ1 = π/12, ϕ2 = π, ϕ3 = 0 and ϕ4 = 2π.
The approach presented here gives:

τx = −0.4295228631728361 nN·m,

τy = 0.3155545746006545 nN·m,

τz = 0.1139682885721816 nN·m.

As it was mentioned above, the magnetic torque calculation represents novelty in the
literature.

Example 8. Let us consider two arc segments of the radii RP = 1 m and RS = 0.5 m. The primary
loop lies in the plane z = 0 m, and it is centered at O (0 m; 0 m; 0 m). The secondary loop lies in
the plane x = 1 m, with its center located at C (1 m; 2 m; 3 m). Calculate the torque between these
inclined coils. All currents are units. Investigate the point (a) C (1 m; 2 m; 3 m), (b) C (1 m; 2 m; 0
m), (c) C (1 m; 0 m; 0 m), (d) C (0 m, 0 m, 0 m).

Obviously, these coils are perpendicular (see Figures 5–8) but by the presented method
these cases are the not singular case because a = 1, b = c = 0 (L = l = 1).

Let us take into configuration two perpendicular loops. The approach presented
here gives:
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By the presented method,

τx = 0 N·m,

τy = −4.668729435430873 nN·m,

τz = 5.739664477343296 nN·m.

According to [20],
τx = 4.1994108× 10−14 ≈ 0 N·m,

τy = −4.6686544 nN·m,

τz = 5.7396408 nN·m.

In [31], this case is the singular case for which we have:

τx = −2.858735873626482× 10−25 ≈ 0 N·m,

τy = −4.668669979976015 nN·m,

τz = 5.739664477343291 nN·m.

(b) C (1 m; 2 m; 0 m)

By the presented method,

τx = 0 N·m,

τy = 27.83604705327234 nN·m,

τz = 1.527368681710413× 10−146 ≈ 0 N·m.

By [20],
τx = 1.5403435× 10−16 ≈ 0 N·m,

τy = 27.835798 nN·m,

τz = −1.3063032× 10−11 N·m.

In [31], this case is the singular for which we have:

τx = 1.704466532265166× 10−24 ≈ 0 N·m,

τy = 27.83605090793333 nN·m,

τz = 0 N·m.

(c) C (0 m; 0 m; 0 m)

By the presented method,

τx = 0 nN,τy = −185.0045402475441 nN·m,

τz = 7.657062549408825× 10−138 ≈ 0 nN·m.

According to [20],

τx = −1.6956645× 10−14 ≈ 0 N·m,

τy = −184.99891 nN·m,

τz = 2.2736774× 10−12 N·m.

In [31], this case is the singular for which we have:

τx = −1.132826091097256× 10−24 ≈ 0 N·m,

τy = −185.0045403925399 nN·m,

τz = 0 N·m.
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(d) C (1 m; 0 m; m)

By the presented method,

τx = 0 N·m,

τy = −435.2765381474917 nN·m,

τz = −3.403343626298156× 10−128 ≈ 0 N·m.

According to [20],
τx = 4.3207387× 10−20 ≈ 0 N·m,

τy = −435.27404 nN·m,

τz = 5.5087283× 10−13 N·m.

In [31], this case is the singular for which we have:

τx = −2.665551203021357e× 10−23 ≈ 0 N·m,

τy = −435.3175470473964 nN·m,

τz = 0 N·m.

All the results are in exceptionally good agreement. We state that the presented
method is exact. In [2], the authors use the small segments to approximate the circular
loops. In [31], this case is singular as previously mentioned.

Example 9. Let us consider two arc segments of the radii RP = 1 m and RS = 0.5 m. The primary
loop lies in the plane z = 0 m, and it is centered at O (0 m; 0 m; 0 m). The secondary loop lies in
the plane x = 0 m, with its center located at C (0 m; 2 m; 3 m). Calculate the torque between these
inclined coils. All currents are units. Investigate the point (a) C (0 m; 2 m; 3 m), (b) C (0 m; 2 m;
0 m), (c) C (0 m; 0 m; 3 m), (d) C (0 m; 0 m; 0 m).

