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Abstract: In this paper, the instability of a vertical fluid motion, or throughflow, is investigated
in a horizontal bidisperse porous layer that is uniformly heated from below. By means of the
order-1 Galerkin approximation method, the critical Darcy–Rayleigh number for the onset of steady
instability is determined in closed form. The coincidence between the linear instability threshold and
the global nonlinear stability threshold, in the energy norm, is shown.
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1. Introduction

In recent years, thermal convection in bidisperse porous media has attracted the
interest of many researchers due to the numerous applications in which they are used.
Bidisperse porous media (BDPM) were defined in [1] as media composed of clusters of large
particles that are agglomerations of small particles. In this way, BDPM can be regarded
as regular porous media containing fissures or cracks. There are macropores between the
clusters and micropores within them. The macropores are referred to as f-phase, while the
remainder of the structure is referred to as p-phase. Artificial BDPM can be constructed in
order to inhibit or promote the onset of convection.

The onset of thermal convection in BDPM is widely studied. In [2–5], a theoretical
fundation for fluid motion in BDPM can be found. A mathematical model incorporating
two velocities, two pressures, and two temperatures for macro and micro phases was
introduced.

In [6], the local thermal equilibrium between the macro and micropores was assumed,
and hence a mathematical model with independent velocity and pressure has been intro-
duced. This model has been widely used to investigate the onset of thermal convection in
BDPM incorporating various effects. In particular, the effect of the uniform rotation about
a vertical axis has been investigated in [7–11] for isotropic and anisotropic BDPM with
or without the inertia term; the double-diffusive thermal convection has been analyzed
in [12–16].

When the rest state loses its stability and steady convection occurs, a secondary steady
motion, or throughflow, is observable. The stability of fluid motion in porous media finds
relevant applications in industrial processes, geophysics, and astronomy and has been
analyzed in many papers (see, for example [17–26] and the references therein).

In [17–26], the stability of vertical constant throughflows has been performed in-
corporating various effects, such as viscous dissipation [17]; chemicals dissolved in the
fluid [19,22,25,26]; and an external magnetic field acting on an electrically conducting
fluid [23]. The stability of non-constant throughflows was performed in [27].

In this paper, stability analysis of a vertical constant throughflow, saturating a bidis-
perse porous medium heated from below, is performed. The paper is organized as follows.
Section 2 is devoted to the mathematical model and to the determination of a constant
steady state solution that is different from the rest state (i.e., different from the conduction
solution). Section 3 deals with the linear stability analysis and, by using an order-1 Galerkin

Physics 2021, 3, 821–828. https://doi.org/10.3390/physics3040052 https://www.mdpi.com/journal/physics

https://www.mdpi.com/journal/physics
https://www.mdpi.com
https://orcid.org/0000-0002-0672-999X
https://doi.org/10.3390/physics3040052
https://doi.org/10.3390/physics3040052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/physics3040052
https://www.mdpi.com/journal/physics
https://www.mdpi.com/article/10.3390/physics3040052?type=check_update&version=1


Physics 2021, 3 822

approximation method, the critical Darcy–Rayleigh number for the onset of steady insta-
bility is determined in closed form. Nonlinear stability analysis in the energy norm is
investigated in Section 4 showing the absence of subcritical instabilities. The paper ends
with a final Section summarizing the results obtained.

2. Mathematical Model and Preliminaries

Let L be a horizontal layer of depth d filled by a bidisperse porous medium. Assume
that the layer is uniformly heated from below and is filled by a Newtonian, homogeneous,
incompressible fluid moving vertically. Introducing a reference frame Oxyz with fundamen-
tal unit vectors i, j, k (k pointing vertically upward) so that L = R2 × [0, d], the equations
governing the fluid motion in L, on assuming the Oberbeck–Boussinesq approximation,
are [6]: 

− µ

k f
v f − ζ(v f − vp)−∇p f + $FαgTk = 0,

− µ

kp
vp − ζ(vp − v f )−∇pp + $FαgTk = 0,

∇ · v f = 0,
∇ · vp = 0,
($c)mT,t + ($c) f (v f + vp) · ∇T = km∆T,

(1)

where x = (x, y, z), subscript ”,t” denotes the time derivative, vs is the seepage velocity, ps is
the pressure, T is the temperature, $ is the density, ζ is the interaction coefficient between the
f-phase and the p-phase, g = −gk is the gravity, µ is the fluid viscosity, $F is the reference
constant density, α is the thermal expansion coefficient, c is the specific heat, cp is the specific
heat at a constant pressure, ($c)m = (1− ϕ)(1− ε)($c)sol + ϕ($c) f + ε(1− ϕ)($c)p, and
km = (1− ϕ)(1− ε)ksol + ϕk f + ε(1− ϕ)kp is the thermal conductivity (the subscript ”sol”
refers to the solid skeleton, and s = { f , p} for f-phase and p-phase, respectively).

