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Abstract: The purpose of this paper is to study and analyze the concept of fractional-order complex-
valued chaotic networks with external bounded disturbances and uncertainties. The synchronization
problem and parameter identification of fractional-order complex-valued chaotic neural networks
(FOCVCNNs) with time-delay and unknown parameters are investigated. Synchronization between
a driving FOCVCNN and a response FOCVCNN, as well as the identification of unknown parameters
are implemented. Based on fractional complex-valued inequalities and stability theory of fractional-
order chaotic complex-valued systems, the paper designs suitable adaptive controllers and complex
update laws. Moreover, it scientifically estimates the uncertainties and external disturbances to
establish the stability of controlled systems. The computer simulation results verify the correctness
of the proposed method. Not only a new method for analyzing FOCVCNNs with time-delay and
unknown complex parameters is provided, but also a sensitive decrease of the computational and
analytical complexity.

Keywords: adaptive synchronization; fractional-order; complex-valued chaotic neural networks;
time-delay; unknown complex parameter

1. Introduction

Compared with real-valued neural networks, complex-valued neural networks have
the advantages of simpler network structure, simpler training process, and stronger ability
to handle complex signals. This is mainly due to the fact that the state vectors, connection
weights, and activation functions in complex-valued neural networks are all represented
by complex values. In addition, complex-valued neural networks can solve problems that
cannot be solved by real-valued neural networks. For example, two-layer real-valued
neural networks cannot solve the problems of exclusive “OR” (XOR) and symmetry de-
tection, while two-layer complex-valued neural networks can easily do so, which shows
that the computational ability of complex-valued neurons is remarkable. In recent years,
practical applications of complex-valued neural networks in physical systems such as
electromagnetic, optical, ultrasonic, and quantum waves, as well as in the fields of filtering,
speech synthesis, and remote sensing, have attracted widespread attention [1–19].

With the development of fractional calculus, more and more researchers recognize
that fractional-order models can better describe various substances and processes with
memory and genetic properties in neural networks than integer-order models, and can
also effectively facilitate the information process. Meanwhile, fractional-order calculus
in neural networks can improve the accuracy and flexibility of computation, and have a
great application value in computational optimization and control performance improve-
ment. Therefore, combining fractional-order calculus with neural network models to
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form fractional-order neural network models expands the basic theory and application
capabilities of neural networks.

The analysis of fractional-order neural networks (FNNs) has become a research area
attracting increasing interest (see [20–40] and references therein). Moreover, the simul-
taneous analysis of stability of fractional-order real-valued and complex-valued neural
networks has received extensive attention. In [20,21], projection synchronization and
adaptive synchronization of fractional-order memristor neural networks are discussed.
In [10], synchronization of fractional-order complex-valued neural networks (FOCVNNs)
was studied using the linear delay feedback control. The authors investigated the global
Mittag-Leffler synchronization problem of fractional-order neural networks in Refs. [22–24].
In Refs. [25–32], the authors analyzed the stability, finite-time stability, and global Mittag-
Leffler stability of fractional-order time-delayed complex-valued neural networks, respec-
tively. In [31], several sufficient conditions for achieving finite-time projection synchro-
nization of fractional-order complex-valued neural networks are derived by applying
set-valued mappings, differential inclusion theory, and Gronwalls’ inequality. In [32],
Li et al. implemented the adaptive synchronization of fractional-order complex-valued
neural networks with discrete and distributed delays. The modified function projective
synchronization (MFPS) for complex dynamical networks with mixed time-varying and
hybrid asymmetric coupling delays was investigated in [33]. In [34], the authors studied a
novel delay-dependent asymptotic stability of a differential and Riemann-Liouville frac-
tional differential neutral system with constant delays and nonlinear perturbation. In [35],
Dai et al. reported that in populations with cooperative and competitive oscillators, the
transition between continuous and explosive can be tuned simply by adjusting the balance
between the two oscillator types. Furthermore, Dai et al. [36] proposed a unified framework
for the analysis of system synchronization and conducted an in-depth study of network
synchronization laws in different dimensions.