Obviously, these coils are perpendicular (see Figures 9–12) but according to the pre-
sented method these cases are not singular cases because a = 1, b = c = 0, (L = l = 1). In [31]
this case is the singular case, and it was studied with special attention. Grover’s formula
A.8 given in [2] was corrected to obtain the correct results for this singular case.
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(a) C (0 m; 2 m; 3 m)

By the presented method,

τx = 0 N·m,

τy = −6.03647173178846 nN·m,

τz = 6.860953527497661 nN·m.

According to [31] we obtain.

τx = 0 N·m,

τy = −6.036471731788459 nN·m,

τz = 6.860953527497644 nN·m.

(b) C (0 m; 2 m; 0 m)

By the presented method,

τx = 0 N·m,

τy = 46.60910437567855 nN·m,

τz = 1.027871789475573× 10−136 ≈ 0 N·m.

According to [31], we obtain:

τx = 2.853984524239991× 10−24 ≈ 0 N·m.

τy = 46.6091043756787 nN·m,

τz = 1.282404413152518× 10−23 ≈ 0 N·m.

(c) C (0 m; 0 m; 3 m)

By the presented method,

τx = 0 N·m,

τy = −16.3969954478874 nN·m,

τz = 1.682963244063953× 10−128 ≈ 0 N·m.

According to [31], we obtain:

τx = 7.300027041557918× 10−18 ≈ 0 N·m,

τy = −16.39567517228915 nN·m.

τz = 1.682963244063953× 10−9 ≈ 0 N·m.

(d) C (0 m; 0 m; 0 m)

By the presented method,

τx = 0 N·m,

τy = −435.2765381474917 nN·m,

τz = 1.731874227122655× 10−128 ≈ 0 N·m.

According to [31], we have:

τx = −2.66513932049866× 10−23 ≈ 0 N·m,

τy = −435.2502815267608 nN·m,

τz = 5.416141293918174× 10−16 ≈ 0 N·m.
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Thus, we investigated all possible cases in this example where the coils are the per-
pendicular, but the general formula for the torque treats this case (b = c = 0) as the regular
case but in [31] it is the singular case. All the results are in excellent agreement.

Example 10. Let us consider two arc segments of the radii RP = 40 cm and RS = 10 cm. The
primary arc segment lies in the plane z = 0 cm, and it is centered at O (0 cm;0 cm; 0 cm). The
secondary arc segment lies in the plane y = 20 cm, with its center located at C (0 cm; 20 cm; 10 cm).
Calculate the torque between two arc segments with ϕ1 = 0, ϕ2 = π, ϕ3 = 0, ϕ4 = π.

This case is the singular case because a = c = 0. Let us begin with two inclined circular
loops (see Figure 4).

Using case 6.1.2 [
→
u = {−1, 0, 0}, →v = {0, 0,−1}] and Equations (59)–(61), one has:

τx = −0.498395165432447 nN·m,

τy = 0 N·m,

τz = 3.696785155039511× 10−137 ≈ 0 N·m.

Using case 6.1.3 [
→
u = {0, 0,−1}, →v = {−1, 0, 0}] and Equations (59)–(61), one has:

τx = 0.498395165432447 nN·m,

τy = 0 N·m,

τz = −3.696785155039511× 10−137 ≈ 0 N·m.

Thus, we obtained the same results with case 6.1.3 and case 6.1.2 but with opposite
signs for each component. This was explained in the previous examples, where the
singularities appear.

Let us take case 6.1.2. and ϕ1 = 0, ϕ2 = π, ϕ3 = 0, ϕ4 = 2 π. The approached here gives:

τx = −24.91975827162235 nN·m,

τy = 0 N·m,

τz = −0.9803004730404883 nN·m.

