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Abstract: Experimentally observed complex networks are often scale-free, small-world and have
an unexpectedly large number of small cycles. An Apollonian network is one notable example of a
model network simultaneously having all three of these properties. This network is constructed by
a deterministic procedure of consequentially splitting a triangle into smaller and smaller triangles.
In this paper, a similar construction based on the consequential splitting of tetragons and other
polygons with an even number of edges is presented. The suggested procedure is stochastic and
results in the ensemble of planar scale-free graphs. In the limit of a large number of splittings, the
degree distribution of the graph converges to a true power law with an exponent, which is smaller
than three in the case of tetragons and larger than three for polygons with a larger number of edges.
It is shown that it is possible to stochastically mix tetragon-based and hexagon-based constructions to
obtain an ensemble of graphs with a tunable exponent of degree distribution. Other possible planar
generalizations of the Apollonian procedure are also briefly discussed.
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1. Introduction
It is often convenient to present big volumes of data as a graph, i.e., as a set of objects

and binary relations (bonds) between them. This approach naturally arises in numerous
contexts ranging from physics of disordered systems [1] and biology [2] to sociology [3] and
linguistics (see, e.g., [4–6]). The rapid growth in information technology ensures that larger
and larger datasets of this type are becoming available. This naturally stimulates interest
in the tools to analyze these datasets and simple (or not so simple) reference mathematical
models, which can be used to probe their properties. Thus, a rapid development in the
last 20 years of a new interdisciplinary field on the boundary of the random graph theory,
the data analysis and the statistical physics, known as complex network theory [7–9],
has occurred.

Among the structural characteristics typical for many experimentally observed net-
works, there are three especially common and striking (see, e.g., [7]): (i) the small-world
property (a very small average node-to-node distance measured along the network), (ii) ex-
tremely wide, approximately a power-law distribution of the node degrees (the networks
with this property are often called ‘scale-free’), and (iii) large, as compared to referent
randomized networks, the concentration of the short circles (e.g., triangles). It is rea-
sonably easy to construct a model network that has one or two of these characteristics,
e.g., Erdős–Rényi graphs [10,11] are small-world, random geometrical graphs [12] that
have a large clustering coefficient. The Barabási–Albert model [13] generates small-world
scale-free networks. The Watts–Strogatts model [14] generates small-world graphs with
a large clustering coefficient, etc. Generating all three properties simultaneously is much
harder. Random geometric networks in a hyperbolic space [15–17] constitute one example
of networks with these properties. Another one is the Apollonian network.

The Apollonian network [18,19] is a planar graph that arises naturally as a network
representation of the Apollonian gasket, a remarkable object, which is, apparently, the first
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known fractal (interestingly, its exact fractal dimension is still unknown) [20,21]. The con-
struction of this network can be explained recursively as follows; see Figure 1. Take a
triangle, pick a point inside it and connect it to the three corners of the triangle. As a result,
one obtains a set of 3 adjacent triangles that form the first-generation Apollonian network.
Now, pick a point inside each of the three triangles, and connect it to its corners, this gives
a second-generation Apollonian network, then repeat ad infinitum. The resulting network
has been studied extensively in recent years, and it has been shown to have many beautiful
properties. For example, the degree distribution and the clustering coefficient have been
calculated [18], as well as the average path length [22]. Notably, there is an interesting
non-planar interpretation of the Apollonian network. Namely, it can be thought of as a
simplicial complex in the following way [23]. A first-generation Apollonian network is a
tetrahedron (3-simplex). A second-generation Apollonian network consists of four tetrahe-
dra: the original one and another three, each having a common two-face with the original
one. A third-generation Apollonian network consists of 13 tetrahedra: one produced in
the first generation, three produced in the second generation and nine new ones attached
to each free face of the three second-generation tetrahedra, etc. Thus, one can think of an
Apollonian network as a regular rooted tree of tetrahedra touching each other by common
faces. This construction is easy to visualize in a 3-dimensional (3D) space (see Figure 1b,c),
and it makes the Apollonian network a natural discretization of the 3D hyperbolic space in
the same way as a regular tree is a natural discretization of the hyperbolic plane. Many
properties of the Apollonian network can be calculated exactly, which makes it a nice toy
model for the study of various properties of real scale-free networks. As a result, there
have been a significant number of papers in recent years studying percolation [23], spin
models [24], signal spreading [25], synchronization [26], traffic [27], random walks [28,29],
etc., on the Apollonian network.

(a) (b) (c)

Figure 1. Apollonian network: (a) first (black) and second (black and red) generations of the
Apollonian network; (b) first generation of the same Apollonian network represented as a tetrahedron
in 3-dimensional space; (c) Apollonian networks of higher generations can be thought of as rooted
trees constructed from adjacent tetrahedra. Here, second generation is shown; the shaded face
functions as a root of the tree.

