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Abstract: In this paper, the fluctuation properties of the number of energy levels (mode fluctuation)
are studied in the mixed-type lemon billiards at high lying energies. The boundary of the lemon
billiards is defined by the intersection of two circles of equal unit radius with the distance 2B between
the centers, as introduced by Heller and Tomsovic. In this paper, the case of two billiards, defined by
B = 0.1953, 0.083, is studied. It is shown that the fluctuation of the number of energy levels follows
the Gaussian distribution quite accurately, even though the relative fraction of the chaotic part of the
phase space is only 0.28 and 0.16, respectively. The theoretical description of spectral fluctuations
in the Berry–Robnik picture is discussed. Also, the (golden mean) integrable rectangular billiard is
studied and an almost Gaussian distribution is obtained, in contrast to theory expectations. However,
the variance as a function of energy, E, behaves as

√
E, in agreement with the theoretical prediction

by Steiner.

Keywords: nonlinear dynamics; quantum chaos; mixed-type systems; energy level statistics; billiards;
lemon billiards

1. Introduction

The purpose of this paper is to analyze the energy spectra of two characteristic complex
mixed-type lemon billiards within the scope of quantum chaos. The boundary of the lemon
billiards is defined by the intersection of two circles of equal unit radius with the distance
2B between the centers, as introduced by Heller and Tomsovic in 1993 [1,2]. The present
study represents a continuation of our recent paper [3] on the classical and quantum ergodic
billiard (B = 0.5) with strong stickiness effects, from the family of lemon billiards, as well
as on three simple mixed-type lemon billiards with only one regular region, surrounded
by a uniform chaotic sea without stickiness regions, namely, with the shape parameters
B = 0.42, 0.55, 0.6 [4].

In the present paper, two lemon billiards with the shape parameters
B = 0.1953, 0.083 are studied. These lemon billiards are mixed-type billiards with several
independent regular regions embedded in a chaotic sea with no significant stickiness
regions, which serve as examples of systems with a complex divided phase space. These
lemon billiards were selected by the criterion of the maximally complex chaotic component
generated by a single chaotic orbit. The discovery of the present and past physically and
dynamically different and interesting lemon billiards has only been made possible thanks
to the recent extensive analysis of Lozej [2]. The entire family of classical lemon billiards
for a dense set of about 4000 values of B ∈ [0.01, 0.99975] (in steps of dB = 0.00025) was
systematically analyzed as for the corresponding phase space structure and stickiness
effects. It must be emphasized that although all the lemon billiards belong to the same
family of billiards as for the mathematical definition, individually, the lemon billiards
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have quite different, in fact, very rich, dynamical properties, important in the classical and
quantum context.

A general introduction to the subjects in quantum chaos, related to this study, can be
found in [3]. Let us also mention the books by Stöckmann [5] and Haake [6] on general
quantum chaos and the recent reviews [7,8] on stationary quantum chaos in generic (mixed-
type) systems.

The main purpose of the present paper is to analyze the two selected quantum lemon
billiards of B = 0.1953 and 0.083, with the goal to study the energy spectra, while the
structure of the Poincaré–Husimi functions in the phase space, the separation of the regular
eigenstates and chaotic eigenstates, as well as the localization properties of the chaotic
eigenstates and their statistics will be treated separately [9].

