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Abstract: Examining the evolution of the maximum of valence quark distribution, qV , weighted by
Bjorken x, h(x, t) ≡ xqV(x, t), it is observed that h(x, t) at the peak becomes a one-parameter function;
h(xp, t) = Φ(xp(t)), where xp is the position of the peak, t = log Q2, and Q2 is the resolution scale.
This observation is used to derive a new model-independent relation which connects the partial
derivative of the valence parton distribution functions (PDFs) in xp to the quantum chromodynamics
(QCD) evolution equation through the xp derivative of the logarithm of the function Φ(xp(t)). A
numerical analysis of this relation using empirical PDFs results in an observation of the exponential
form of the Φ(xp(t)) = h(xp, t) = CeDxp(t) for leading to next-to-next leading order approximations
of PDFs for the range of Q2, covering four orders in magnitude. The exponent, D, of the observed
“height-position” correlation function converges with the increase in the order of approximation. This
result holds for all the PDF sets considered. A similar relation is observed also for the pion valence
quark distribution, indicating that the obtained relation may be universal for any non-singlet partonic
distribution. The observed “height-position” correlation is used also to indicate that no finite number
of exchanges can describe the analytic behavior of the valence quark distribution at the position of
the peak at fixed Q2.

Keywords: quantum chromodynamics (QCD); deep inelastic scattering; partonic distribution
functions; valence quarks; QCD evolution equation

1. Introduction

Valence quarks play a unique role in the quatum chromodynamics (QCD) structure
of hadrons. These quarks define the baryonic number of the nucleons and represent
“effective” fermions with complex interactions among themselves and with the hadronic
interior. One important property of valence quarks is that the number of the valence quarks
is conserved and hadrons can be considered as systems with a fixed number of effective
(valence) fermions. The continuing progress in experimental extraction of valence quark
distributions in a wide range of the momentum fraction x and the emerging possibilities
for probing these distributions in semi-inclusive and exclusive deep-inelastic processes
create a new motivation for theoretical modeling of the valence quark dynamics. Such
modeling is important as when successful, one gains a new level of understanding of
the QCD dynamics in the hadrons. Even if lattice calculations can reproduce the major
characteristics of valence quark distributions, these calculations do not necessarily result
in a qualitative understanding of the underlying processes. In this respect, observation of
new properties and relations in valence quark distributions is significant since it allows
one to constrain models aimed at describing the dynamics of QCD interaction.

The possibility of considering nucleons as a system of effective fermions, whose
number is conserved opens a new venue in the exploration of the dynamics of the valence
quarks from the point of view of universal properties of two-component (spin or isospin)
Fermi systems with a conserved number of constituents. This approach is analogous
to the recent study of the ultra-cold two-component Fermi atomic systems and atomic
nuclei for which, despite twenty orders of magnitude difference in the density, a similar
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analytic form for the high-momentum tail of the momentum distribution was found [1]
based on the universal properties of the Fermi system. A similar logic is followed here in
studying the QCD structure of hadrons. The focus of the present study is on one of the
most distinguishable characteristics of valence quarks, which is the distribution, qV(x, Q2),
of valence quarks weighted by momentum fraction x, h(x, t) ≡ xqV(x, t) exhibits a clear
peak. This peak is a hallmark for the bound system of conserved number fermions (no
such peak exists for sea quark distribution) and is characterized by the height, h(xp),
and the position, xp, both of which evolve with the resolution scale, Q2. Since this peak
is a product of the magnitude of x and the strength of the valence quark distribution,
one expects that its position and height are Q2-dependent due to the QCD evolution of
the valence quark distribution, qV(x, Q2), whose strength shifts towards smaller x with
increasing Q2. As a result, one expects both the position of the peak, xp, and the height,
h(xp, t) = xp(t)qV(xp, t), to be a function of Q2; hereafter the variable t = log Q2 is used.

2. “Height-Position” Correlation of the Peak of the h(x, t) Functions

As Figure 1 shows, the height of the peak and the position for valence PDFs in the
nucleon diminishes with an increase in Q2 as one expects from the QCD evolution that
moves the strength of PDFs towards small x. If now one assumes that both the height and
the position of the peak of the h(x, t) function evolve due to the evolution of the strong
coupling, then these dimensionless quantities can be expressed as:

xp

(
Q2

µ2 , αs(µ)

)
= xp(1, αs(Q)) =

∞

∑
n=0

xnαn
s (t), (1)

h
(

Q2

µ2 , αs(µ)

)
= h(1, αs(Q)) =

∞

∑
n=0

hnαn
s (t), (2)

where xn and hn are constants, and αs(t) is the strong interaction coupling constant evalu-
ated at t.