Despite being such a beautiful and well-studied object, the Apollonian network has
certain drawbacks as a model of real networks. Most importantly, it is a single deterministic
object with certain fixed properties, e.g., a fixed degree distribution with a fixed power
law exponent γ = ln 3/ ln 2. Importantly, that degree distribution is not a true power
law but rather a log-periodic distribution consisting of a sequence of atoms at points
3× 2n and a power-law envelope. This means that the network is scale-invariant only
with respect to certain discrete renormalizations and thus do not have the full set of
properties of a true power law distribution; see [30] for a recent discussion. One natural
generalization is a random Apollonian network [31–33], which is constructed, instead
of a regular generation-by-generation process, by sequential partitioning of arbitrarily
chosen triangles. The average degree distribution in such network is a true power law with
exponent γR = 3 [32]. Notably, to the best of our knowledge, random Apollonian graphs
remain the only scale-free planar graph model with a continuously growing size for which
the exact degree distribution exponent is known. Another way of generalizing the network
is to consider the k-simpliceswith k > 3 as building blocks of the network construction
procedure. This gives rise to multidimensional Apollonian networks [34,35].
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In this paper, the authors suggest another way of generalizing the Apollonian network
construction. As a result, a novel famility of small-world, scale-free planar networks is
obtained. The main idea is to construct an Apollonian-style iteration procedure based on
polygons with different numbers of edges. The paper is organized as follows. In Section 2,
a tetragon-based Apollonian-style network is constructed and the corresponding degree
distribution is explicitely calculated. Then, the suggested procedure is generalized to
polygons with an arbitrary even number of edges. In Section 4, it is shown that it is
possible to construct a continuous one-parametric family of models interpolating between
the tetragon- and hexagon-based models and demonstrate that the models in this family
have a power low degree distribution with an exponent depending on the parameter, so
it is possible to adjust it to fit the desired degree distribution (note that the adjustable
exponent of the degree distribution can be obtained by different means in the so-called
Evolving Apollonian networks [26,33]). Last section, summarizes the results of the paper
and discusses further open questions and possible generalizations.

2. Tetragon-Based Network
2.1. Definition

Among several possible ways of generalizing the procedure described above to the
case of polygons, consider the following procedure defined here for tetragons but easy to
generalize for any polygon with an even number of edges. Note that given that we make
such a generalization in further sections, we prefer to use the term ‘tetragon’ rather than
‘quadrilateral’ for a polygon with 4 sides in order to make the terminology more uniform.

Take a tetragon and pick a point inside it; then choose (at random) a pair of non-
adjacent vertices of the original tetragon and connect them with a polyline with one new
intermediate point. One now has two adjacent tetragons, for which one can repeat this
construction, as shown in Figure 2. Importantly, contrary to the standard Apollonian
network, which is a deterministic object, the network resulting from this procedure is
stochastic. Indeed, already in the second generation, there are three topologically different
realizations of the network, see Figure 2B. Notably, at any generation, this network has no
triangles and is, in fact, bipartite.

(A) (B) (C)

Figure 2. Constructionof a tetragon-based network: (A) representatives of the tetragon-networks up
to the 4th generation; (B) three possible topologically different realizations of the second-generation
network; (C) random triangulation of the fourth-generation network.
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2.2. Degree Distribution
The natural question to ask about this newly introduced class of planar Apollonian-

like networks is what is the degree distribution of the nodes Gn(k) in the n-th generation
of the network and what distribution G(k) it converges to for n → ∞ (here and in what
follows the term “degree distribution” is used to mean the probability density function,
i.e., the probability for the node to have a degree equal to k, as opposed to the cumulative
distribution function, i.e., the probability for the node to have a degree larger or equal to k).
By analogy with the Apollonian networks, one expects G(k) to be scale-free, i.e.,

G(k) ' Ck−α, k� 1, (1)

with some yet unknown constants C and α.
To calculate the degree distribution Gn(k), note that the degree of any given node is

a random variable, whose distribution Fn−m(k) for all nodes except the four initial ones
depends only on the number of generations between the generation m at which it was
created and current generation n. Indeed, each node with degree k has exactly k adjacent
tetragons (k− 1 for the four initial nodes), and at every step of the recurrent procedure,
each of these tetragons is split in two, which results in the creation of a new edge adjacent
to the node with the probability 1/2 (in the other half of the cases, the splitting path does
not go through the given node). These splitting events happen independently for all
tetragons. The overall degree distribution is therefore calculated by averaging over degree
distributions of different generations:

Gall
n (k) =

4F(0)
n (k) + ∑n

m=1 QmFn−m(k)
4 + ∑n

m=1 Qm
=

4
2n + 3

F(0)
n (k) +

2n − 1
2n + 3

Gn(k), Gn(k) =
∑n

m=1 QmFn−m(k)
∑n

m=1 Qm
, (2)

where Qm = 2m−1 is the number of nodes created in the m-th generation, F(0)
n (k) is the

degree distribution of the four initial nodes, and it is convenient to introduce Gn(k), the
degree distribution of all nodes except four initial ones.