It should be noted that the aforementioned papers on neural network synchronization
all assume that the network is predetermined. In fact, in many practical engineering
situations, most system parameters cannot be accurately determined in advance, and
chaotic synchronization will be disrupted by these uncertainties. In addition, there are
usually delays in neural networks due to the limited speed of signal transmission between
neurons. Time-delay can have an impact on the dynamic properties of a neural network and
can even destroy it. Although, authors in [37] investigated the controller design problem
for finite-time and fixed-time stabilization of fractional-order memristive complex-valued
bidirectional associative memory (BAM) neural networks with uncertain parameters and
time-varying delays, but the nonlinear complex-valued activation functions are split into
two (real and imaginary) components. Therefore, to the best of our knowledge, there are few
studies on the synchronization of fractional-order complex-valued chaotic neural networks
(FOCVCNNs) with time-delays and unknown parameters, especially without dividing
the real and imaginary components into two real-valued systems. Therefore, it is very
important and useful to efficiently synchronize fractional-order complex-valued chaotic
neural networks with time-delays and unknown parameters in practical applications.

Inspired by the above discussion, this paper investigates the synchronization problem
of FOCVCNNs with time-delay and unknown complex parameters. Using inequalities
containing fractional-order derivatives of complex variables and the stability theory of
fractional-order complex-valued chaotic systems, synchronization and parameter identifi-
cation of FOCVCNNs are achieved.

The main contributions of this paper can be summarized as follows.

(i) Most of the existing studies on the synchronization methods of fractional-order neural
networks are about fractional-order real-valued neural networks. On the other hand,
existing studies on fractional-order complex-valued neural networks are on the known
parameters or with no time-delay or without identifying the parameters.
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(ii) A new adaptive controller and update laws are designed to synchronize the driving
and response systems. This is the first study of synchronization of fractional-order
complex-valued neural networks with time-delay and unknown complex parameters.

(iii) Compared with previous synchronization models of fractional-order complex neu-
ral networks, the model proposed in this paper is more tractable and easier to be
implemented in practical systems.

(iv) For fractional-order complex neural networks with known parameters and time-delay
or known parameters without time-delay, the synchronization model proposed in
this paper is also applicable, and only the control strategies need to be adjusted
accordingly.

(v) This paper proposes the novel perspective that chaos occurs in fractional-order
complex-valued neural networks as long as the parameters are suitable, and two new
FOCVCNNs are given to broaden the application of fractional-order complex-valued
neural networks.

2. Preliminaries

Fractional calculus plays an important role in modern science. In this paper, Riemann-
Liouville and Caputo’s fractional operators are used as the main tools.

Notation: Cn denotes a complex n-dimensional space. For z ∈ C, Re(z), Im(z) and z
are the real part, imaginary part, and conjugate of z, respectively.

Definition 1 ([41]). The fractional integral form of order α for function f is defined as follows:

Iα f (t) = t0
D−α

t f (t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dτ, (1)

where t denotes the time and t0 is the initial time, t ≥ t0, and α > 0.

Definition 2 ([41]). Caputo’s fractional derivative form of order α for function f ∈ Rn is defined by:

C
t0

Dα
t f (t) =

1
Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α−n+1 dτ, (2)

where t ≥ t0 and n are a positive integer, then n− 1 < α < 1.

Lemma 1. Let z be a differentiable complex-valued function. Then, ∀t ≥ t0 and α ∈ (0, 1], and the
following inequality holds [42]:

C
t0

Dα
t z(t) z(t) ≤ z(t)C

t0
Dα

t z(t) + (C
t0

Dα
t z(t) )z(t). (3)

Lemma 2. (Stability theory for fractional-order system [41]). Let V1(t) be a uniformly continuous
and derivable Lyapunov function, and let V2(t) be a derivable and nonnegative function.

If
V(t) = V1(t) + V2(t), (4)

and
C
0 Dα

t V(t) ≤ −θV1(t), (5)

where θ is a positive constant. Then, lim
t→∞

V1(t) = 0.

Lemma 3 ([43]). Let V(t) and U(t) be two nonnegative continuous functions, and satisfy

C
0 Dα

t (V(t) + U(t)) ≤ −σV(t) + ρ, (6)
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where 0 < α < 1, σ < 0, and ρ > 0, then

V(t) ≤ (V(0) + U(0)− ρ

σ
)Ea,1(−σtα) +

ρ

σ
. (7)

Remark 1. Since Eα,1(−σtα)→ 0(σ > 0) , as t→ ∞ , if ρ = 0, one can deduce Lemma 2, by
this Lemma.

