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Abstract: In this paper possible spatial domains, containing expanding extra dimensions, are studied.
It is demonstrated that these domains are predicted in the framework of f (R) gravity (where R is the
scalar curviture) and could appear due to quantum fluctuations during inflation. The interior of the
domains is shown to be characterized by the multidimensional curvature ultimately tending to zero
and a slowly growing size of the extra dimensions.
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1. Introduction

It is usually assumed that the nucleation of our Universe is related to quantum
processes at the Planck energy scale [1–3]. After nucleation, various manifolds evolve
classically, forming a set of manifolds, one of which is our Universe. It is a considerable
challenge to fix the Lagrangian parameters to satisfy the observations. The complexity of
this problem is aggravated by the inclusion of extra dimensions. The latter is of particular
interest because the concept of extra dimensions is widely used in modern research dealing
with problems such as grand unification [4,5], the cosmological constant problem [6–8], etc.
The assumption of extra space compactness immediately leads to the question: Why is a
specific number of dimensions stable or slowly expanding [9–11]? Stabilizing factors could
be, for example, scalar fields [9,12] or gauge fields [13]. A static solution can be obtained
using the Casimir effect [14,15] or form fields [16]. A contradiction with observations can
be avoided if the time-dependent extra-dimensional scale factor, b(t), varies sufficiently
slowly [17,18].

One of the ways to stabilize the extra dimensions is based on gravity with higher
derivatives, which is widely used in modern research. One of the most promising models of
inflation is the Starobinsky model using a purely gravitational action [19]. Research efforts
to avoid the Ostrogradsky instabilities have been made [20], and extensions of the Einstein–
Hilbert action have received much attention. The model, presented here, contains f (R)
gravity (where R is the scalar curviture) with the addition of the Kretschmann invariant
and the Ricci tensor squared. The corresponding action can be considered as a basis for an
effective field theory [21,22]

The recent paper [23] studied the evolution of manifolds after creation of these man-
ifolds on the basis of a pure gravitational Lagrangian with higher derivatives. The final
metrics may differ in different spatial regions if the model admits several stationary states.
This is precisely the case for the model discussed in [24] , in which one of the stationary
states was studied. The Lagrangian parameters at low energies are chosen in such a way
as to supply an (almost) Minkowski space for the present Universe and the stationarity
of the extra-space metric, and to reproduce an inflationary stage of the expansion with
the Hubble parameter of the order of H ∼ 1013 GeV. Here, another final state admitted by
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the same model is discused with a comparatively small curvature of the extra dimensions
that can still be compatible with observations. Some 3-dimensional (3D) spatial regions
in the Universe could be characterized by such a metric, and it is of interest to study
this possibility.

2. Outlook

Self-stabilization of the extra dimensions is one of the necessary elements of models
based on compact extra spaces. In [25,26], it has been shown that the models with higher
derivatives could lead to stationary solutions. The analysis was based on the model where
the initial action was taken in the form [27,28]

S =
1
2

mD−2
D

∫ √
gD dDx

[
f (R) + c1RABRAB + c2RABCDRABCD + Lm

]
, (1)

where capital Latin indices cover all D coordinates, gD = |det(gMN)|, gMN is the D-
dimensional space metric tensor, f (R) is a smooth function of the D-dimensional scalar
curvature R, c1, c2 are constants, Lm is a matter Lagrangian, and mD = 1/r0 is the D-
dimensional Planck mass, so that r0 is a fundamental length in this theory. Throughout this
paper, the following conventions on the curvature tensor is used: RD

ABC = ∂CΓD
AB− ∂BΓD

AC +
ΓD

ECΓE
BA− ΓD

EBΓE
AC, where ΓC

AB is the D-dimensional Christoffel symbol, ∂A ≡ ∂/∂A, and for
the Ricci tensor, RMN = RF

MFN . The metric signature (+−− · · · ) and the units h̄ = c = 1,
where h̄ is the reduced Planck constant and c is the speed of light, are used. For Lm, one
can consider the Casimir energy density in space-time with the metric,

ds2 = gµνdxµdxν − r2
0 e2β(xµ)dΩ2

n, (2)

where gµν is the 4-dimensional space-time metric tensor, the indices, denoted by Greek
letters, take on the values 0 (time), 1, 2, 3 (space), xµ are the observable four space-time
coordinates, and dΩ2

n is the metric on a unit sphere Sn. Space-time is a direct product
M4 ×Mn. The function f (R) is taken in a general quadratic form,

f (R) = a2R2 + R− 2ΛD, (3)

where a2 is a constant, and ΛD is the cosmilogical constant in the D-dimensional space.
Assuming Lm = 0, one obtains an effective scalar–tensor theory, with the potential

presented in Figure 1. Here, the internal Ricci scalar Rn, in fact, plays the role of a scalar
field φ; for details, see [24,25].

Figure 1. The effective potential for a viable version of the model (1). The minimum of the potential
is at the point φmin ' 0.083, the D-dimensional Planck mass, mD = 1. In agreement with [24],
mD ∼ 0.1MPl, where MPl is the Planck mass.
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According to the experimental data, the scale of extra dimensions cannot be larger
than 10−17–10−18 cm. For example, the Ricci scalar Rn = φ ∼ 0.01M2

Pl from Figure 1 is very
large, so that the inequality,

Rn � R4, (4)

appears natural. Here, Rn and R4 are the Ricci scalars of the extra dimensions and of the
4D space-time, respectively. The inequality (4) was used in the derivation of the effective
potential in Figure 1.

The scalar field could tend toward any minimum, depending on the initial conditions.
Hence, different spatial regions could be filled with different states of φ, that with Rn = φmin
or with a small Ricci scalar R→ 0 due to the metric fluctuations at high energies.