Let take us case 6.1.3. and ϕ1 = 0, ϕ2 = π, ϕ3 = 0, ϕ4 =2 π. The approach here gives:

τx = 24.91975827162235 nN·m,

τy = 0 N·m,

τz = 0.9803004730404883 nN·m.

These results were expected.

Example 11. The center of the primary coil of the radius RP = 1 m is O (0 m; 0 m; 0 m) and the
center of the secondary coil of the radius RS = 0.5 m is C (2 m; 2 m; 2 m). The secondary coil is in
the plane y = 2 m which means that the coils are with perpendicular axes. Calculate the magnetic
torque between coils for which is ϕ1 = 0, ϕ2 = π, ϕ3 = π and ϕ4 = 2π. All currents are units.

This case is the singular case because a = c = 0. Let us start with two perpendicular
current loops, (see Figure 4).

Using case 6.1.2 [
→
u = {−1, 0, 0}, →v = {0, 0,−1}] and Equations (59)–(61), one finds:

τx = −0.3526562725465321 nN·m,

τy = 0 N·m,

τz = 5.833051727704416 nN·m.
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Using case 6.1.3 [
→
u = {0, 0,−1}, →v = {−1, 0, 0}] and Equations (59)–(61), one finds:

τx = 0.3526562725465321 nN·m,

τy = 0 N·m,

τz = −5.833051727704416 nN·m.

Thus, we obtained the same results with case 6.1.3 and case 6.1.2 but with opposite
signs for each component.

By [20],
τx = 0.35628169 nN·m,

τy = −0.40169339× 10−15 ≈ 0 N·m,

τz = −5.8330053 nN·m.

All the results are in excellent agreement.
For ϕ1 = 0, ϕ2 = π, ϕ3 = π and ϕ4 =2π:
Using case 6.1.2 [

→
u = {−1, 0, 0}, →v = {0, 0,−1}] and (59)–(61), one has:

τx = 7.24520528470814 nN·m,

τy = 0 N·m.

τz = 3.767244177134524 nN·m.

Using case 6.1.3 [
→
u = {0, 0,−1}, →v = {−1, 0, 0}] and Equations (59)–(61), one has:

τx = −7.245205284708146 nN·m,

τy = 0 N·m.

τz = −3.767244177134524 nN·m.

Thus, we obtained the same results with case 6.1.3 and case 6.1.2 but with opposite
signs for each component that was proved in previous singular cases.

Example 12. Calculate the mutual inductance between two inclined current-carrying arc segments
for which is RP = 0.2 m and RS = 0.1 m. The first arc segment is placed in the plane XOY and the
second in the plane x + y + z = 0.3 with the center C (0.1 m; 0.1 m;0.1 m) which lies within.

Let us begin with ϕ1 = 0, ϕ2 = 2π, ϕ3 = 0 and ϕ4 = 2π (see Figure 3).
Applying Equation (64), the mutual inductance for inclined circular loops is:

M = 81.31862021231823 nH.

We find the same result in [24].
Now, let us change the positions of the arc segments, for example, ϕ1 = 0, ϕ2 = π/2,

ϕ3 = π and ϕ4 = 3π/2. Applying Equation (63), the mutual inductance is:

M = 17.38258810896817 nH.

Example 13. Let us consider two arc segments of the radii RP = 40 cm and RS = 10 cm. The
primary arc segment lies in the plane z = 0 cm, and it is centered at O (0 cm; 0 cm; 0 cm). The
secondary arc segment lies in plane y = 20 cm, with its center is located at C (0 cm; 20 cm; 10 cm).
Calculate the mutual inductance between two arc segments.

This is the singular case, a = c = 0. Let us begin with two circular loops for which is
ϕ1 = 0, ϕ2 = 2π, ϕ3 = 0 and ϕ4 =2π, (see Figure 4).

M = −10.72715167866112 nH.



Physics 2021, 3 1080

We find the same result in [24].
For y = −20 cm the mutual inductance is:

M = 10.72715167866112 nH.