Figure 1. The momentum fraction x-dependence of the x-weighted distributions of the valence
quarks, xqV(x, t), at different values of the resolution scale Q2 for down (a) and up (b) valence quarks
in proton. Peaks at different Q2 are connected by solid line to visualize the correlation between the
position and the height of the peak. The shaded area is the Hessian error at 68% confidence level.

Equation (1) is a single variable function of αs, continuously differentiable with non
zero derivate. Thus, in general, it is an invertible function. This allows us to combine
Equations (1) and (2) representing the height, h(xp, t), as an one-parametric function of xp:

h(xp, t) = Φ(xp(t)) , (3)

where Φ is a function of xp variable only.
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In what follows, the implications that Equation (3) may have on partonic distributions
of valence quarks is explored.

3. New Relations for Valence PDFs

In general, PDFs depend on the two independent variables of x and t (or Q2). The
relation (3) indicates that at the peak, the x-weighted PDFs depend analytically only on
one variable, xp, and the t-dependence is expressed through the xp’s dependence on t. This
situation results in specific relations for valence PDFs at peak values.

Starting with the relation,

h(xp, t) = xp · qV(xp, t) = Φ(xp(t)), (4)

let us first consider the full t-derivative using the right hand side of the Equation (4),
resulting to:

dh(xp, t)
dt

=
dΦ(xp)

dxp

dxp

dt
. (5)

Considering now the middle part of Equation (4), the same full t-derivative yields:

dh(xp ,t)
dt =

d(xp(t)qV(xp, t))
dt

=
dxp

dt
qV(xp, t) + xp

dqV(xp, t)
dt

=
dxp

dt
qV(xp, t) + xp

[
∂qV(xp, t)

∂xp

dxp

dt
+

∂qV(xp, t)
∂t

]
.

(6)

Comparing Equations (5) and (6), one obtains:

xp

[
∂qV(xp, t)

∂xp

dxp

dt
+

∂qV(xp, t)
∂t

]
=

[
dΦ(xp)

dxp
− qV(xp, t)

]
dxp

dt
, (7)

or in a more compact form:[
∂ log qV(xp, t)

∂xp
+

1
xp

]
+

∂ log qV(xp, t)
∂t

/
dxp

dt

=
d log Φ(xp)

dxp
. (8)

The above equation is rather unique since it allows one to relate the partial t-derivative
of the valence quark PDFs, which can be evaluated through the QCD evolution, to the
partial xp derivative of the same distribution.

Using various PDF sets (see, e.g., [2–4]), which have been fitted to high energy data
such as deep inelastic scattering, Drell–Yan processes, etc., one can calculate numerically
the left-hand side (l.h.s.) of Equation (8) and thus evaluate the correlation function Φ(xp)
as a function of t or Q2.
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Figure 2 shows the calculation of the l.h.s. of Equation (8) using the CT14 PDF set [3]
at leading-order (LO) in αs, accessed via the LHAPDF library [5]. Here, the QCD evolution
equation to leading order is used to calculate ∂qV(xp, t)/∂t term:

∂qV(x, t)
∂t

=
αs(t)
2π

{
2
(

1 +
4
3

log(1− x)
)

qV(x, t)

+
4
3

1∫
x

dz
1− z

(
1 + z2

z
qV

( x
z

, t
)
− 2qV(x, t)

), (9)

while dxp/dt and ∂ log qV(xp, t)/∂xp are calculated numerically using valence d-quark and
u-quark distributions at LO [3].

As Figure 2 shows, the l.h.s of Equation (8) is practically constant for the range of
Q2, covering four orders of magnitude: 1.8 GeV2 to 3.3× 104 GeV2. This indicates that
d log Φ(xp)/dxp = DLO = const.

Figure 2. The data points are evaluations of left-hand side of Equation (8) using CT14 lo parton
distribution functions (PDFs) [3] for valence u-quark (a) and d-quark (b) distributions in the proton.
The factor D is the average value of evaluations of Equation (8) with shaded area representing the
standard deviation of calculated points.