2.3. Recurrence Relation for Fn(K)
To construct the recurrence relation for Fn(k) proceed as follows. Let l be the degree of

a node in the (n− 1)-th generation. This means that this node has l tetragons adjacent to it,
and when constructing the n-th generation of the network, each of them will be split in half,
and with probability 1/2, the splitting path will go through the node under consideration.
Every such path increases the degree of the node by one. Thus, the overall degree may
increase by l′, 0 ≤ l′ ≤ l, with the probability 2−l( l

l′), leading to

Fn(k) =
k

∑
l=b(k+1)/2c

2−l
(

l
k− l

)
Fn−1(l) for n ≥ 1, F0(k) = δk,2, (3)

where the fact that all nodes are created with degree 2 is taken into account and the notation
bxc is introduced for the integer part of x (i.e., greatest integer less or equal to x). This
equation can be written down in a simpler form in terms of a generating function,

fn(λ) =
∞

∑
k=2

λkFn(k). (4)

Indeed, after substituting Equation (3), one obtains f0(λ) = λ2 and

fn(λ) =
∞

∑
k=2

k

∑
l=b(k+1)/2c

λk2−l
(

l
k− l

)
Fn−1(l)

=
∞

∑
l=2

l

∑
m=0

(λ/2)l
(

l
m

)
λmFn−1(l) =

∞

∑
l=2

(
λ(1 + λ)

2

)l
Fn−1(l) = fn−1

(
λ(1 + λ)

2

)
,

(5)
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where the order of summation is changed, m = k− l is introduced, and the binomial formula,

(1 + λ)l =
l

∑
m=0

(
l
m

)
λm, (6)

is used. The recurrence relation for the four initial nodes is a bit different because in their
case, the node of degree l has only l − 1 adjacent tetragons:

F(0)
n (k) =

k

∑
l=bk/2c+1

2−l+1
(

l − 1
k− l + 1

)
F(0)

n−1(l) for n ≥ 1, F0(k) = δk,2, (7)

which leads to the following equation for the generating function

f (0)n (λ) =
∞

∑
k=2

λkF(0)
n (k) =

2
1 + λ

f (0)n−1

(
λ(1 + λ)

2

)
, (8)

In the n → ∞ limit, both fn(λ) and f (0)n (λ) converge to zero for all |λ| < 1. Indeed, the
probability to have any finite degree many generations after the creation of a node is
exponentially small.

2.4. Generating Function of the Degree Distribution

Combining Equation (2) for Gn(k), Gall
n (k) and the equations for the generating func-

tions (5) and (8), one gets the recurrence relation for the full degree distributions in terms
of generating functions:

gn(λ) = ∑
k

Gn(k)λk, gall
n (λ) = ∑

k
Gall

n (k)λk. (9)

For gn(λ), one gets:

(2n+1 − 1)gn+1(λ) = 2nλ2 + (2n − 1)gn

(
λ(1 + λ)

2

)
for n ≥ 0; g0(λ) = λ2, (10)

which in the limit of large n reduces to

gn+1(λ) =
1
2

λ2 +
1
2

gn

(
λ(1 + λ)

2

)
. (11)

Contrary to Equation (5) and (8), Equation (10) has a non-trivial limiting solution for n→ ∞.
Indeed, if Gn(k) converges to a limiting form G(k), then

ḡ(λ) = ∑ G(k)λk = ∑ lim
n→∞

Gn(k)λk = lim
n→∞ ∑ Gn(k)λk = lim

n→∞
gn(λ). (12)

where the summation and the limit are transposed, as one can do for convergent positive
series. Thus, ḡ(λ) is a solution of the functional equation,

2ḡ(λ) = λ2 + ḡ
(

λ(1 + λ)

2

)
, ḡ(λ) = ∑

k
G(k)λk. (13)

It seems impossible to solve this equation for all λ; however, it is possible to extract
most important information about G(k) directly from the equation. Indeed, the behavior of
the distribution for the small and large k is controlled by the behavior of the generating
function in the vicinity of λ = 0 and λ = 1, respectively. For small λ, substituting

ḡ(λ) = p2λ2 + p3λ2 + p4λ4 + . . . (14)
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into Equation (13), one obtains:

p2 =
4
7

, p3 =
16

105
, p4 =

16
155

, p5 =
64

1519
, etc. (15)

for the limiting probabilities of having a node degree equal to 2, 3, 4, 5, . . . .
In turn, from the behavior of ḡ(λ) in the vicinity of λ = 1, one can extract both the value

of α defined in Equation (1) and the values of existing moments of G(k). Indeed, define

Greg(k) = G(k)− Ck−α, (16)

and, accordingly,
greg(λ) = ḡ(λ)− CLiα(λ). (17)

Equation (1) implies that Greg(k) converges to zero with growing k faster than k−α, which
guarantees that greg(λ) is less singular then the first one in the vicinity of λ = 1. Thus,
at λ → 1, the function ḡ(λ) has a singularity of the type (1 − λ)α−1 and has smooth
derivatives up to the order bα− 1c. Thus, in the lowest orders in ε = 1− λ,