The main results are as follows. The energy spectra are calculated by the scaling
method of Vergini–Saraceno [10] in two versions, one based on the plane waves and the
other one based on the circular waves (Bessel functions for the radial part and trigonometric
functions for the angular part). This is done for high-lying eigenstates with the wavenumber
k (in the specific units) k = 2880 for up to 300,000 consecutive levels for each of the four
symmetry classes (odd-odd, odd-even, even-odd, and even-even). The energy of the level
at k is E = k2. It turns out that about 0.1% of the levels are lost for technical reasons, which
is a known and experienced fact in numerically calculating billiard spectra with the scaling
method, while the accuracy of individual levels is better than 1% of the mean energy
level spacing. The spectral statistics are found to be stable with respect to these losses.
The cumulative (integrated) energy level density (spectral staircase function) N (k) is well
described by the Weyl formula (with the leading area term and the perimeter term) W(k)
if there are no missing levels. Then the fluctuations of the actual staircase function N (k)
around the Weyl function, the difference R(k) = N (k)−W(k), and the R(k) distribution
are studied. In the literature, R(k) is called mode fluctuation [11–14]. Due to the lost levels,
this difference has a drift to negative values and fluctuates around the mean value. In
order to separate the drift and the fluctuations, the quantity w(k) = R − m(R), where
m(R) is the local average of R(k) over 100 consecutive levels, is investigated. Then, the
distribution of w(k) for about 300,000 levels of each symmetry class separately, starting
at k = k0 = 2880, within the interval approximately k ∈ [2880,≈ 3700] is studied. One
finds that the distribution of w follows a Gaussian distribution fairly well, which is a
surprising result as the two billiards have the relative fraction of the chaotic phase space
of only 0.28 and 0.16, respectively. For comparison, also the entirely regular, integrable,
case of the maximally irrational rectangular billiard is investigated and it is surprisingly
found an almost Gaussian distribution for w, but with the variance rising linearly with
k, as generally predicted by the theory of Steiner [11–14], while the distribution itself
in integrable systems is predicted to be nonuniversal, varying from case to case, which
here is not confirmed. The validity of the theoretical predictions has also been checked
in experiments with superconducting microwave billiards [15]. Finally, the level spacing
distribution for the two lemon billiards is presented which provides good agreement with
the Berry–Robnik–Brody distribution.

The paper is organized as follows. In Section 2, the definition are given and classical
dynamical properties of the lemon billiards are examined. In Section 3, the analysis of the
fluctuation quantity w(k) is performed. In Section 4, the statistical analysis of the entire
energy spectra is made by calculating the level spacing distribution, P(S). In Section 5, the
results are discussed and conclusions are presented.

2. The Lemon Billiards and Their Phase Portraits

The family of lemon billiards was introduced by Heller and Tomsovic in 1993 [1] and
has been studied in a number of papers [16–20], most recently, in [2–4,21]. and in the recent
studies [3,4] by us. The lemon billiard boundary is defined by the intersection of two circles
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of equal unit radius with the distance between the centers, 2B, being less than the diameters
and B ∈ (0, 1), and is given by the following implicit equations in Cartesian coordinates:

(x + B)2 + y2 = 1, x > 0, (1)

(x− B)2 + y2 = 1, x < 0.

As usual, the canonical variables are used to specify the location, s, and the momentum
component, p, on the boundary at the collision point. Namely, the arc length, s, is counted in
the mathematical positive sense (counterclockwise) from the point (x, y) = (0,−

√
1− B2)

as the origin, while p is equal to the sine of the reflection angle θ; thus p = sin θ ∈ [−1, 1],
as θ ∈ [−π/2, π/2]. The bounce map (s, p) ⇒ (s′, p′) is area preserving as in all billiard
systems [22]. Due to the two kinks, the Lazutkin invariant tori (related to the boundary
glancing orbits) do not exist. The period-2 orbit connecting the centers of the two circular
arcs at the positions (1− B, 0) and (−1 + B, 0) is always stable (and therefore surrounded
by a regular island) except for the case B = 1/2, where it is a marginally unstable periodic
orbit, the case being ergodic and treated by us earlier [3].

The circumference of the entire billiard, L, is given by:

L = 4 arctan
√

B−2 − 1. (2)

The area A of the billiard is:

A = 2 arctan
√

B−2 − 1− 2B
√

1− B2 (3)

=
L
2
− 2B

√
1− B2.

The structure of the phase space is shown in Figure 1 for the lemon billiard of
B = 0.1953, with L = 5.4969. The relative fraction of the area of the chaotic component of
the bounce map is χc = 0.3585, while the relative fraction of the phase space volume of the
same chaotic component is ρ2 = 0.2804, the Berry–Robnik parameter. Three independent
regular island chains are clearly visible, the largest one around the period-2 orbit, which
is densely covered by the invariant tori, with no visible thin chaotic layers inside. Let
us denote the largest island chain by L, the second largest one by M, and the smallest
one by S. The relative phase space volume of all three regular regions taken together is
ρ1 = 1− ρ2 = 0.7196. The chaotic sea is quite uniform, with no significant stickiness
regions, and is generated by a single chaotic orbit.