Figure 3 shows a similar evaluation for the l.h.s of Equation (8) but for next-to-next-
to-leading order (NNLO) approximation. As Figure 3 shows, the l.h.s part again pro-
duces an almost constant behavior for the entire range of Q2. This suggests again that
d log Φ(xp)xp = DNNLO = const. Overall, Figures 2 and 3 show that the condition of
d log Φ(xp)/xp = const. is approximately independent on the order of approximation in
the QCD evolution.

The above observation of d log Φ(xp)/xp = const. indicates that the correlation func-
tion, Φ(xp) has an exponential form:

h(xp, t) = Φ(xp) = CeDxp , (10)

which is universal with respect to the order of approximation in the QCD evolution equa-
tion, with differing exponents D and overall factors C. The values of C and D constants for
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d and u valence quarks in LO, NLO and NNLO approximations are given in Table 1, which
suggests that the magnitude of these constants converge with the increase in approximation
in the QCD evolution equation. Note that the LHAPDF gives PDF values by using spline
interpolation between (x, Q2) grid points. This leads to instabilities when calculating PDF
derivatives numerically [6], hence the discontinuities and kinks in Figures 2 and 3.

Figure 3. Same as Figure 2 but for next-to-next leading order approximation for CT14 PDFs [3] for
valence u-quark (a) and d-quark (b) distributions. The thick orange line is the D obtained from
averaging all the D for the central value curve, while the shaded orange region shows the region
within 1σ of the average. Table 1 contains the PDF propagated errors.

In Figure 4, the parameters of Table 1 are used to compare the function of Equation (10)
with the xp-dependence of h(xp, t) for down and up valence quarks in the proton in
the LO and NNLO approximations for the CT14 parameterization [3]. Figure 4 shows
that indeed the h(xp, t)–xp correlation follows almost ideally an exponential form. It
is worth mentioning that other modern PDF parameterizations using different ansatzs,
renormalization and factorization schemes for PDFs give similar results (see Section 6).

Table 1. A pair of parameters (C, D) of Equation (10) for valence d-quark and u-quark distributions
in the proton. Uncertainties (last digit in the parentheses) represent the 68% confidence level are
obtained through (where appropriate) the parton distribution function’s Hessian eigenvector set.,
There are no uncertainties available for the CT14lo set.

Distribution CT14lo CT14nlo CT14nnlo

dV 0.16, 2.8 0.19(1), 3.1(1) 0.193(6), 3.1(2)
uV 0.36, 2.02 0.37(1), 2.71(9) 0.37(1), 2.7(1)

Summarizing this Section, one concludes that a new empirical relation is found for
valence PDFs, according to which the specific combination of the partial t and xp derivatives
of PDFs results in a constant value for the range of Q2 considered:[

∂ log qV(xp, t)
∂xp

+
1
xp

]
+

∂ log qV(xp, t)
∂t

/dxp

dt
= D , (11)
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where the constant D depends on the flavor of the valence quark and on the order of the
approximation in QCD evolution.

Figure 4. A comparison of the calculations (dotted lines) of Equation (10) with the actual CT14
PDFs [3] for valence d-quark (a) and u-quark (b) distributions. Parameters C and D are given in
Table 1. Solid lines represent the central values (CV) and shaded area is the Hessian error at 68%
confidence level of the CT14nnlo parameterization. Only the central value is shown for CT14lo. The
top abscissa axis shows the next-to-next-to-leading order (NNLO) strong coupling αS, evaluated
at the same Q2 as the corresponding valence-quark-distribution peak position xp of the bottom
abscissa axis.

4. Origin of the Exponential Form of the Height-Position Correlation

The observation of the exponential form of Equation (10) in the current study is purely
empirical. Existing PDF sets in the given approximation are used and the estimation of the
expression in Equation (8) is found to result in a constant number, D. It is an interesting
problem to understand the origin of the observed exponential form of height-position
correlation. To this end, let us note that, while nonperturbative dynamics defines the
initial shape of the valence PDFs, the change with Q2 and, therefore, the height-position
correlation are associated with QCD evolution, and the baryonic sum rules the valence
quarks satisfy. Thus, the changes in the height of the peak of h(x, t) function and in the
position xp are associated with perturbative dynamics.