Lemma 4 ([44]). For any α, β ∈ C, and any δ > 0, the following inequality holds:

αβ + αβ ≤ δαα +
1
δ

ββ. (8)

3. Main Results

Let us consider a kind of FOCVCNNs described by the following equations: C
0 Dα

t zi(t) = −cizi(t) +
n
∑

j=1
aij f j(zj(t)) +

n
∑

j=1
bijgj(zj(t− τ)) + Ii(t), t ≥ 0, i = 1, 2, · · · , n,

zi(s) = ϕi(s), s ∈ [−τ, 0],
(9)

where 0 < α < 1, and zi(t) ∈ C is the complex state variable of the ith neuron; f j(·),
gj(·) ∈ C represent the activation functions without and with delay; aij, bij ∈ C denote the
connection weight and delayed connection weight, respectively; ci ∈ R, τ > 0 are constant
delays; and Ii represents the corresponding external inputs. The complex-valued functions
f j(·), gj(·) and Ii satisfy the following assumptions.

Assumption 1. For any µ, ν ∈ C, there exist real numbers lj, hj> 0, then∣∣ f j(µ)− f j(ν)
∣∣≤ lj

∣∣µ− ν
∣∣, ∣∣gj(µ)− gj(ν)

∣∣≤ hj
∣∣µ− ν

∣∣. (10)

Assumption 2. For any v ∈ C, there exist real numbers γi > 0 and εi >0, then∣∣ f j(ν)
∣∣≤ γi,

∣∣Ii(ν)
∣∣≤ εi. (11)

Choose system (9) as the master system, and aij, bij are unknown constants which
need to be identified, then the controlled response system is given by: C

0 Dα
t wi(t) = −ciwi(t) +

n
∑

j=1
αij f j(wj(t)) +

n
∑

j=1
βijgj(wj(t− τ)) + Ii(t) + ui(t), t ≥ 0, i = 1, 2, · · · , n,

wi(s) = ϕi(s), s ∈ [−τ, 0],
(12)

where wi(t) ∈ C is the complex state variable of the ith neuron of the response system;
αij, βij ∈ C represent the estimated connection weights and delayed connection weights,
respectively; and u(t) = (u1(t), u2(t), · · · , un(t))

T are controllers to be determined.
Let ei(t) = wi(t)− zi(t) be the synchronization errors between master system (9) and

slave system (12), then one can get the following error dynamical system:

C
0 Dα

t ei(t) = −ciei(t) +
n
∑

j=1
[αij f j(wj(t))− aij f j(zj(t))] +

n
∑

j=1
[βijgj(wj(t− τ))− bijgj(zj(t− τ))] + ui(t)

= −ciei(t) +
n
∑

j=1

{
aij [ f j(wj(t))− f j(zj(t))] + (αij − aij) f j(wj(t))}

+
n
∑

j=1

{
bij [gj(wj(t− τ))− gj(zj(t− τ))] + (βij − bij)gj(wj(t− τ))}+ ui(t).

(13)
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Theorem 1. If Assumptions 1 and 2 hold, the asymptotic synchronization and parameter identifi-
cation of systems (9) and (12) can be achieved under adaptive controllers, described as Equation (14)
and adaptive update laws (15)–(18):

ui(t) = −ki(t)ei(t)−mi
ei(t)

ei(t) ei(t)
ei(t− τ) ei(t− τ), i = 1, 2, · · · , n, (14)

C
0 Dα

t ki = σiei(t) ei(t), (15)

C
0 Dα

t mi = εiei(t− τ) ei(t− τ), (16)

C
0 Dα

t αi j = −ηi j f j(wj(t)) ei(t), (17)

C
0 Dα

t βi j = −ξi jgj(wj(t− τ))ei(t), (18)

where σi, εi, ηi j, ξi j are positive constants.