The followng boundary conditions are applied to the system (1):

T ≡ TL , at z = 0 ; T ≡ TU at z = d , (2)

where TL > TU .
The problem (1)–(2) admits the stationary solution (vertical constant throughflow)

mt = {v f , vp, p f , pp, T}:

v f = Q f k, vp = Qpk, T =
TU − TLeQd/k + (TL − TU)eQz/k

1− eQd/k
, Q = Q f + Qp,

p f = p f
0+$Fαg

TL−TU

1− eQd/k

k
Q
(eQz/k−1)+

(
$Fαg

TU−TL

1− eQd/k
eQd/k− µ

k f
Q f−ζ(Q f−Qp)

)
z,

pp = pp
0+$Fαg

TL−TU

1− eQd/k

k
Q
(eQz/k − 1)+

(
$Fαg

TU−TL

1− eQd/k
eQd/k− µ

k f
Qp−ζ(Qp−Q f )

)
z,

with Q = Q f + Qp, k =
km

($c) f
(thermal diffusivity). Setting

u f = v f − v f , up = vp − vp, Π f = p f − p f , Πp = pp − pp, θ = T − T, (3)
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the system governing the evolution of the perturbation fields is:

− µ

k f
u f − ζ(u f − up)−∇Π f + $Fαgθk = 0,

− µ

kp
up − ζ(up − u f )−∇Πp + $Fαgθk = 0,

∇ · u f = 0,
∇ · up = 0,
($c)m

($c) f
θ,t + (u f + up) · ∇θ = −(w f + wp)T,z −Qθ,z + k∆θ,

(4)

where u f = (u f , v f , w f ), up = (up, vp, wp), under the boundary conditions,

u f · n = up · n = θ = 0 at z = 0, d

where n is the unit outward normal to the impermeable horizontal planes delimiting
the layer.

Introducing the non-dimensional parameters,

x∗ =
x
d

, t∗ =
t
t̃
, θ∗ =

θ

T̃
, us∗ =

us

ũ
, Πs∗ =

Πs

P̃
, for s = { f , p},

γ1 =
µ

k f ζ
, γ2 =

µ

kpζ
,

where the scales are given by

ũ =
km

($c) f d
, t̃ =

d2($c)m

km
, P̃ =

ζkm

($c) f
, T̃ =

√
βkmζ

($c) f $Fαg
,

the system (4) becomes (dropping all the asterisks):

−γ1u f − (u f − up)−∇Π f + Raθk = 0,
−γ2up − (up − u f )−∇Πp + Raθk = 0,
∇ · u f = 0,
∇ · up = 0,
θ,t + (u f + up) · ∇θ = −Ra f̃ (z)(w f + wp)− Peθ,z + ∆θ,

(5)

where

Ra =

√
βd2($c) f $Fαg

kmζ

is the Darcy–Rayleigh thermal number and

Pe =
Qd
k

(Péclet number), f̃ (z) =
PeePez

1− ePe < 0, ∀z ∈ [0, 1], ∀Pe.

The initial boundary conditions,

us(x, 0) ≡ us
0(x) , Πs(x, 0) ≡ Π0(x) , θ(x, 0) ≡ θ0(x),

w f = wp = θ = 0 at z = 0, 1,
(6)

are appended to the system (5), with ∇ · us
0 = 0.
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In the sequel, it is assumed the perturbation fields are periodic in the horizontal

directions x and y of periods
2π

ax
and

2π

ay
, respectively, and the periodicity cell is denoted by

V =
[
0,

2π

ax

]
×
[
0,

2π

ay

]
× [0, 1].

3. Linear Instability

Let {û f , ûp, Π̂ f , Π̂p, θ̂} be the solution of the linearized version of the system (5), i.e.,

−γ1û f − (û f − ûp)−∇Π̂ f + Raθ̂k = 0,
−γ2ûp − (ûp − û f )−∇Π̂p + Raθ̂k = 0,
∇ · û f = 0,
∇ · ûp = 0,
θ̂,t = −Ra f̃ (z)(ŵ f + ŵp)− Peθ̂,z + ∆θ̂,

(7)

under the initial-boundary conditions

ûs(x, 0) = ûs
0(x) , Π̂s(x, 0) = Π̂0(x) , θ̂(x, 0) = θ̂0(x),

ŵ f = ŵp = θ̂ = 0 at z = 0, 1.
(8)

The third components of the double curl of the first two equations of the system (7)
along with the last equation of the system constitute a linear system governing the evolution
of the three independent fields ŵ f , ŵp, θ̂:

(1 + γ1)∆ŵ f − ∆ŵp − Ra∆1θ̂ = 0,
−∆ŵ f + (1 + γ2)∆ŵp − Ra∆1θ̂ = 0,
θ̂,t = −Ra f̃ (z)(ŵ f + ŵp)− Peθ̂,z + ∆θ̂.