ḡ(λ) =
bα−1c

∑
i=0

aiε
i + CΓ(1− α)εα−1 + o(εα−1), (18)

where values of ai depend on the small-k behavior of G(k) and contain information about
the momenta of the distribution:

a0 = ∑
k
G(k); a1 = −∑

k
kG(k) = −〈k〉∞, etc. (19)

Now, substituting λ(λ + 1)/2 = 1− 3ε/2 + ε2/2 into Equation (13) and equating
coefficients in front of different powers of ε, one obtains:

2a0 = 1 + a0, a0 = 1,

2a1 = −2 + 3a1/2, a1 = −4,

2CΓ(1− α) = CΓ(1− α)(3/2)α−1, α = 1 + ln 2
ln(3/2) =

ln 3
ln 3−ln 2 ≈ 2.70951 . . .

(20)

Thus, bα− 1c = 1, and only zeroth and first moments of the distribution converge:

∑
k
G(k) = a0 = 1; 〈k〉∞ = −a1 = 4, (21)

while all the higher moments, starting from 〈k2〉, diverge with growing n.
It is instructive to calculate the exact values of moments 〈k〉n, 〈k2〉n for all finite n. To

do this, note that

〈k〉n =
dgn(λ)

dλ

∣∣∣∣
λ=1

; 〈k2〉n = 〈k〉n +
d2gn(λ)

dλ2

∣∣∣∣
λ=1

. (22)

Equation (10) implies

(2n+1 − 1)g′n+1(λ) = 2n+1λ + (2n − 1)
(

2λ + 1
2

)
g′n

(
λ(1 + λ)

2

)
, (23)

which, for λ = 1, leads to(
1− 2−n−1

)
〈k〉n+1 = 1 +

3
4
(
1− 2−n)〈k〉n. (24)

Substituting
bn = 4−

(
1− 2−n)〈k〉n, (25)
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and allowing for the initial condition 〈k〉1 = 2, b1 = 3, one obtains:

bn =
3
4

bn−1 = 4
(

3
4

)n
(26)

and, thus,

〈k〉n = 4
1− (3/4)n

1− (1/2)n . (27)

This is the average degree of all nodes except the original four at the n-th step of the
network-generation process. Given Equation (2), one obtains the average degree of all
nodes:

〈k〉all
n = ∑ kGall

n (k) =
(2n − 1)〈k〉n + 4(1 + (3/2)n)

2n + 3
= 4

(1− (3/4)n)2n + 1 + (3/2)n

2n + 3
= 4

2n + 1
2n + 3

. (28)

2.5. Second Moment of the Finite-Generation Distribution
To calculate the second moment, take the second derivative of Equation (10):

(2n+1 − 1)g′′n+1(λ) = 2n+1 + (2n − 1)g′n

(
λ(1 + λ)

2

)
+ (2n − 1)

(
2λ + 1

2

)2
g′′n

(
λ(1 + λ)

2

)
(29)

and take into account Equation (55). Substituting λ = 1 and allowing for the fact that

g′n(1) = 〈k〉n; g′′n(1) = 〈k2〉n − 〈k〉n (30)

leads to

(2n+1 − 1)(〈k2〉n+1 − 〈k〉n+1) = 2n+1 + (2n − 1)〈k〉n +
9
4
(2n − 1)(〈k2〉n − 〈k〉n) (31)

or

(2n+1 − 1)〈k2〉n+1 −
9
4
(2n − 1)〈k2〉n = 2n+1 + (2n+1 − 1)〈k〉n+1 −

5
4
(2n − 1)〈k〉n, (32)

which, after substituting Equation (27), simplifies to

(2n+1 − 1)〈k2〉n+1 −
9
4
(2n − 1)〈k2〉n = 2n

(
5−

(
3
4

)n)
. (33)

Now define the sequence

an = 〈k2〉n
2n − 1

2n (34)

and its generating function F(s) = ∑ ansn. The recurrency for an reads:

an+1 =
9
8

an +
5
2
− 1

2

(
3
4

)n
(35)

for n ≥ 1, and a1 = 2. Then:

F(s)
(

1− 9
8

s
)
= 2s +

5
2

s2

1− s
− 3

8
s2

1− 3s/4
. (36)
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In order to proceed further, note that

2s
1− 9s/8

= −16
9

+
16
9

1
1− 9s/8

,

s2

(1− s)(1− 9s/8)
=

8
9
− 8

1
1− s

+
64
9

1
1− 9s/8

,

s2

(1− 3s/4)(1− 9s/8)
=

32
27
− 32

9
1

1− 3s/4
+

64
27

1
1− 9s/8

.