Proof. Let us present the following Lyapunov functional candidate:

V1(t) =
n
∑

i=1
ei(t)ei(t) = eH(t)e(t),

V2(t) =
n
∑

i=1
[ 1

σi
(ki − ki

∗)2 + 1
εi
(mi −mi

∗)2

+
n
∑

j=1

1
ηij
(αij − aij)(αij − aij) +

n
∑

j=1

1
ηij
(βij − bij)(βij − bij)],

(19)

where ki
∗, mi

∗ are two positive constants to be determined. �

Using Lemma 1:

C
0 Dα

t (V1(t) + V2(t)) = C
0 Dα

t

n
∑

i=1
ei(t)ei(t) + C

0 Dα
t

n
∑

i=1
[ 1

σi
(ki − ki

∗)2 + 1
εi
(mi −mi

∗)2

+
n
∑

j=1

1
ηij
(αij − aij)(αij − aij) +

n
∑

j=1

1
ηij
(βij − bij)(βij − bij)]

≤
n
∑

i=1
ei(t)C

0 Dα
t ei(t) +

n
∑

i=1
ei(t)C

0 Dα
t ei(t)

+
n
∑

i=1
[ 2

σi
(ki − ki

∗)C
0 Dα

t ki +
2
εi
(mi −mi

∗)C
0 Dα

t mi

+
n
∑

j=1

1
ηij
(αij − aij)

C
0 Dα

t (αij − aij) +
n
∑

j=1

1
ηij
(αij − aij)

C
0 Dα

t (αij − aij)

+
n
∑

j=1

1
ηij
(βij − bij)

C
0 Dα

t (βij − bij) +
n
∑

j=1

1
ηij
(βij − bij)

C
0 Dα

t (βij − bij)].

(20)

Along with Equation (13) and qualities (14)–(18), one gets:

C
0 Dα

t (V1(t) + V2(t)) ≤ −
n
∑

i=1
2ei(t)ciei(t) +

n
∑

i=1

n
∑

j=1
{ei(t)aij[ f j(wj(t))− f j(zj(t))]

+ei(t)aij[ f j(wj(t))− f j(zj(t))]

+ei(t)bij[gj(wj(t− τ))− gj(zj(t− τ))]

+ei(t)bij[gj(wj(t− τ))− gj(zj(t− τ))]
}

−
n
∑

i=1
2[ki

∗e(t)iei(t) + mi
∗ei(t− τ)ei(t− τ)].

(21)

According to Lemma 4 and Assumption 1:
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C
0 Dα

t (V1(t) + V2(t)) ≤ −
n
∑

i=1
2ciei(t)ei(t) +

n
∑

i=1

n
∑

j=1
[(aijaij + l2

j )ei(t)ei(t) + bijbijei(t)ei(t)

+h2
j ei(t− τ) ei(t− τ)]−

n
∑

i=1
2[ki

∗e(t)iei(t)−mi
∗ei(t− τ) ei(t− τ)]

=
n
∑

i=1
[−2ci − 2ki

∗ +
n
∑

j=1
(aijaij + l2

j + bijbij)]ei(t)ei(t)

+
n
∑

i=1
(

n
∑

j=1
h2

j − 2mi
∗)ei(t− τ) ei(t− τ).

(22)

Letting ki
∗ = 1

2

n
∑

j=1
(aijaij + l2

j + bijbij)− ci + 1, mi
∗ = 1

2

n
∑

j=1
h2

j :

C
0 Dα

t (V1(t) + V2(t)) ≤ −V1(t). (23)

From Lemma 2 or Lemma 3, one can obtain: lim
t→∞

V1(t) = lim
t→∞

eH(t)e(t) = 0, indicating

lim
t→∞

e(t) = 0, which shows that systems (9) and (12) can obtain asymptotic synchronization.

Meanwhile, according to Remark 1 of Theorem 1 of Ref. [45], the parameter identification
is achieved.

Remark 2. Theorem 1 provides a stability criterion for fractional-order nonlinear uncertain
systems with time-delay by choosing a Lyapunov function that includes V1(t) and V2(t).

Remark 3. Theorem 1 provides a Lyapunov-based adaptive control method for stability analysis
and synchronization of FOCVCNNs.