The structure of the phase space, as shown in Figure 2 for the lemon billiard of
B = 0.083, is more complex. Here, L = 5.9508. The relative fraction of the area of the
chaotic component of the bounce map is χc = 0.2168, while the relative fraction of the
phase space volume of the same chaotic component is ρ2 = 0.1617. Thus, the relative phase
space volume fraction of the complementary regular regions is ρ1 = 1− ρ2 = 0.8383. In
this case also, the chaotic sea is rather uniform, with no significant stickiness regions, and is
generated by a single chaotic orbit, creating a very complex structure, perhaps mimicking
stickiness in some thin regions. Both billiards are clearly of the Kolmogorov-Arnold-Moser
(KAM) type, generic systems; examples of stochastic transition were studied already in [23].

One can conclude that the two cases B = 0.1953, 0.083 are interesting to verify the
Berry–Robnik picture of quantum billiards [24], including the possible quantum localization
of chaotic eigenstates, leading to the Berry–Robnik–Brody level spacing distribution and the
universal statistical properties of the localization measures [4,9], as there are no significant
stickiness effects, based on the results of the analysis of the recurrence time statistics in [2],
unlike in the ergodic case, B = 0.5, studied in [3].
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Figure 1. The phase portrait of the lemon billiard of B = 0.1953. The parameters are: the relative
fraction of the area of the chaotic component of the bounce map, χc = 0.3585, the relative fraction of
the phase space volume, ρ2 = 0.2804, and the complementary regular region, ρ1 = 1− ρ2 = 0.7196.
The abscissa is the location point, s ∈ [0, 5.4969], and the ordinate is the momentim, p ∈ [−1, 1], on
the boundary at the collisions point. The chaotic component was created by a single chaotic orbit.

Figure 2. Same as Figure 1, but for B = 0.083 and s ∈ [0, 5.9508]. The parameters are: χc = 0.2168,
ρ2 = 0.1617, and ρ1 = 1− ρ2 = 0.8383.

3. The Energy Spectra and the Fluctuation of the Number of Energy Levels

Let us now turn to the quantum billiard B described by the stationary Schrödinger
equation in the chosen units (h̄2/2m = 1) given by the Helmholtz equation:

∆ψ + k2ψ = 0 (4)

with the Dirichlet boundary conditions ψ|∂B = 0, and the energy is E = k2. Here h̄ is the
reduced Planck constant and m is the mass of the particle.
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The mean number of energy levels W(E) below E = k2 is determined quite accurately,
especially at large energies, asymptotically exact, by the celebrated Weyl formula (with
perimeter corrections) using the Dirichlet boundary conditions, namely:

W(E) =
A E
4π
− L

√
E

4π
+ c.c., (5)

where “c.c.” stays for small constants, determined by the corners and the curvature of
the billiard boundary, which differentially play no role. Thus, the mean density of levels
d(E) = dW/dE is equal to:

d(E) =
A
4π
− L

8π
√

E
. (6)

The numerical method used here to solve the Helmholtz equation is based on the
Heller’s plane wave decomposition method and the Vergini–Saraceno scaling
method [10,25]. Both versions of the Vergini–Saraceno method are implemented, namely,
the one, based on plane waves, and the other one, based on the circular waves, and the same
results are obtained within an accuracy of 0.1% of the mean level spacing. As mentioned,
typically at most about 0.1% of the levels are lost. The numerical accuracy was checked by
the convergence test, by varying the method’s parameters (the number of basis waves and
the number of nodes on the boundary).

The billiard considered has two reflection symmetries; thus, the eigenstates have
four symmetry classes: odd-odd, odd-even, even-odd, and even-even. For the purpose of
analyzing the spectral statistics and the wave functions, let us consider only the quarter
billiard. In this case, the Weyl formula for the four symmetry classes reads:

W̄(E) =
A E
16π
− L̄

√
E

4π
+ c.c., (7)

where L̄ is defined for each of the above-defined symmetry classes as follows:

L̄oo =
L
4
+ a + b,

L̄oe =
L
4
+ a− b, (8)

L̄eo =
L
4
− a + b,

L̄ee =
L
4
− a− b,

where a =
√

1− B2 and b = 1 − B. Note that summing up the four contributions in
Equation (7) with Equation (8), one obtains the Weyl formula for the entire spectrum
Equation (5). For each symmetry class for each of the two billiards, about 300,000 levels
were calculated and the difference, R(k) = N (k)− W̄(k), was studied between the staircase
function, N (k), and the Weyl function, W̄(k).