For y = 0 cm the mutual inductance is:

M = 0 H.

This result is found in [30].

Example 14. Let us consider two arc segments of the radii RP = 40 cm and RS = 10 cm, which are
mutually perpendicular to each other. The primary arc segment lies in the plane z = 0 m, and it is
centered at O (0 m; 0 m; 0 m), and the center of the secondary coil is located at origin, thus C = O
(0;0;0). Calculate the mutual inductance between two arc segments, [30].

Let us begin with two circular loops for which is ϕ1 = 0, ϕ2 = 2π, ϕ3 = 0 and ϕ4 = 2π.
Here, we taste tree cases (1) a = 1, b = c = 1; (2) a = 0, b = 1, c = 0; (3) a = b = 0, c = 1.
For all cases, the mutual inductance [24] gives:

M = 0 H.

From this paper calculations, we obtained the same value. This means that for any
position of the secondary loop the mutual inductance is zero when the center of the second
loop is positioned in the origin O. The same results are obtained in [30].

Example 15. Let us consider the previous example, but the center of the secondary coil is at the
plane XOY with the following coordinates xC = yC = 10 cm and zC = 0 cm, [30]. Calculate the
mutual inductance between these coils.

From this approach the mutual inductance gives:

M = 1.78729016039874× 10−143 ≈ 0 H.

In [30], the mutual is found to be zero.

Example 16. Calculate the stiffness between two coaxial circular loops for which is RP = 2 m, and
RS = 1 m. The axial distance between loops is 1 m.

Let us begin with two parallel loops (see Figure 13) for which ϕ1 = 0, ϕ2 = 2π, ϕ3 = 0
and ϕ4 = 2π.

Obviously, there is only the stiffness kzz and other stiffnesses are zero because of the
coaxial loops.

From Equation (75), the stiffness is:

kzz = −
∂Fz

∂z
= −0.2064021172440473× 10−6 N/m.

From developed general Formula (76),

kzz = −
∂Fz

∂z
= −0.2064021172440473× 10−6 N/m.

Thus, with the benchmark formula we confirmed the validity of the general formula
for kzz.
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plane XOY with the following coordinates 𝑥  = 𝑦  = 10 cm and 𝑧  = 0 cm, [30]. Calculate the 
mutual inductance between these coils. 

From this approach the mutual inductance gives: 𝑀 = 1.78729016039874 × 10 ≈ 0 H. 

In [30], the mutual is found to be zero. 

Example 16. Calculate the stiffness between two coaxial circular loops for which is 𝑅  = 2 m, and 𝑅  = 1 m. The axial distance between loops is 1 m. 

Let us begin with two parallel loops (see Figure 13) for which φ1 = 0, φ2 = 2π, φ3 = 0 
and φ4 = 2π. 

 

Figure 13. Two parallel circular loops, (a = 1, b = c = 0, L = l = 1). 

Obviously, there is only the stiffness kzz and other stiffnesses are zero because of the coaxial loops. 

Figure 13. Two parallel circular loops, (a = 1, b = c = 0, L = l = 1).

Example 17. Calculate the stiffness between two inclined current-carrying arc segments (see
Figure 3) for which RP = 0.2 m and RS = 0.1 m. The first arc segment is placed in the plane XOY
and the second in the plane x + y + z = 0.3 with the center C (0.1 m; 0.1 m; 0.1 m) which lies in
this plane.

Let us begin with two circular loops for which ϕ1 = 0, ϕ2 = 2π, ϕ3 = 0 and ϕ4 = 2π.
From this approach (76), one has:

kzz = −
∂Fz

∂z
= −57.36862305837861× 10−6 N/m.

This example could be used as the benchmark example to test other methods in
which the axial stiffness is calculated. Now, let us take ϕ1 = π/4, ϕ2 = π/2, ϕ3 = 3π/4 and
ϕ4 = 3π/2.