(9)

Let us look for solutions of normal modes type ŵ f (x, y, z, t)
ŵp(x, y, z, t)
θ̂(x, y, z, t)

 =

 w f (z)
wp(z)
θ(z)

 exp [−σt + i(axx + ayy)] , (10)

where σ ∈ C. Setting

a2 = a2
x + a2

y, D ≡ d
dz

,

∀ϕ ∈ {ŵ f , ŵp, θ̂}, one has that

∆1 ϕ = −a2 ϕ, ∆ϕ = (D2 − a2)ϕ. (11)

Then, the system (9) reads:
(1 + γ1)(D2 − a2)w f − (D2 − a2)wp + Raa2θ = 0,
−(D2 − a2)w f + (1 + γ2)(D2 − a2)wp + Raa2θ = 0,
−σθ = −Ra f̃ (z)(w f + wp)− PeDθ + (D2 − a2)θ,

(12)

under the boundary conditions,

w f = wp = θ = 0 at z = 0, 1. (13)



Physics 2021, 3 825

To determine an approximation of the critical Darcy–Rayleigh number for the onset
of steady instability, let us employ the order-1 Galerkin weighted residual method [24].
To this end, let us choose, as trial functions satisfying the boundary conditions (13),

w f = C1 sin πz, wp = C2 sin πz, θ = C3 sin πz, (14)

where Ci are constants i ∈ {1, 2, 3}. Substituting the trial functions (14) in the system (12),
one obtains three residuals. Making these residuals orthogonal to the trial functions over
the range 0 ≤ z ≤ 1, one obtains the following system of three linear algebraic equations in
the three unknowns, C1, C2, C3:

−(1 + γ1)(a2 + π2)C1 + (a2 + π2)C2 + Raa2C3 = 0,
(a2 + π2)C1 − (1 + γ2)(a2 + π2)C2 + Raa2C3 = 0,

4π2Ra
4π2 + Pe2 C1 +

4π2Ra
4π2 + Pe2 C2 −

[
(a2 + π2)− σ

]
C3 = 0.

(15)

Requiring the vanishing of the determinant of the system (15), one has that

Ra2 =
(γ1 + γ2 + γ1γ2)(4π2 + Pe2)(a2 + π2)(a2 + π2 − σ)

4π2a2(4 + γ1 + γ2)
. (16)

From Equation (16), Ra2 is a real number if and only if σ ∈ R, i.e., the principle of
exchange of stability holds and instability can arise only via a steady motion. Hence, setting
σ = 0 in Equation (16), one obtains that the critical Darcy–Rayleigh number for the onset
of steady instability is:

Ra2 = Ra(s) = min
a2∈R+

(γ1 + γ2 + γ1γ2)(4π2 + Pe2)(a2 + π2)2

4π2a2(4 + γ1 + γ2)
. (17)

Simple calculations show that the minimum is reached for a2 = a2
s = π2 and is

given by

Ra(s) =
(γ1 + γ2 + γ1γ2)(4π2 + Pe2)

4 + γ1 + γ2
. (18)

Let us remark that Ra(s) increases with Pe, and

lim
Pe→0

Ra(s) =
4π2(γ1 + γ2 + γ1γ2)

4 + γ1 + γ2
, (19)

which is the critical Darcy–Rayleigh thermal number for the onset of steady convection
found in [28].

4. Nonlinear Stability

Let us consider the nonlinear system,
(1 + γ1)∆w f − ∆wp − Ra∆1θ = 0,
−∆w f + (1 + γ2)∆wp − Ra∆1θ = 0,
θ,t + (u f + up) · ∇θ = −Ra f̃ (z)(w f + wp)− Peθ,z + ∆θ,
∇ · u f = 0, ∇ · up = 0,

(20)

under the boundary conditions

w f = wp = θ = 0 at z = 0, 1. (21)
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Let us denote by ‖ · ‖ and 〈·, ·, 〉 the L2(V)-norm and scalar product, respectively.
Multiplying the first equation of the sytem (20) by w f , the second equation by wp, and the
third equatuon by θ; adding the resulting equations and integrating over V, results in