Remark 4. Lemma 3 is applied to verify the stability of fractional-order with unknown parameters
and external disturbances, as well as to the design of synchronous controllers for these systems.

Remark 5. For FOCVCNNs with known parameters, the update laws will be reduced to (14)
and (15).

Remark 6. For FOCVCNNs with known parameters and without time-delay, the synchronization
between systems (9) and (12) can be achieved under the following control strategy (24).

Remark 7. It is worth mentioning that the synchronization problem discussed in this paper is
about fractional-order complex-valued neural networks with time-varying delays and unknown
parameters, while most of the existing work on parameter identification methods for synchronization
is about fractional-order real-valued models. On the other hand, previous studies have mainly focused
on fractional-order complex-valued models with known parameters [10,31,43] or fractional-order
complex-valued models without time-delay [46]:{

ui(t) = −kiei(t),
C
0 Dα

t ki = σiei(t) e(t),
(24)

where σi is a positive constant.

4. Numerical Simulations

In this Section, several numerical examples of fractional-order complex-valued neural
networks are given to show the effectiveness of the scheme proposed in previous Sections.
For the numerical solution of these systems, the predictor–corrector method [45] of the
MATLAB platform is adopted. The Lyapunov exponents of systems are calculated by the
algorithm of Wolf et al. [47], with some adaptations.
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Example 1. Consider a class of FOCVCNNs, which is described as follows: C
0 Dα

t zi(t) = −cizi(t) +
n
∑

j=1
aij f j(zj(t)) +

n
∑

j=1
bijgj(zj(t− τ)) + Ii(t),

zi(s) = ϕi(s), s ∈ [−τ, 0], t ≥ 0, i = 1, 2.
(25)

If one selects τ = 1, a11 = 2 + 0.1i, a12 = 0.4− 0.1i, a21 = 5 − 0.5i, a22 = 3 − 0.2i,
b11 = −2+ 0.1i, b12 = 0.2+ 0.1i, b21 = 0.3+ 0.1i, b22 = −2.5− 0.3i, f (z) = g(z) = tan h(z),
I1(t) = I2(t) = 0, [z1(s), z2(s)]

T = [0.01+0.01i, 0.1− 0.1i]T , ∀s ∈ [−1, 0], α = 0.96, then let
Re(a11) = 1 ∼ 2 . Figure 1a depicts the maximum Lyapunov exponent (MLE) spectrum of
system (25), and Figure 1b shows its bifurcation diagram. Figure 1 shows that system (25)
is chaotic at fractional-order, Re(a11) ∈ [1.85, 2].
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Figure 1. Dynamic behaviors of fractional-order complex-valued chaotic neural networks (FOCVC-
NNs) (25) with Re(a11): (a) maximal Lyapunov exponent, (b) bifurcation diagram.
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System (25) can exhibit chaotic behaviors, which can be called fractional-order complex-
valued chaotic neural networks. While a11 = 2 + 0.1i and the other parameters are the same
as above, the attractor trajectory with the initial condition [z1(s), z2(s)]

T = [0.1− 0.1i, 0.1]T

is shown in Figure 2. The state trajectory is shown in Figure 3.
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Figure 3. The state trajectories of FOCVCNNs with 

1,   
11

2 0.1 ,a i
12

0.4 0.1 , a i
21

5 0.5 , a i
22

3 0.2 , a i 11 2 0.1 ,  b i  
12 0.2 0.1 b i , 

21 0.3 0.1 , b i 22 2.5 0.3  b i  and fractional-order   0.96 , t is the time: (a) 1 1Re( ) and Im( )z z , 

(b) 2 2Re( ) and Im( )z z . 