To understand the origin of the exponential form of the “height-position” correlation
Equation (10), one needs to consider the simultaneous solutions of evolution equations for
qV(x, t) and h′(xp, t) = dh(x, t)/dx |x=xp(t) functions at the given approximation together
with the condition of the maximum, h′(xp, t) = 0. The latter leads to the relation:

dxp

dt

[
∂h′(xp, t)

∂xp

]
= −

∂h′(xp, t)
∂t

, (12)

where for the term ∂h′(xp, t)/∂t one can derive an evolution equation. For example, in the
LO approximation:

∂h′(xp, t)
∂t

=
4αs

6π

1∫
xp

dz
1− z

1 + z2

z
h′(

xp

z
, t). (13)

The complexity of the above equations (especially in NLO and NNLO approximations)
makes it difficult to find an analytic solution in the form of Equation (10). To understand
the origin of such a correlation, the above equations can be studied numerically in different
approximations, using different ansatzs for PDFs that describe experimental distributions
at fixed Q2. These studies (to be presented elsewhere) indicate specific properties of
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the evolution equation whose solutions furnish the correlation function in the form of
Equation (10).

5. The x-Dependence of h(x, t) at the Vicinity of the Peak

Given that xp < 1, from Equation (10), one observes that in the vicinity of x ∼ xp:

h(x, t) ≡ xqV(x, t) ≈ C + CDex(1− x)
1−xp(t)

xp(t) , (14)

where C and D are constants, defined in Equation (10), and e is the Euler’s number. It can
be checked that the above function peaks at x = xp and its peak value corresponds to the
terms of the Taylor expansion of Equation (10) in xp up to O(x2

p). It is interesting that even
though the constant D is due to dynamics of QCD evolution, it also defines the valence
PDF in the vicinity of the peak position, xp.

Following from Equation (14), the exponent of the (1− x) term, 1−xp(t)
xp(t)

, is defined by
the position of the peak xp. The latter, as it is discussed above, changes continuously with
t due to QCD evolution. However as it follows from Figure 1, at starting Q2

0, before the
onset of QCD evolution, the peak-positions xp are different for valence d and u quarks,
resulting in different x-dependences of PDFs at the vicinity of the peak for d and u quarks.
The fact that the exponent of (1− x) term is flavor-dependent indicates a more complex
dynamics in the generation of valence PDFs at x ∼ xp than one expects, for example, from
the mechanism of a fixed number gluon exchanges between valence quarks. For a fixed
number of exchanges, one obtains a constant exponent proportional to the number of
exchanged particles [7,8], which are same for valence u and d quarks. On the other hand,
flavor-dependent exponent can be obtained by considering an effective interacting potential
[9,10] in Weinberg type equations for relativistic bound states [11]. Thus, one may expect
that valence PDFs at x ∼ xp at fixed Q2 are generated by mean-field-type interactions
rather than by a combination of a finite number of exchanges between valence quarks.

Note that only when moving away from xp towards x → 1, the mechanism of quark–
quark interaction through a hard gluon exchange is expected to become important. Indeed
the asymptotics of empirical PDFs indicate that the exponent of the (1− x) part of the
distribution approaches the same constant value for valence d and u quarks at x & 0.7–0.8;
within PDF uncertainties, see, e.g., [3,6].

In this respect, the partonic dynamics for the valence sector can be similar to that
in nuclear physics, with mean field and short-range correlations dominating at different
internal momentum regions of the constituents (see, e.g., [12]).

6. Other PDFs and Hadrons

The observed “height-position” correlation of the peak of the h(x, t) function in
the nucleon is a combination of two effects: the dynamics that generate the partonic
distribution of valence quarks at given Q2 and the QCD evolution that shifts the strength of
the distribution towards smaller x. The relation found is robust for all the different PDF sets
in leading order, which reinforces the expectation that the effect is due to QCD evolution.
For the next-to-next leading orders, the PDF depends on factorization schemes, thus it
is interesting to check whether the correlation of Equation (10) persists in higher-order
approximations using different schemes. Since all modern PDF parameterizations employ
the MS scheme [13], let us first check the validity of correlation for these sets of PDFs. As
can be seen in Figure 5, the PDF sets NNPDF 30 nnlo [14], ABM12 nnlo [15], CJ15 nlo [4]
and JR14 nnlo-FF [16]—all showed an exponential relation between the hp and xp for the
up valence PDF. In addition, the extracted C and D parameters were all similar to the one
obtained from CT14 nlo and nnlo case. This is despite the fact that these sets use different
orders of approximation and prescriptions. While the MS scheme is used in the evolution
equatons, the renormalization and factorization schemes used to deal with the heavy
quark (which ends up impacting the light quark distributions via the momentum sum
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rule) differ. NNPDF [14] uses the on-shell renormalization scheme for the heavy quarks
and FONLL-C [17] for factorization, ABM12 nnlo [15] and JR14 nnlo-FF [16] both use MS
for renormalization(with the number of flavors, n f = 3) for factorization, while CJ15 nlo
uses the on-shell prescription and SACOT for factorization [18]. These parametrizations
also differ in the initial ansatz, with NNPDF using neural networks and starting at Q2