Figure 3 shows the results for the B = 0.1953 billiard. It is clear that R(k) decreases
linearly with k due to the numerical loss of the levels. Typically, about 0.1% of the levels are
missing. In order to study the fluctuation properties, one needs to subtract the local mean
value, m(R(k)), obtained by averaging over 100 consecutive levels, and then analyze the
resulting fluctuation quantity, w(k) = R(k)−m(R(k)). The agreement with the Gaussian
distribution is extremely good which is surprising, as the billiard is predominantly regular,
with only 28% of the chaotic component. Steiner’s theory [11–14] predicts a Gaussian distri-
bution only for entirely chaotic (ergodic) systems, while the distribution of the fluctuation
quantity, w, in integrable systems is expected to be nonuniversal. In the mixed-type case,
the distribution of w should be in between, which here is not the case. Moreover, even for
the rectangle as an example of the integrable systems, an (almost) Gaussian distribution is
found (see below).
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Figure 3. Results for the B = 0.1953 billiard: left column (a,d,g,j): the difference,
R(k) = N (k)− W̄(k), between the staircase function, N (k), around the Weyl function and the Weyl
function as a function of the wavenumber k (in the mean linearly decreasing line); middle column
(b,e,h,k): the fluctuation quantity, w(k) = R(k)−m(R(k)) as afunction of k, where m(R(k)) is the
local average of R(k) over 100 consecutive levels; right column (c,f,i,l): the distribution of w. The
rows top to bottom refer to the symmetry classes odd-odd, odd-even, even-odd, and even-even,
respectively. In each parity case, there are about 300,000 levels. The agreement with the Gaussian
distribution is extremely good. The small shift of the maximum around w ≈ 0.1 is due to the
imperfection of local averaging. The values of the mean, µ, and the standard deviation, σ are (top to
bottom): (0.126, 2.624), (0.139, 2.636), (0.132, 2.635), (0.148, 2.641), respectively. Within the expected
statistical error, the value of σ is the same for all parities.

The same analysis was performed for the case of the B = 0.083 billiard, and the results
are shown in Figure 4, and lead to the same conclusions.
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Figure 4. Results for the B = 0.083 billiard:left column (a,d,g,j): the difference, R(k) = N (k)− W̄(k),
between the staircase function, N (k), around the Weyl function and the Weyl function as a function
of the wavenumber k (in the mean linearly decreasing line); middle column (b,e,h,k): the fluctuation
quantity, w(k) = R(k)−m(R(k)) as afunction of k, where m(R(k)) is the local average of R(k) over
100 consecutive levels; right column (c,f,i,l): the distribution of w. The rows top to bottom refer to
the symmetry classes odd-odd, odd-even, even-odd, and even-even, respectively. In each parity
case, there are about 300,000 levels. The agreement with the Gaussian distribution is again extremely
good. The values of the mean µ and standard deviation σ are: (0.148, 2.915), (0.137, 2.925), (0.154,
2.900), (0.146, 2.946) (top to bottom). Within the expected statistical error, the value of σ is the same
for all parities.

The local averaging procedure over 100 consecutive levels is, of course, somewhat
arbitrary. Therefore, the results were checked for 50, 200, 400 levels. In all cases, the
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distribution was found to represent Gaussian extremely well. The standard deviation
σ at each level number keeps the same value for all parities, but increases slowly with
the number of levels such that for 50, 100, 200, 400 for B = 0.1953, one gets σ ≈
2.08, 2.63, 2.88, 2.92, respectively. For the B = 0.083 billiard, the corresponding values are:
σ ≈ 2.22, 2.92, 3.50, 3.52.

In order to explore an integrable, entirely regular system, an example of the maximally
irrational rectangle billiard was studied whose aspect ratio was taken the golden mean
g = (1 +

√
5)/2 ≈ 1.61803. The spectrum in this case is known analytically, and is exact:

Eln = l2/g2 + n2, where l and n are two positive integers. Figure 5 shows the fluctuation
quantity w(k), which has no drift, because the spectrum is exact (no lost levels) over a wide
range of k.