Let system (25) be the driving system and assume that the parameters 

, ,( 1,2, 1,2) 
ij ij

a b i j  are unknown, then the response FOCVCNNs are given as follows: 

Figure 3. The state trajectories of FOCVCNNs with τ = 1, a11 = 2 + 0.1i, a12 = 0.4 − 0.1i,
a21 = 5− 0.5i, a22 = 3− 0.2i, b11 = −2 + 0.1i, b12 = 0.2 + 0.1i, b21 = 0.3 + 0.1i, b22 = −2.5− 0.3i and
fractional-order α = 0.96, t is the time: (a) Re(z1) and Im(z1), (b) Re(z2) and Im(z2).
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Let system (25) be the driving system and assume that the parameters aij, bij, (i = 1,2,
j = 1, 2) are unknown, then the response FOCVCNNs are given as follows: C

0 Dα
t wi(t) = −ciwi(t) +

n
∑

j=1
αij f j(wj(t)) +

n
∑

j=1
βijgj(wj(t− τ)) + Ii(t) + ui(t),

wi(s) = ϕi(s), s ∈ [−τ, 0], t ≥ 0, i = 1, 2,
(26)

where αij, βij are estimated values of aij, bij, respectively and ui(t) are controllers. The
controllers and the update laws are selected as Equations (14)–(18). The following initial
conditions are chosen:

α11(0) = α12(0) = α21(0) = α22(0) = β11(0) = β12(0) = β21(0) = β22(0) = k1(0) =
k2(0) = 0.1, m1(0) = m2(0) = 0, [w1(s), w2(s)]

T = [−0.1, 0.1i]T , ∀s ∈ [−1, 0] and
ε1 = ε2 = 1, σ1 = σ2 = 10, η11 = 8, η12 = η21 = η22 = ξ11 = ξ12 = ξ21 = ξ22 = 6,
ξ21 = ξ22 = 6, I1(t) = I2(t) = 0.

Two FOCVCNNs can achieve synchronization and the parameters are identified, as
shown in Figures 4 and 5. Figure 4 shows that the above two pairs of FOCVCNNs achieve
asymptotic synchronization through the adaptive controller and adaptive update laws.
Figure 5 indicates that all the unknown parameters of the driving system are identified.
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shown in Figures 4 and 5. Figure 4 shows that the above two pairs of FOCVCNNs 

achieve asymptotic synchronization through the adaptive controller and adaptive update 

laws. Figure 5 indicates that all the unknown parameters of the driving system are iden-

tified. 

It is shown that with this approach one can rapidly achieve global synchronization 

of these networks, while dynamically identifying all the unknown parameters. Addi-

tionally, this method is quite robust against noise effects. 

  

Figure 4. Synchronization errors of FOCVCNNs (25) and (26): (a) e t w t z t 
1 1 1
( ) ( ) ( ) , (b) 

e t w t z t 
2 2 2
( ) ( ) ( ) . 

Figure 4. Synchronization errors of FOCVCNNs (25) and (26): (a) e1(t) = w1(t) − z1(t),
(b) e2(t) = w2(t)− z2(t).

It is shown that with this approach one can rapidly achieve global synchronization of
these networks, while dynamically identifying all the unknown parameters. Additionally,
this method is quite robust against noise effects.

Example 2. To further illustrate the effectiveness and wider application of the proposed scheme, a
higher dimensional FOCVNN is considered described by the following equation:

C
0 Dα

t z1(t) = −z1(t) + a11 f (z1(t)) + a12 f (z2(t)) + a13 f (z3(t− τ)),
C
0 Dα

t z2(t) = −z2(t) + a21 f (z1(t)) + a22 f (z2(t)) + a23 f (z3(t− τ)),
C
0 Dα

t z3(t) = −z3(t) + a31 f (z1(t)) + a32 f (z2(t)) + a33 f (z3(t− τ)).

(27)

If τ = 2 is selected, then:
a11 = 2 + 0.1i, a12 = 16 − i, a13 = −6 + 0.5i, a21 = −6 + 0.5i, a22 = 1.6 + 0.5i,

a23 = 2 + 0.1i, a31 = −3 + 0.5i, a32 = 4 + i, a33 = 0.2 + 0.1i, f (zi) = (|zi + 1|−|zi − 1|)/2,
i = 1, 2, 3, [z1(s), z2(s), z3(s)]

T = [1 + 0.1i, 1− 0.1i,−1 + 0.1i]T , ∀s ∈ [−1, 0], α = 0.96,
then system (27) can exhibit chaotic behaviors. The attractor trajectory is shown in Figure 6.
The state trajectory is shown in Figure 7.
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Figure 5. Estimated complex parameters of FOCVCNNs (26): (a) 
11 11

2 0.1   a i , (b) 

a i   
12 12

0.4 0.1 , (c) 
21 21

5 0.5 ,   a i (d) 
22 22

3 0.2 ,   a i (e) 

11 11 ,2 + 0.1    ib (f) 12 12 0.1b    ，i0.2 (g) 21 21 0.3 0.1 ,   b i  (h) 

22 22 2.5 - 0.3    ib . 