(37)

Thus,

F(s) =
56
3

1
1− 9s/8

− 20
1

1− s
+

4
3

1
1− 3s/4

; an =
56
3

(
9
8

)n
− 20 +

(
3
4

)n−1
, (38)

and

〈k2〉 = (1− 2−n)−1

[
56
3

(
9
8

)n
− 20 +

(
3
4

)n−1
]

. (39)

Proceeding in the same way, one obtains:

〈k2〉(0) = 4
3

(
9
4

)n
+

5
3

(
3
2

)n
+ 1. (40)

Thus, the total average degree is:

〈k2〉all =
2n − 1
2n + 3

〈k2〉+ 4
2n + 3

〈k2〉(0)

=

(
1 +

3
2n

)−1[
24
(

9
8

)n
− 20 + 8

(
3
4

)n
+ 4
(

1
2

)n]
≈ 24

(
9
8

)n
− 20,

(41)

where the approximal equality holds for n� 1. Comparing Equations (39) and (41) shows
that, interestingly, the four initial nodes contribute a finite fraction to the overall value of
〈k2〉all, which converges to 2/9 for large n.

2.6. Scaling Form of the Degree Distribution
For large n, the degree distribution Gn(k) converges to G(k). Typically (see, e.g., [36]),

one expects the ratio of these functions Φn(k) = Gn(k)/G(k) to attain a universal shape for
large n. More precisely, it means that there exists a scaling function φ(x) and a sequence
Kn for which

Φn(k)
φ(k/Kn)

→ 1 for n→ ∞. (42)

Here, Kn is the characteristic scale of the distribution of the n-th generation graph, and it
diverges as n→ ∞. One must demand φ(0) = 1 in order for Gn(k) to converge to G(k) and
φ(∞) = 0 in order for k to be bound from above for any finite n. There are various ways of
obtaining the scaling factor Kn, e.g., one can use the large-n behavior of 〈k2〉n:

〈k2〉n = ∑ k2Gn(k) ∼ K(3−α)
n , (43)

where it is taken into account that (contrary to the lower moments) 〈k2〉n is controlled by
the tail of the distribution. Substituting Equation (41), one obtains:

K3−α
n = (9/8)n; → Kn = (3/2)n, (44)

which is to be expected since the typical maximal degree of the network increases by a
factor 3/2 on each step.

In order to check the predictions of the model, 2× 105 realizations of the networks
of up to the 14th generation were generated. Figure 3a shows the resulting degree dis-
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tributions for sequential generations of the network. It can be seen from Figure 3b that
after renormalization of the abscisse and ordinate axes by the factors (3/2)n and k−α,
respectively, the data collapse perfectly on a single scaling curve φ(x).

k

P(k)

k/(3/2)
n

P(k) k
a

(a) (b)

Figure 3. (a) Degree distributions of the tetragon-based networks of generations 5–14 as indicated. The results shown are
obtained after averaging over 2× 105 realizations and logarithmic binning with step 1.1. (b) Same distributions but rescaled
as the axes show.

3. Polygon-Based Networks for Polygons with Any Even Number of Edges
The procedure suggested in Section 2 can be easily generalized for any even number

of edges 2m (m ≥ 2) in the generating polygon; see generalization for m = 3 in Figure 4.
This procedure results in a sequence of planar scale-free network models with degree
distributions converging to

Gm(k) ' Cmk−αm , k� 1, (45)

with m-dependent exponents αm. At each generation, each polygon is split by a path
connecting directly opposite nodes. There are m different ways of such a splitting, so
each node of a polygon participates in the splitting with probability 1/m. This allows
generalizing the recurrence relations (3) and (7) for the degree distribution of a node n
generations after its creation in the following way:

F(0)
n,m(k) =

k

∑
l=bk/2c+1

(
l − 1

k− l + 1

)(
1
m

)k−l+1(m− 1
m

)2l−k−2
F(0)

n−1,m(l) for n ≥ 1 F(0)
0 (k) = δk,2 , (46)

for the original 2m nodes, and

Fn,m(k) =
k

∑
l=b(k+1)/2c

(
l

k− l

)(
1
m

)k−l(m− 1
m

)2l−k
Fn−1,m(l) for n ≥ 1; F0,m(k) = δk,2; (47)

for all the rest. The number of nodes created at n-th generation (n ≥ 1) is (m − 1)2n.
Proceeding in exactly the same way as before, gives

f (0)n,m(λ) =
∞

∑
k=2

λkF(0)
n (k) =

m
m− 1 + λ

f (0)n−1

(
λ(m− 1 + λ)

m

)
, (48)

gn,m(λ) =
1

(m− 1)(2n − 1)

n

∑
l=1

∞

∑
k=2

(m− 1)2l Fn−l,m(k)λk

=
2n−1

2n − 1
λ2 +

2n−1 − 1
2n − 1

gn−1,m

(
λ(m− 1 + λ)

m

)
for n ≥ 1; g1,m(λ) = λ2,

(49)
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and

gall
n,m(k) =

2m
(m− 1)2n + m + 1

f (0)n,m(λ) +
(m− 1)(2n − 1)