0.00 0.25 0.50 0.75 1.00 1.25 1.50

k ×104

−100

−75

−50

−25

0

25

50

75

N
s
ta
te
s
−
N
W
e
y
l

Figure 5. Results for the rectangle billiard, the fluctuation quantity w(k) = R(k) = N (k)−W(k) for
a wide range of k.

The corresponding distributions at various wavenumber k intervals starting at k0 are
shown in Figure 6. Each histogram comprises about 100,000 objects. They are surprisingly
close to a Gaussian distribution, contrary to the theoretical expectation, and thus, the
distribution is just close to the case of ergodic chaotic systems. Therefore, the distribution
of the number of energy levels (distribution of mode fluctuations) is not a good criterion to
distinguish ergodic chaotic systems from the regular integrable systems. In Table 1, the
data for the mean, µ, standard deviation, σ, skewness, and kurtosis are given.
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Figure 6. Distributions of w, w(k) = R(k) = N (k) −W(k), for the rectangle billiard in twelve intervals of k. In each
histogram, there are about 100,000 objects, distributed in 100 bins. The distribution is surprisingly close to Gaussian; there is
no significantly nonuniversal distribution for integrable systems. In Table 1, the values of the mean µ, standard deviation
σ, skewness, and kurtosis are given. The fitting (red) curve is the Gaussian distribution with the same µ and σ as those
obtained. However, the variance as a function of k is linear for all integrable systems; it is thus universal in the class of
integrable systems, see Figure 7.
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Table 1. Parameters of the distribution of Figure 6 for the wavenumber k-intervals starting at k0: the
mean µ, standard deviation σ, skewness, and kurtosis.

Parameters of the Distributions in Figure 6

k0 µ σ Skewness Kurtosis

0 0.747 4.530 −0.309 0.345
1000 0.757 6.483 −0.234 −0.132
2000 0.764 8.587 −0.222 −0.121
3000 0.741 10.490 −0.306 −0.171
4000 0.795 11.593 −0.274 −0.190
5000 0.624 13.258 −0.285 −0.113
6000 0.727 14.795 −0.261 −0.088
7000 1.067 16.041 −0.204 −0.223
8000 0.590 16.532 −0.117 −0.054
9000 0.752 17.271 −0.274 −0.192
10,000 0.852 18.394 −0.433 0.318
11,000 1.051 19.772 −0.231 0.032

In Figure 7, the standard deviation of the distributions of w is plotted as a function of
k, which clearly accurately follows the prediction by Steiner [11–14], namely the standard
deviation σ rises as

√
k, shown also in the log-log plot, and the variance is a linear function

of k. Therefore, the dependence of the variance on k is a good signature of chaos, unlike the
distribution itself: in ergodic chaotic systems, the standard deviation behaves as

√
log k.

0.0 0.5 1.0 1.5
k ×104

5

10

15

20

σ

103 104

k

101

6× 100

2× 101

σ

Figure 7. The standard deviation σ of the distribution of the fluctuation quantity w(k) = R(k) =
N (k)−W(k) for a wide range of k, shown along with the fitting curve, σ = a kγ, with a = 0.187 and
γ = 0.502: in the linear scale (left panel) and in log-log scale (right panel). The log-log plot clearly
shows a power-law increase of k with the slope 0.5.

4. Level Spacing Distribution for the Entire Spectrum

One of the most important statistical measures of the (unfolded) energy spectra is
the level spacing distribution, P(S). For integrable systems, one gets Poissonian statistics
and PP(S) = exp(−S), while for classically ergodic (fully chaotic) systems the Gaussian
orthogonal ensemble (GOE) of random matrix theory applies. The Wigner distribution
(Wigner surmise) is 2-dimensional GOE distribution and is a very good approximation for
the GOE level spacing distribution (infinite-dimensional),

PW(S) =
πS
2

exp
(
−πS2

4

)
. (9)
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There is a general useful relationship, namely, one using the gap probability, E(S),
being the probability of having no level on an arbitrary interval of length S: the level
spacing distribution P(S) is, in general, equal to the second derivative of the gap probability,
P(S) = d2E(S)/dS2.