Example 2. To further illustrate the effectiveness and wider application of the proposed scheme, a 

higher dimensional FOCVNN is considered described by the following equation: 

Figure 5. Estimated complex parameters of FOCVCNNs (26): (a) α11 → a11 = 2 + 0.1i ,
(b) α12 → a12 = 0.4− 0.1i, (c) α21 → a21 = 5− 0.5i, (d) α22 → a22 = 3− 0.2i,
(e) β11 → b11 = −2 + 0.1i, (f) β12 → b12 = 0.2 + 0.1i, (g) β21 → b21 = 0.3 + 0.1i,
(h) β22 → b22 = −2.5− 0.3i .
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Figure 6. Chaotic attractors of FOCVCNNs (27): (a) 1 2Re( ) vs Re( )z z , (b) 2 3Re( ) vs Re( )z z , (c) 

1 2Im( ) vs Im( )z z , (d) 1 3Im( ) vs Im( )z z . 

Figure 6. Chaotic attractors of FOCVCNNs (27): (a) Re(z1) vs. Re(z2), (b) Re(z2) vs. Re(z3),
(c) Im(z1) vs. Im(z2), (d) Im(z1) vs. Im(z3).

Taking system (27) as the driving system and assuming that the coefficients
aij(i, j = 1, 2, 3) are unknown, the corresponding controlled response system is as follows:

C
0 Dα

t w1(t) = −w1(t) + b11 f (w1(t)) + b12 f (w2(t)) + b13 f (w3(t− τ)) + u1(t),
C
0 Dα

t w2(t) = −w2(t) + b21 f (w1(t)) + b22 f (w2(t)) + b23 f (w3(t− τ)) + u2(t),
C
0 Dα

t w3(t) = −w3(t) + b31 f (w1(t)) + b32 f (w2(t)) + b33 f (w3(t− τ)) + u3(t),

(28)

where bij(i, j = 1, 2, 3) are estimated values of aij and ui(t) are controllers. Let the system
errors be ei(t) = wi(t)− zi(t), (i = 1, 2, 3). The controllers and the update laws are selected
as Equations (14)–(18), and the initial conditions are chosen as follows: b11(0) b12(0) b13(0)

b21(0) b22(0) b23(0)
b31(0) b32(0) b33(0)

 =

 1 10− i −8 + i
−8 + i 2 + i 2
−3 + i 3 + 0.5i 0.3− 0.1i

, z1(0)
z2(0)
z3(0)

w1(0)
w2(0)
w3(0)

 =

 1
1
1

−1
2
−1

,

k1(0) = k2(0) = k3(0) = 1.

(29)

The simulation results are shown in Figures 8 and 9. Figure 8 shows that two pairs of
high-dimensional FOCVCNNs achieve asymptotic synchronization through the adaptive
controllers and adaptive update laws. Figure 9 indicates that all the unknown parameters
of the driving system (27) are identified.



Physics 2021, 3 935
Physics 2021, 3 936  
 

 

0 20 40 60 80 100
-8

0

8

R
e

(z
1
)

0 20 40 60 80 100
-4

0

4
R

e
(z

2
)

0 20 40 60 80 100
-2

0

2

t

R
e

(z
3
)

 
(a) 

0 20 40 60 80 100
-0.5

0

0.5

Im
(z

1
)

0 20 40 60 80 100
-0.5

0

0.5

Im
(z

2
)

0 20 40 60 80 100
-0.5

0

0.5

t

Im
(z

3
)

 
(b) 

Figure 7. The state trajectories of FOCVCNNs (27): (a) 1 2 3Re( ), Re( ) and Re( . t) vsz z z , (b) 

1 2 3Im( ), Im( ) and Im( ) vs.tz z z . 