From Equation (76), one has:

kzz = −
∂Fz

∂z
= −28.70523534358855× 10−6 N/m.

Example 18. Let us consider two arc segments of the radii RP = 40 cm and RS = 10 cm. The
primary arc segment lies in the plane z = 0 cm, and it is centered at O (0 cm; 0 cm; 0 cm). The
secondary arc segment lies in the plane y = 20 cm, with its center is located at C (10 cm; 20 cm;
10 cm). Calculate the stiffness between two arc segments.

This case is the singular case because a = c = 0. Let us start with two perpendicular
current circular loops (see Figure 4).

Using case 8.1.2 [
→
u = {−1, 0, 0}, →v = {0, 0,−1}] and Equation (76), one finds:

kzz = −1.322488731905245 µN/m.

Using case 8.1.3 [
→
u = {0, 0,−1}, →v = {−1, 0, 0}] and Equation (76) one finds:

kzz = 1.322488731905245 µN/m.

Thus, we obtained with case 8.1.2 and case 8.1.3 the same results but with opposite
signs for each component.

Now, let us take ϕ1 = π, ϕ2 = 2π, ϕ3 = π and ϕ4 = 2π.
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Using case 8.1.2 [
→
u = {−1, 0, 0}, →v = {0, 0,−1}] and Equation (76), one has:

kzz = 34.21629087092779 µN/m.

Using case 8.1.3 [
→
u = {0, 0,−1}, →v = {−1, 0, 0}] and Equation (76), one has:

kzz = −34.21629087092779 µN/m.

These results were expected.

10. Conclusions

In this paper, we give some ameliorated and new formulas for calculating important
electromagnetic quantities such as the magnetic vector potential, the magnetic field, the
magnetic force, the mutual inductance, and the stiffness between two inclined current-
carrying arc segments in air. The angles of arc segments are arbitrary. All formulas are
developed in the close form over the incomplete elliptic integrals of the first and the second
kind (the magnetic vector potential and the magnetic field) and in the simple integral
form whose kernel functions are also given in the close form over the incomplete elliptic
integrals of the first and the second kind (the magnetic force, the magnetic torque, the
mutual inductance, and the stiffness). The magnetic vector potential and the magnetic
field calculations are given in the analytical form expressed by the incomplete elliptic
integrals of the first and second kind. All particular cases are included. Even though
these calculations exist in the literature, those presented here, where the angles of coils
are arbitrary, present the ameliorated and simplified formulas which are easy to use. The
formulas for calculation of the magnetic force and the mutual inductance are significantly
simplified regarding those known in the literature. Singular cases are included. Finally, the
formulas for calculating the magnetic torque and the stiffness between inclined circular
loops or segments appear for the first time in this form in the literature. All electromagnetic
quantities are given in quite simple form so that potential readers can easily program them
in MATLAB or Mathematica. Many examples confirmed the validity of the presented
formulas for inclined circular current-carrying arc segments, and they can be used as the
benchmark examples for testing other methods concerning this subject.
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Appendix A

I1 =
β2∫

β1

sin(γ−2β)
∆ dβ = sin(γ)

β2∫
β1

cos(2β)
∆ dβ− cos(γ)

β2∫
β1

sin(2β)
∆ dβ

= yS
p

β2∫
β1

1−2 sin2(β)
∆ dβ− 2 xS

p

β2∫
β1

sin(β) cos(β)
∆ dβ.
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From [39,40] we obtain the final expression in the analytical form,

I1 = 1
pk2

{
yS
[ (

k2 − 2
)

F (β, k) + 2E (β, k)
]
+ 2xS∆

} β2
|
β1

,

I2 =
β2∫

β1

cos(γ−2β)
∆ dβ = cos(γ)

β2∫
β1

cos(2β)
∆ dβ + sin(γ)

β2∫
β1

sin(2β)
∆ dβ

= xS
p

β2∫
β1

1−2 sin2(β)
∆ dβ + 2 yS

p

β2∫
β1

sin(β) cos(β)
∆ dβ,

I2 = 1
pk2

{
xS
[ (

k2 − 2
)