For Poisson statistics: EP(S) = exp(−S), while for the Wigner distribution, one finds:

EW(S) = 1− erf
(√

πS
2

)
= erfc

(√
πS
2

)
. (10)

For mixed-type systems, there is typically one dominant chaotic component with the
relative density of levels ρ2 (equal to the relative fraction of the chaotic phase space volume),
while the complement is typically a regular component of relative density, ρ1 = 1− ρ2. If
the regular and chaotic levels superimpose statistically independent of each other, then
obviously, the gap probability factorizes:

E(S) = EP(ρ1S) EW(ρ2S), (11)

and therefore, in this case, the level spacing distribution is given by the Berry–Robnik (BR)
formula [24]:

PBR(S) = e−ρ1S exp

(
−πρ2

2S2

4

)(
2ρ1ρ2 +

πρ3
2S

2

)
(12)

+ e−ρ1Sρ2
1erfc

(√
πρ2S
2

)
.

The above statements are true provided the Heisenberg time is larger than any classical
transport time in the system [8]. (The Heisenberg time is defined as 2πh̄ d(E), where d(E)
is the mean energy level density, also the reciprocal mean energy level spacing.) If this
is not the case, the chaotic eigenstates can be quantum (or dynamically) localized, which
implies localized chaotic Poincaré–Husimi functions in the phase space. The level spacing
distribution for such localized chaotic eigenstates becomes (approximately) the known
Brody distribution [26,27]:

PB(S) = cSβ exp
(
−dSβ+1

)
, (13)

where by the normalization of the total probability and the first moment, one gets:

c = (β + 1)d, d =

[
Γ
(

β + 2
β + 1

)]β+1
, (14)

where Γ(x) is the Gamma function. The Brody distribution interpolates the exponential
and Wigner distribution as β goes from zero to one. The important feature of the Brody
distribution is the fractional level repulsion effect, meaning the power law at small S,
P(S) ∝ Sβ. The corresponding gap probability is:

EB(S) =
1

γ(β + 1)
Q
(

1
β + 1

, (γS)β+1
)

, (15)

where γ = Γ
(

β+2
β+1

)
, and Q(a, x) is the incomplete Gamma function:

Q(a, x) =
∫ ∞

x
ta−1e−tdt. (16)

Here, the only parameter is β, the level repulsion exponent in (13), which measures
the degree of localization of the chaotic eigenstates: if the localization is maximally strong,
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the eigenstates practically do not overlap in the phase space (of the Wigner functions), and
one finds β = 0 and a Poissonian distribution, while in the case of maximal extendedness
(no localization), one finds β = 1 and the GOE statistics of levels applies. Thus, by
replacing EW(S) by EB(S), the Berry–Robnik–Brody (BRB) distribution is obtained which
generalizes the BR distribution (12) such that the localization effects in chaotic eigenstates
are included [28]. Note that in the semiclassical limit, h̄→ 0 or k→ ∞, the Heisenberg time
becomes arbitrarily large (larger than any classical transport time), the localization effects
of chaotic eigenstates disappear, and the BRB distribution becomes the BR distribution.
However, the theoretical derivation of the Brody distribution for the localized chaotic states
remains an important open problem. Furthermore, while the local behavior at small S,
described by the power law P(S) ∝ Sβ, is certainly correct, the global feature of the Brody
distribution is surely approximate, although empirically is well founded.

In Figure 8, the present study, the classical transport time of the billiards is very short;
therefore, one expects β ≈ 1, and the level spacing distribution is almost BR one (12).
Thus, in the level statistics, one does not detect large localization effects. For the spectral
unfolding procedure, the Weyl formula, Equation (5), is used, which at high energies is
quite accurate.

Figure 8, shows the level spacing distributions P(S) for the two billiards—one of
B = 0.1953 (left column), and another one of B = 0.083 (right column)—for the spectral
stretches each about 20,000 levels long, starting at k0 = 2880, for each parity: even-even
even-odd, odd-even and odd-odd and for all four parities together (about 80,000 levels),
each of them along with the best fitting BRB distribution.