(m− 1)2n + m + 1
gn,m(λ) (50)

for the generating functions of the degree distributions of the original, newly created and
all nodes of the network, f (0)n,m(λ), gn,m(λ) and gall

n,m(λ), respectively. The limiting function,

ḡm(λ) = lim
n→∞

gn,m(λ), (51)

satisfies

ḡm(λ) =
λ2

2
+

1
2

ḡm

(
λ(m− 1 + λ)

m

)
, (52)

and its behavior is easy to analyze both in the vicinity of λ = 0 and λ = 1. Expanding
Equation (52) for small λ, one obtains:

pm
2 =

m2

K2,m
, pm

3 =
2m3(m− 1)

K2,mK3,m
, pm

4 =
m3(2m3 + 5(m− 1)3)

4
∏
l=2

Kl,m

,

pm
5 =

m5(m− 1)2(12m4 + 8m3(m− 1) + 14(m− 1)4)
5

∏
l=2

Kl,m

, etc.,

(53)

where a short-hand notation, Kl,m = 2ml − (m− 1)l , is introduced.

Figure 4. Construction of the hexagon-based network (up to 4th generation).
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In turn, in the vicinity of λ = 1 ḡm(λ), it takes the form of Equation (18). Substituting
the ansatz (18) into Equation (52), one obtains:

2a0 = 1 + a0, a0 = 1,

2a1 = −2 + (m + 1)a1/m, a1 = −2m/(m− 1),

2a2 = 1− a1/m + (m + 1)2a2/m2, a2 =
(m + 1)m2

(m− 1)(m2 − 2m− 1)
,

2CΓ(1− αm) = CΓ(1− αm)(m + 1/m)αm−1, αm = 1 +
ln 2

ln(m + 1)− ln m
.

(54)

Thus, for any m ≥ 3 bαm − 1c ≥ 2, the second moment of Gm(k) converges. The moments
are controlled by the coefficients ai:

∑
k
G(k) = a0 = 1, ∑

k
kG(k) = −a1 =

2m
m− 1

, ∑
k

k2G(k) = 2a2 − a1 =
2m(2m2 −m− 1)

(m− 1)(m2 − 2m− 1)
. (55)

Since the second moment of Gm(k) is now controlled by the values of distribution at small
k, the initial 2m nodes do not contribute to the second moment.

Once again, in order to check the predictions 2× 105 realizations of the networks
of up to the 12th generation were generated. The results are shown in Figure 5a, and
in Figure 5b the plot in the renormalized coordinates is shown. The collapse of the data
onto a single master curve is apparent, although it is somewhat worse than in Figure 3b.
Presumably, this happens because the typical degrees in the hexagon-based network are
much smaller than in the tetragon-network of the same size, and finite size effects are
therefore more important.

k

P(k)

k/(4/3)
n

P(k) k
a

(a) (b)

Figure 5. (a) Degree distributions of the hexagon-based networks of generations 4–12 as indicated. The results shown are
obtained after averaging over 2× 105 realizations and logarithmic binning with step 1.1. (b) Same distributions but rescaled
as the axes show.

4. Polygon-Based Networks with Smoothly Changing Exponent of the
Degree Distribution

As a result of Section 3, one now has a sequence of Apollonian-like models that gener-
ate planar scale-free networks with a discrete sequence of degree-distribution exponents
αm = 1+ ln 2/(ln(m+ 1)− ln m), m = 2, 3, . . . Is it possible to further generalize the model
to make α change continuously and take any intermediate values, including, for example,
α = 3, corresponding to the point where the second moment of the degree distributions
diverges for the first time?

It turns out that this is indeed possible. One way to do that is as follows. Assume
that when introducing a new shortcut dividing a polygon in two, one makes the resulting
partition to be a pair of tetragons with probability p and a pair of hexagons with probability
1− p. That is to say, if the original polygon is a tetragon, then with probability p introduce
a 2-step path connecting opposite vertices, and with probability q = 1− p , a 4-step path;
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if the original polygon is a hexagon, the new path connecting two opposite vertices is a
1-step path with probability p and a 3-step path with probability q.

Here, we restrict ourselves to this simplest construction, although it is possible to create
more complicated rules. For example, one can introduce correlations between generations
in a Markovian way so that there is a matrix pij of probabilities for a tetragon to give birth
to a couple of tetragons, a hexagon to give birth to a couple of tetragons, etc. As a result, it
might be possible to construct a network that is, for example, tetragon-dominated at large
scales (early generations) and hexagon-dominated at small scales (later generations).

Once again , consider a node, which is created at generation n0, and let us study
its degree distribution at generation n0 + n. This degree distribution depends only on n
and on the number of edges of the initial two faces adjacent to the node where tetragons
or hexagons.