F (β, k) + 2E (β, k)
]
− 2yS∆

} β2
| .
β1

Appendix B

I3 =
β2∫
β1

cos(γ−2β)
r3

PS
dβ =

{
cos(γ)

β2∫
β1

cos(2β)
r3

TP
dβ + sin(γ)

β2∫
β1

sin(2β)
r3

TP
dβ

}

= xS
p

β2∫
β1

1−2 sin2(β)

∆3 dβ +
yS
p

β2∫
β1

sin(2β)

∆3 dβ = xs
pk2 (1−k2)


(
k2 − 2

)
E (β, k) +

(
2− 2k2)F (β, k)

+ k2(2− k2) k2(2− k2)
sin(β) cos(β)

∆

} β2

| ,
β1

I3 = xs
pk2 (1−k2)

{ (
k2 − 2

)
E (β, k) +

(
2− 2k2)F (β, k)

+ k2(2− k2)
sin(β) cos(β)

∆

} β2

|
β1

+
2yS

pk2∆

β2

| .
β1

I4 =
β2∫

β1

sin(γ−2β)
r3

PS
dβ

{
sin(γ)

β2∫
β1

cos(2β)
r3

TP
dβ− cos(γ)

β2∫
β1

sin(2β)
r3

TP
dβ

}

=
ys

pk2 (1−k2)

{ (
k2 − 2

)
E (β, k) +

(
2− 2k2)F (β, k) + k2(2− k2)

sin(β) cos(β)
∆

} β2

|
β1

− 2xS
pk2∆

β2

| .
β1

I5 =
β2∫

β1

RP +
√

x2
S + y2

S cos(2β)

∆3 dβ =
β2∫

β1

RP + p
∆3 dβ− 2p

β2∫
β1

cos(2β)

∆3 dβ

= 1
k2 (1−k2)

{[
k2 (Rp + p

)
− 2p

]
E (β, k) +

(
2p− 2pk2)F (β, k)

+ k2(2p−
(

Rp + p
)
k2)

sin(β) cos(β)
∆

} β2

| .
β1

Appendix C

I6 =

ϕ2∫
ϕ1

−lSx sin(t) + lSy cos(t)√
x2

S + y2
S + z2

S + R2
P − 2RP

√
x2

S + y2
S cos(t− γ)

dt.
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The substitution t− γ = π − 2β gives,

I6 = − 2lxS√ (
RP +

√
x2

S + y2
S

)2
+ z2

S

{
sin(γ)

β2∫
β1

cos(2β)
∆ dβ− cos(γ)

β2∫
β1

sin(2β)
∆ dβ

}

+
2lyS√ (

RP +
√

x2
S + y2

S

)2
+ z2

S

{
cos(γ)

β2∫
β1

cos(2β)
∆ dβ + sin(γ)

β2∫
β1

sin(2β)
∆ dβ

}

= − lxSk
p
√

RP p

{
yS

β2∫
β1

1−2 sin2(β)
∆ dβ− 2xS

β2∫
β1

sin(β) cos(β)
∆ dβ

}

+
lySk

p
√

RP p

{
xS

β2∫
β1

1−2 sin2(β)
∆ dβ + 2yS

β2∫
β1

sin(β) cos(β)
∆ dβ

}

=
lSy

kp
√

RP p

[
lysxS − lxs yS

] {[ (
k2 − 2

)
F (β, k) + 2E (β, k)

]} β2

|
β1

− 2∆
[
lysyS + lxs xS

] β2

|
β1

.