As one can see, in the case of B = 0.1953, Figure 8a,c,e,g,i, the β parameter is very close
to one, while the parameter ρ1 is close to the classical value, ρ1 = 1− ρ2 = 0.7196, being
the relative fraction of the volume of the regular part of the phase space (see Section 2).
Thus, the system exhibits the Berry–Robnik picture with weak localization effects in the
chaotic part of the energy spectrum. P(S) is well fit by the BRB distribution. The picture is
very similar for other lower values of k0 (not shown).

For B = 0.083, one observes a substantial variation of both the β and ρ1 parameters,
the latter one being far from the classical value ρ1 = 0.8383. This is certainly due to the
complexity of the phase portrait shown in Figure 2, where many structural features are
quantum mechanically not yet resolved, even at such high lying energies E = k2, starting
at k0 = 2880. This will be studied in more detail in the forthcoming paper by us [9], where
the Poincaré–Husimi functions in the phase space are analyzed in a similar way as in [4].
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Figure 8. Level spacing distribution P(S) for the two billiards: of B = 0.1953 (left column) and
of B = 0.083 (right column), along with the best fitting Berry–Robnik–Brody curves. The abscissa
represents S and the ordinate gives P(S). The full circles represent the value of P(S = 0). The parities
are: even-even (a,b), even-odd (c,d), odd-even (e,f), odd-odd (g,h), and all parities together (i,j). For
each particular parity, there are about 20,000 levels; for all parities together, there are about 80,000
levels. The values of (β, ρ1) for the left column are (top to bottom): (0.798, 0.684), (1.000, 0.716), (1.000,
0.709), (1.000, 0.690), (1.000, 0.700). The classical value ρ1 = 0.7196. The values of (β, ρ1) for the right
column are (top to bottom): (0.316, 0.666), (0.178, 0.588), (0.129, 0.474), (1.000, 0.738), (0.324, 0.660).
The classical value ρ1 = 0.8383.
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5. Conclusions

In this paper, the statistical properties of the oscillations of the cumulative spectral
staircase function (the integrated density of energy levels) around the corresponding
mean value were studied, in order to compare the function obtained with the theoretical
predictions of Steiner [11–14] for the fully chaotic and integrable (regular) systems. In
billiards, the mean behavior is asymptotically exactly described by the Weyl formula (5).
In the case of the integrable maximally irrational rectangle billiard, almost a Gaussian
distribution of the fluctuations was surprisingly observed, in contrary to the expectations
of Steiner’s theory. Nevertheless, the standard deviation as a function of the wavenumber
k was found to be proportional to

√
k, precisely in agreement with Steiner’s prediction for

all integrable systems.
In the two mixed-type lemon billiards, B = 0.1953 and 0.083, where regular and

chaotic regions coexist in the classical phase space, the Gaussian distribution is found,
which is surprising, as the theory predicts a Gaussian distribution only for the fully chaotic
(ergodic) systems. Thus, in these two cases, one observes that there is very little difference
between the mixed-type systems and the fully chaotic systems. Moreover, this is even
more surprising as in the two billiards studied here, the fraction of the chaotic part of
the phase space was only 0.28 and 0.16, respectively. This implies that the distribution
of the fluctuations of the spectral staircase functions around the mean behavior is not a
very significant criterion for quantum chaos. This conclusion is corroborated by the result
obtained for the integrable rectangle billiard.

The level spacing distribution of the energy spectra at high lying levels was also
explored, starting at k0 = 2880, and the Berry–Robnik–Brody distribution was found in
both lemon billiard cases. In the case B = 0.1953, the results were in agreement with the
Berry–Robnik picture [8,24], showing that the localization of the chaotic eigenstates is very
weak, the level repulsion parameter β is close to one, and the quantum Berry–Robnik
parameter ρ2 is close to the classical one. On the other hand, in the lemon billiard B = 0.083,
one observed relatively strong localization: β is substantially lower than one and varies
widely over the four parities. Likewise, the quantum ρ1 is substantially smaller than the
classical value 0.8383 and varies widely over the four parities, which is certainly due to the
complexity of the classical phase space, as the fine structure of the classical phase space
is not yet resolved by the Poincaré–Husimi functions. This analysis will be the topics of
forthcoming paper by us [9], using the approach of [4].
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