Taking system (27) as the driving system and assuming that the coefficients 

ij
a i j ( , 1,2,3)  are unknown, the corresponding controlled response system is as fol-

lows: 
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where ( , 1,2,3)
ij

b i j  are estimated values of 
ij

a  and ( )
i

u t  are controllers. Let the sys-

tem errors be 
i i i

e t w t z t i  ( ) ( ) ( ), ( 1,2,3) . The controllers and the update laws are se-

lected as Equations (14)–(18), and the initial conditions are chosen as follows: 

Figure 7. The state trajectories of FOCVCNNs (27): (a) Re(z1), Re(z2) and Re(z3) vs. t,
(b) Im(z1), Im(z2) and Im(z3) vs. t.
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Figure 8. Synchronization errors of FOCVCNNs (27) and (28): (a) e t w t z t 
1 1 1
( ) ( ) ( ) , (b) 

e t w t z t 
2 2 2
( ) ( ) ( ) , (c) e t w t z t 

3 3 3
( ) ( ) ( ) . 

Figure 8. Synchronization errors of FOCVCNNs (27) and (28): (a) e1(t) = w1(t)− z1(t), (b) e2(t) =
w2(t)− z2(t), (c) e3(t) = w3(t)− z3(t).
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Figure 9. Estimated complex parameters of FOCVCNNs (28): (a) b11 → a11 = 2 + 0.1i ,
(b) b12 → a12 = 16− i , (c) b13 → a13 = −6 + 0.5i, (d) b21 → a21 = −6 + 0.5i,
(e) b22 → a22 = 1.6 + 0.5i, (f) b23 → a23 = 2 + 0.1i , (g) b31 → a31 = −3 + 0.5i ,
(h) b32 → a32 = 4 + i , (i) b33 → a33 = 0.2 + 0.1i .
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Figure 9. Estimated complex parameters of FOCVCNNs (28): (a) 
11 11

2 0.1b a i   , (b) 

12 12
16b a i   , (c) 

13 13
6 0.5 ,b a i    (d) 

21 21
6 0.5 ,b a i    (e) 

22 22 1.6 ,+ 0.5a b i  (f) 23 23 0.1= 2 b a i , (g) 31 31 3 0.5   b a i , (h) 32 32 4a  b i , (i) 

33 33 0.2 0.1a  b i . 

It is not difficult to see from Example 2 that the research results of this paper can be 

easily extended to the synchronization and parameter identification for 

high-dimensional FOCVCNNs. Meanwhile, the synchronization control and parameter 

identification schemes proposed in this paper have very loose conditions, which make 

them easy to implement in practical applications. In addition, the synchronization con-

trol strategies are quite robust to external disturbances.  

5. Conclusions 

This paper focuses on the synchronization and parameter identification of fraction-

al-order complex-valued chaotic neural networks (FOCVCNNs) with time-delay and 

unknown complex parameters. Using the complex-valued inequalities of fractional de-

rivatives and stability theory of fractional-order complex-valued systems, the adaptive 

controllers and complex update laws for synchronizing these systems are proposed. The 

proposed synchronization scheme preserves the complex nature of FOCVCNNs. Not 

only a new method for analyzing FOCVCNNs with time-delay and unknown complex 

parameters is provided here, but also a sensible decrease of the computational and ana-

lytical complexity. 
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Figure 9. Cont.

It is not difficult to see from Example 2 that the research results of this paper can be
easily extended to the synchronization and parameter identification for high-dimensional
FOCVCNNs. Meanwhile, the synchronization control and parameter identification schemes
proposed in this paper have very loose conditions, which make them easy to implement in
practical applications. In addition, the synchronization control strategies are quite robust
to external disturbances.

5. Conclusions

This paper focuses on the synchronization and parameter identification of fractional-
order complex-valued chaotic neural networks (FOCVCNNs) with time-delay and un-
known complex parameters. Using the complex-valued inequalities of fractional deriva-
tives and stability theory of fractional-order complex-valued systems, the adaptive con-
trollers and complex update laws for synchronizing these systems are proposed. The
proposed synchronization scheme preserves the complex nature of FOCVCNNs. Not only
a new method for analyzing FOCVCNNs with time-delay and unknown complex param-
eters is provided here, but also a sensible decrease of the computational and analytical
complexity.
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