Let the average fraction of tetragons at a given generation be p and the fraction of
hexagons be q = 1− p. Then, for each face adjacent to a given node, the probability that
this face is a tetragon is

π(p) =
4p

4p + 6q
=

2p
3− p

. (56)

Assume now that different faces adjacent to a node are tetragons (hexagons) indepen-
dently from each other. Generally speaking, that is not true: when a new edge is created,
the two faces on the sides of it have a similar number of edges. However, one might expect
that as the degree of the node grows the correlations become less and less relevant. In this
approximation, the probability for a node of degree k to have exactly l adjacent tetragons is(

k
l

)
πl(1− π)k−l . (57)

when the next generation is created, a new edge adjacent to the node under consideration
is created with probability 1/2 for each tetragon face and with probability 1/3 for each
hexagon face. Therefore, one can write down the following approximate equation for the
probability P(k + r|k, p) of the node that has degree k + r at the next generation given that
it had degree k in the previous one:

P(k + r|k, p) =
k

∑
l=0

r

∑
s=0

(
k
l

)
πl(1− π)k−l

(
l
s

)(
1
2

)l(k− l
r− s

)(
1
3

)r−s(2
3

)k−l−r+s
, (58)

where the binomial coefficients (m
n) are assumed to be zeros if n > m or n < 0. Now,

introduce the probability Fn(k|p) for a node to have degree k n generations after its creation,
and the corresponding generation function,

fn(λ|p) =
∞

∑
k=2

Fn(k)λk. (59)

Then, f0(λ|p) = λ2,

Fn(k) =
k

∑
k′=b k+1

2 c
P(k|k′, p)Fn−1(k′), (60)

and

fn(λ|p) =
∞

∑
k=2

k

∑
k′=b k+1

2 c
λkP(k|k′, p)Fn−1(k′) =

∞

∑
k′=2

Fn−1(k′)λk′
2k′

∑
k=k′

λk−k′P(k|k′, p). (61)

Using Equation (58), it is easy to calculate the second sum on the right-hand side:
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∑k′
r=0 λrP(k′ + r|k′, p) = ∑k′

r=0 ∑k′
l=0 ∑r

s=0
k′ !

s!(l−s)!(r−s)!(k′−l−r+s)! π
l(1− π)k′−l

(
1
2

)l( 1
3

)r−s( 2
3
)k′−l−r+s

λr

= ∑k′
r=0 ∑k′

l=0 ∑r
s=0

k′ !
s!(r−s)!(l−s)!(k′−l−r+s)!

(
πλ
2

)s(
π
2
)l−s

(
(1−π)λ

3

)r−s( 2(1−π)
3

)k′−l−r+s

=
(

πλ
2 + π

2 + (1−π)λ
3 + 2(1−π)

3

)k′
,

(62)

which leads to the following equation for the generating function:

fn(λ) = fn−1

(
λ

(
4− π

6
+

2 + π

6
λ

))
= fn−1

(
2− p + λ

3− p
λ

)
, (63)

where Equation (56) is taken into account to obtain to the last expression. Proceeding
as before, one gets the equation for the generating function of the full limiting degree
distribution g∞(λ) (except for the initial set of nodes):

g∞(λ) =
λ2

2
+

1
2

g∞

(
2− p + λ

3− p
λ

)
. (64)

Expanding g∞(λ) for λ = 1− ε, ε� 1 in the form (compare Equation (18)):

ḡ(λ) =
bα(p)−1c

∑
i=0

aiε
i + CΓ(1− α(p))εα(p)−1 + o(εα(p)−1), (65)

and equating the coefficients term by term exactly in the same way as in Section 2, one gets
the following equation for the degree distribution exponent α(p):

2 =

(
4− p
3− p

)α(p)−1
, α(p) = 1 +

ln 2
ln(4− p)− ln(3− p)

. (66)

Thus, for example, the interesting case α(p) = 3 when the second moment of the
degree distribution diverges for the first time corresponds to

p|α=3 = 2−
√

2 ≈ 0.58579 . . . (67)

In Figure 6, the numerical data for the degree distribution of the mixed networks
are shown. One can clearly see that the slope of the distribution gradually changes with
changing p. Moreover, after rescaling the degree distribution with the power law prescribed
by Equation (66), all curves are approximately flat for small k, validating the approximation
of independent phases.
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Figure 6. (a) Degree distributions of n = 10th-generation mixed tetragon–hexagon networks with varying p, rainbow
changing color from p = 0.9 (red) to p = 0.1 (violet). The results shown are obtained after averaging over 105 realizations
and logarithmic binning with step 1.05. (b) Same distributions but rescaled: P(k) is rescaled by its theoretical behavior k−α,
with α given by Equation (66), k is rescaled by a factor k0(p, n) = ((4− p)/(3− p))n, which approximates the growth of the
maximal accessible degree with the number of generations n.