1
2

d
dt
‖θ‖2 = RaI − D, (22)

with
I = −〈 f̃ (z)(w f + wp), θ〉+ λ〈∇1θ,∇1(w f + wp)〉,
D = ‖∇θ‖2 + λ

{
γ1‖∇w f ‖2 + γ2‖∇wp‖2 + ‖∇w f −∇wp‖2

} (23)

with ∇1 as the horizontal gradient and λ ∈ R a coupling parameter to be suitably chosen
later. Defining

1
RE

= max
H

I
D

, (24)

withH being the class of the kinematically admissible perturbations, i.e.,

H = {(w f , wp, θ) ∈ (H1)3|w f = wp = θ = 0 on z = 0, 1; periodic in x, y

with periods 2π/ax, 2π/ay; D < ∞; verifying ∇ · us = 0, s = { f , p}}.

Ra < RE implies the nonlinear, global, asymptotic, exponential stability in the energy norm.
The Euler–Lagrange equations are:

RE[ f̃ (z)θ + λ∆1θ] + λ[−2(1 + γ1)∆w f + 2∆wp] = 0,
RE[ f̃ (z)θ + λ∆1θ] + λ[2∆w f − 2(1 + γ2)∆wp] = 0,
RE[ f̃ (z)(w f + wp) + λ∆1(w f + wp)]− 2∆θ = 0.

(25)

By using the order-1 Galerkin residual method, one obtains an approximation of the
solution of the system (25) given by

R2
E =

4λ(γ1 + γ2 + γ1γ2)(a2 + π2)2(4π2 + Pe2)2

(4 + γ1 + γ2)
[
4π2(1 + λa2) + a2λPe2

]2 . (26)

Choosing

λ =
4π2

a2(4π2 + Pe2)
, (27)

to maximize R2
E, one obtains:

R2
E =

(γ1 + γ2 + γ1γ2)(a2 + π2)2(4π2 + Pe2)

4π2a2(4 + γ1 + γ2)
. (28)

The minimum—with respect to a2 ∈ R+—is given by Ra(s), i.e., there is coincidence
between the linear instability threshold and the global nonlinear stability threshold in the
L2(V)−norm.

5. Results and Conclusions

In this paper, the instability of vertical constant throughflows saturating a horizontal
BDPM that is uniformly heated from below is analyzed. An approximation of the critical
Darcy–Rayleigh thermal number for the onset of steady instability was determined in alge-
braic closed form by using the order-1 Galerkin approximation method. The coincidence
between the linear instability threshold and the global nonlinear stability threshold in
the energy norm was proven. It is found that instability set in when the Darcy–Rayleigh
number reached the threshold in Equation (18). Then, from Equation (18), it follows that:
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(i) In the absence of throughflow (i.e., when the horizontal bidisperse porous medium is
filled by a fluid at the rest state), Ra(s) reverts to the critical Darcy–Rayleigh thermal
number RS at which steady convection sets in.

(ii) Since Ra(s) > RS, ∀Pe, the throughflow has a stabilizing effect in the sense that it loses
its stability for a higher Darcy–Rayleigh number, compared to that related to thermal
conduction solution.

(iii) In order to compare the result obtained here with the case of a monodispersive porous
layer, let us define the classical Darcy–Rayleigh number Racl by

Ra2
cl =

$Fgαβd2k f ($c) f

kmµ
. (29)

Hence,
Ra2 = γ1Ra2

cl. (30)

Then, the critical Darcy–Rayleigh number for the onset of steady instability for a
vertical throughflow saturating a monodispersive layer is obtained by substituting
Equation (30) into Equation (18) and letting ζ → 0, i.e., it is given by

Ra2
cl,s = 4π2 + Pe2, (31)

with Pe = Qd/k. The threshold (31) coincides with the one found in [26] in the
absence of chemicals dissolved in the fluid.

(iv) Comparing Equation (18) with Equation (31), it turns out that (see Figure 1)

– if γ1γ2 < 4, then Ra(s) < Ra2
cl,s, i.e., the double porosity has a destabilizing effect;

and
– if γ1γ2 > 4, then Ra(s) > Ra2

cl,s, i.e., the double porosity has a stabilizing effect.

Figure 1. Instability thresholds with respect to Pe2: Ra2
cl,s (solid line), and Ra(s) with γ1 = 0.5, γ2 =

0.7, i.e., γ1γ2 < 4 (dashed line), and γ1 = 5.5, γ2 = 2, i.e., γ1γ2 > 4 (dotted line). See text for details.
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