0 = 1
GeV2, while ABM12 nnlo, CJ15 nlo, and JR14 nnlo-FF used simpler functional forms and
started at Q2

0 = 0.5, 1.69 and 0.5 GeV2, respectively.
In Figure 6, one compares available PDFs which are obtained using both the MS and

DIS [19] schemes in the next-to-leading-order for CTEQ6 parameterization [20]. Here again,
one observes the exponential form of correlation for both schemes, in which the results for
the DIS scheme are somewhat closer to that of leading order approximation. However, it
is worth noticing that total uncertainty for CTEQ6 parametrization [20] is larger than the
uncertainties for modern parameterizations (see, e.g., [3]).

Figure 5. The peak position-height correlation for the PDF sets NNPDF 30 nnlo [14], ABM12 nnlo [15],
CJ15 nlo [4] and JR14 nnlo-FF [16], as indicated, for valence u-quark. The shaded regions show
the uncertainty at 68% confidence level while the dashed curves represent exponential fits for each
PDF set.
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Figure 6. The peak position-height correlation for the PDF sets of CTEQ6 parameterization [20] for
valence d-quark (left panel) and u-quark (right panel) distributions. Solid squares indicate NLO
parameterization based on the MS scheme and solid circles, NLO based on the DIS scheme [19]. The
curves are results of the fits according to Equation (10). The shaded regions show the uncertainties
evaluated by using error sets in Hessian representation [20].
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From the above comparisons, one might expect that correlation of type of Equation (10)
to be universal for valence PDFs describing “experimental” distributions, and satisfying
specific sum rules, such as baryonic number sum rule for nucleons.

It is interesting to explore the possibility of similar correlations also for mesons ex-
tending it to the sector of strange and charm quarks. As an initial result, let us present in
Figure 7 the xp-dependence of the x-weighted valence quark distribution in the π-meson
calculated based on the recently obtained PDF parameterization [21]. Detailed analysis of
pion PDFs to be given elsewhere.

Figure 7. Ratio of exponential fit of the xp-dependence of h(xp) function using the parameterization
of [21]. Dashed line is the fit according to Equation (10), solid line shows the central values and
shaded area represents the error at 68% confidence level of parameterization. The insert shows the
PDF hp function vs xp as well as the fit.

As the figure shows, the exponential form of Equation (10) fits the“height-position”
correlation reasonably well with the parameters C = 0.202(3) and D = 1.50(2) obtained.
This represents a strong indication that the observed correlation Equations (10) and (11) is
universal for any valence quark distribution in the hadron.

7. Discussion and Conclusions

Recapitulating, let us emphasize that the exponential form of the “height-position”
correlation is a result of the specific relation between xp and t derivatives of valence PDFs
Equation (11), which results in a constant value D for the range of Q2 that PDFs are
considered. The verification of this relation with PDF parameterizations obtained in LO,
NLO and NNLO approximations (e.g., Figures 2 and 3) indicates that it is valid for any
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order of QCD coupling constant, αs, based on the MS scheme of factorization. Despite
large uncertainties, current study also indicates that Equation (10) is valid also for the other
(DIS) scheme of factorization. Such universality of the exponential form of the correlation,
in our view, is due to the dynamics of QCD evolution, which can in principle be studied as
a separate analytical problem as discussed in Section 4.

It is interesting to verify the existence of relation (11) for nuclear PDFs as well as for
semi-inclusive DIS processes sensitive to the valence quark distributions. Relation (11) can
be used in the calculation of valence PDFs using lattice QCD, not just for the proton but for
other hadrons whose PDFs are not well constrained by experiment.

Finally, one expects similar effects to be observed also for fragmentation functions,
since evolution equations, at least in LO, have similar splitting functions. In fact, gluon
fragmentation functions at small x exhibit features reminiscent to that discussed in this
paper (see, e.g., [22,23] and references therein).

Overall, establishing the universality of Equation (11) allows using it to constrain Q2

evolution of more complex processes in higher-order approximations.
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