5. Concluding Remarks and Open Questions
This paper presents one possible class of planar random graphs constructed from

polygons with an even number of edges using a procedure similar to the construction of
Apollonian graphs [18]. The 2m-polygon-based graphs have a limiting power law degree
distribution with the exponent,

αm = 1 +
ln 2

ln(m− 1)− ln m
, (68)

and the moments of the degree distribution are given by Equations (21) and (55). The second
moment of the degree distribution diverges as (9/8)n with the number of generations n
in the case of tetragon-based graphs (see Equation (41)) and converges to a finite value
in Equation (55) for the polygons with a larger number of edges. Moreover, as described
in Section 4, it is possible to construct a mixed model based on two different polygons
(tetragons and hexagons in our example) so that on all stages of construction, tetragons
are formed with probability p and hexagons with probability 1− p. By varying p, one can
adjust the slope of the degree distribution in order to achieve a desired value in a way
reminiscent of evolving Apollonian networks [26].

Clearly, all graph classes presented here are small world. Indeed, the diameter of the
graphs grows at most linearly with the number of generations:

dn+1 ≤ dn + 2bm/2c , (69)

where dn is the diameter of the n-generation graph. In turn, the total number of nodes grows
exponentially with the number of generations; thus, the diameter is, at most, proportional
to the logarithm of the number of nodes.

The shortest cycles in the graphs presented here are 2m, and, in particular, there are
no triangles in them, so, generally speaking, the clustering coefficient is zero. However,
this should not obscure the fact that there is actually a huge number of short cycles in
these graphs. Indeed, consider the following auxiliary construction: let the polygon-based
construction be exactly as presented above up to n-th generation, but then connect all the
nodes belonging to the same face on the last generation of the procedure, so the smallest
faces (i.e., faces constructed on the last step) are considered to be complete graphs K2m
((2m− 1)-simplices). The large-scale structure of the resulting graph (including, e.g., the
slope of the degree distribution) will be the same as in the original polygon-based procedure,
but a finite fraction of nodes (those created in the n-th generation of the construction) will
have clustering coefficient 1, guaranteeing that the average clustering coefficient of the
whole graph remains finite as n→ ∞. In order to use polygon-based graphs as a toy model
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for experimental systems, it might be reasonable to add a random fraction of them in order
to fit the observed clustering coefficient instead of adding all possible links connecting the
vertices in the smallest faces.

Interestingly, polygon-based graphs with even m are bipartite, see Figure 7a. In that
sense, the tetragon-based graph seems to be a natural generalization of the Apollonian
construction for the case of bipartite graphs. We expect that there might be a connection
between bipartite polygon-based graphs and space-filling bearings, which allow only
cycles of even lengths [37] in a way similar to the connection between original Apollonian
networks and space-filling systems of embedded disks. Exploring this question goes,
however, beyond the scope of this paper.

This paper restricts itself to just one class of possible generalizations of the Apollonian
construction based on polygons of arbitrary sizes. It is quite easy to suggest various other
generalizations. The most obvious example is, probably, the random polygon construc-
tion where new graphs are constructed not generation-by-generation by splitting all the
polygons of the previous generation at once, but rather by randomly choosing on each
step a face to split. Figure 7b presents an example realization of such a tetragon-based
random graph. In the standard Apollonian case, it is known that the exponent of the degree
distribution is different for the regular and random constructions. Calculating the de-
gree distribution of random Apollonian-like polygon-based graphs remains an interesting
open question.

(a)

(b)

(c)

Figure 7. (a) Tetragon-based networks are bipartite. (b) An example of a particular realization of a
randon tetragon-based graph. (c) An example of a 2nd-generation deterministic pentagon-based graph.

Another, this time a completely deterministic generalization, is as follows. Consider
a polygon with an odd number of edges 2m + 1, m ≥ 1. Put a point inside the polygon
and connect it with all vertices of the polygon by chains of m edges and (m− 1) nodes.
This splits a polygon into 2m + 1 faces, each having exactly 2m + 1 edges. On the next
step, repeat this procedure for each of the faces and proceed ad infinitum. Figure 7c shows
the second-generation pentagon-based graph obtained via such procedure. Clearly, this
construction is an even more direct generalization of the Apollonian graph construction
(indeed, m = 1 case is just the Apollonian graph itself). However, it means that it has
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standard drawbacks of the Apollonian graph in a sense that it is a single deterministic
object rather than a stochastic ensemble of graphs and that its limiting degree distribution
is not a power law but rather a log-periodic function with a power law envelope.

We think that the classes of graphs presented here are a useful addition to the toolkit
of toy models to model scale-free graphs. Indeed, while having the main advantages of the
Apollonian networks, they have additional flexibility in a sense that one might regulate the
slope of the degree distribution and the average clustering coefficient in the way described
above. In particular, such graphs might be, in our opinion, useful in the applications
where graph planarity is essential [38], for example, in quantitative geography, such as the
study of the formation of the systems of interconnected cities. On the other side, studying
percolation, spectral properties, diffusion, synchronization, epidemic spreading, etc., on
these generalized graphs might allow to systematically study the influence of varying
degree exponents on these phenomena, which, to the best of our knowledge, have not yet
been done for the scale-free planar networks.
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