Appendix D

kzz = − ∂Fz
∂zs

= −ISRS
∂

∂zs

ϕ4∫
ϕ3

[
lxSBy (S) − lySBx (S)

]
dθ

= −ISRS

ϕ4∫
ϕ3

[
∂lxS
∂zs

By (S) + lxS
∂By (S)

∂zs
− ∂lyS

∂zs
Bx (S) − lyS

∂Bx (S)
∂zs

]
dθ

= −ISRS

ϕ4∫
ϕ3

[
lxS

∂By (S)
∂zs

− lyS
∂Bx (S)

∂zs

]
dθ =

[
because ∂lxS

∂zs
=

∂lyS
∂zs

= 0
]

= − µ0 IP ISRS
16π
√

RP

ϕ4∫
ϕ3

lxS

∂

(
zsk

(1 − k2) 2
√

p5
Iyy

)
∂zs

− lyS

∂

(
zsk

(1 − k2) 2
√

p5
Ixx

)
∂zs

dθ

= − µ0 IP ISRS
16π
√

RP

ϕ4∫
ϕ3

k
(1−k2) 2

√
p5

[
lxSTzz1 − lySTzz2

]
dθ.

Tz1 =
∂

∂zs

[
zsk

(1− k2)
Iyy

]
=

k
(1− k2)

Iyy +
∂

∂k

[
k

(1− k2)

]
∂k
∂zs

Iyy +
zsk

(1− k2)

∂Iyy

∂zs

∂k
∂zs

= − zsk3

4pRP
,

Tz1 =
k

(1− k2)
Tzz1,

Tzz1 = c1 Iyy + zS
∂
(

Iyy
)

∂zs
,

Tzz2 = c1 Ixx + zS
∂ (Ixx)

∂zs
.
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Ixx and Iyy are given in (76) and (77).

c1 = 1−
z2

S k2

4pRP

1 + k2

1− k2 ,

∂ (Iyy)
∂zs

= ∂
∂zs

{
yS (A2 − A1) − 2xS

(
1− k2) (∆−1

2 − ∆−1
1

)}
= yS

∂
∂zs

(A2 − A1)

− xSzS
pRP

k4
(

∆−1
2 − ∆−1

1

)
+ xSzS

2pRP
k4 (1− k2)[sin2(β2)∆−3

2 − sin2(β1)∆−3
1

]
.

∂A2
∂zs

= 2kE (β2, k) ∂k
∂zs

+
(
k2 − 2

) dE (β2,k)
dk

∂k
∂zs

+
(
2− 2k2)F (β2, k) ∂k

∂zs

−4k dF (β2,k)
dk

∂k
∂zs

+ sin(2β2)
2

∂k
∂zs

[
4k
(
1− k2) 1

∆2
+ k3 (2− k2) sin2(β2)

∆3
2

]
= ∂k

∂zs

{
2k[E (β2, k) − 2F (β2, k)] +

(
k2 − 2

) dE (β2,k)
dk +

(
2− 2k2) dF (β2,k)

dk

+ k sin(2β2)
2∆2

[
4
(
1− k2) + k2 (2− k2) sin2(β2)

∆2
2

]}
.

∂A1
∂zs

= ∂A2 (β2→β1,k)
∂zs

.

∂
(

Iyy
)

∂zs
= yS b1 + 2xS b2.

b1 = 3[E (β, k) − F (β, k)]
β2
|

β1

+
{[

sin(2β)
∆

] (
1− 2k2) +

[
sin(2β) sin2 (β)

∆3

] k2 (2−k2)
2

} β2
|

β1

.

b2 =
[ 2

∆
] β2
|

β1

−
(
1− k2)[ sin2(β)

∆3

] β2
|

β1

.

Tzz1 = Iyy= + zS
∂ (Ixx)

∂zs
Tzz1 = Iyy −

z2
Sk3

pRP

1 + k2

1− k2 Iyy −
z2

Sk4

pRP

∂
(

Iyy
)

∂zs
.

Similarly,

Tzz2 = Ixx −
z2

Sk3

pRP

1 + k2

1− k2 Ixx −
z2

Sk4

pRP

∂ (Ixx)

∂zs
,

∂ (Ixx)

∂zs
= xS b1 − 2ySb2.
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