The metric evolution around the solution Rn = φmin could reproduce the inflationary
scenario. One can adjust the model parameters to describe the observational properties of
the inflationary stage. As usual, strong fine tuning is necessary to produce a small, almost
zero 4D cosmological constant.

In this paper, the space-time metric that can emerge near the minimum R → 0
is analyzed. Naively, an effective 4D cosmological constant should tend toward zero
automatically in such regions of space. Is it applicable for life formation? The question is
important even if the answer is negative. Even if we live at the standard minimum where
Rn = φmin, some neighboring regions could be filled with another minimum where R→ 0.

Notice that in this study one is interested in those regions where the Ricci scalar tends
toward zero. In this case, the inequality (4) may seem questionable, but it should evidently
hold if the extra dimensions are spherical and small enough to be invisible by modern
instruments. However, beyond that, close to the limit R→ 0, one more inequality,

a2R2 � R, (5)

must hold, which strongly facilitates the analysis.

3. Field Equations

Under the assumption (5), one can simply let F(R) = R− 2ΛD and neglect all the
curvature–nonlinear terms in the action (1). The action (1) is then reduced to four dimen-
sions, in which the action takes the form inherent to a scalar–tensor theory specified in 4D
space-time with the metric gµν:

S =
1
2
Vm2

D

∫ √
g4d4x enβ

[
R4 +

n(n− 1)
r2

0
e−2β + 2n�β + n(n + 1)(∂β)2 − 2ΛD

]
, (6)

where (∂β)2 = gµνβ,µβ,ν, β,µ ≡ ∂β/∂xµ, � = ∇µ∇µ, and V(n) = 2π(n+1)/2/Γ
(

n+1
2

)
is

the volume of a unit sphere Sn.
The standard transition to the Einstein frame with the 4D metric,

gµν = enβgµν, (7)

brings the action to the form (up to a full divergence):

S =
1
2
V(n)m2

D

∫ √
g d4x

[
R4 +

1
2

n(n + 2)(∂β)2 +
n(n− 1)

r2
0

e−(n+2)β − 2 e−nβΛD

]
+ Sm, (8)

where overbars mark quantities obtained from or with gµν.
Now, if the action (8) is used to describe cosmological models with the Einstein

frame metric,
ds2

E = dt2 − a2(t)d~x2, (9)
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and the effective scalar field β(t), one gets the Einstein–scalar equations (only two of the
equations are independent, and Vβ = dV/dβ):

β̈ + 3
ȧ
a

β̇ +
1

n(n + 2)
Vβ = 0, (10)

3
ȧ2

a2 =
1
2

n(n + 2)β̇2 + V(β), (11)

6
a2

(
ȧ2 + aä

)
= −n(n + 2)β̇2 − 4V(β), (12)

with the potential V(β) given by

r2
0V(β) = λ e−nβ − k1 e−(n+2)β + kC e−(2n+4)β,

λ = r2
0ΛD, k1 =

1
2

n(n− 1). (13)

The dot above the variables stays for the time derivative. The last term is related to
the Casimir effect, with kC of the order 10−3–10−4; see [27,28] and references therein.

As shown in Section 4, the first term in the potential (13) dominates.

4. Can We Live in a Region with R → 0? Some Estimates

Consider the dimensionless version W(x) of the potential V(β), with x = e−β,

W(x) = λxn − k1xn+2 + kCx2n+4. (14)

Let us determine the order of magnitude of the variable x such that the condition (5)
is satisfied. This can be estimated by analogy with the known 4D models that employ f (R)
and, in particular, quadratic gravity. In these models (see, e.g., [19,29,30]), it is supposed
that quadratic corrections to general relativity become important at energy scales of grand
unification theories, which approximately corresponds to a2 ∼ 1010r2

0 in Equation (3),
where r0 is of the order of the Planck length. The same assumption was used in some
models predicting a semiclassical bounce instead of a Schwarzschild singularity inside a
black hole [31,32]. Now, assuming that the curvature R is of the order R ∼ e−2β/r2

0 = x2/r2
0

and substituting this into the condition (5), one obtains:

x2 � r2
0/a2 = 10−10 =⇒ x � 10−5. (15)

With such values of x and the above-mentioned values of kC, it is clear that the Casimir
contribution to the potential (14) is also quite negligible, and one can restrict W(x) to the
first two terms.

Other restrictions on admissible values of x follow from two evident conditions: (i) a
classical space-time description requires that the size of the extra dimensions, r = r0 eβ =
r0/x should be much larger than the fundamental length r0 = 1/mD, hence x � 1; (ii)
this size should be small enough for the extra dimensions to be invisible for modern
instruments, that is, r = r0/x . 10−17 cm, approximately corresponding to the TeV energy
scale. If one assumes that mD ∼ m4 ∼ 10−5 g ∼ 1033 cm−1, it follows x & 10−16. Admitting
that mD may be some orders of magnitude smaller than m4 and recalling the condition (15),
one can more or less safely assume:

10−13 . x � 10−5. (16)

For further study and estimation, it is necessary to make an assumption on a conformal
frame in which the observations are treated. This choice ultimately depends on how
fermions are included in a (so far unknown) underlying unification theory of all physical
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interactions. Two options are considered: the Jordan frame with the action (6), directly
derived from the original D-dimensional theory, and the Einstein frame with the action (8).

4.1. The Einstein Frame

Assuming that the observed space-time corresponds to the Einstein frame, one finds
Equations (11) and (12) for the scale factors a(t) and eβ(t). The Hubble parameter of the
present Universe, H(t) = ȧ/a, is of the order 10−17 s−1 ≈ 10−61r−2

0 if r0 = 1/m4; evidently,
β̇ should be at most of the same order; therefore, the same is required from V(β). Then, it
follows from Equation (11):

λxn − 1
2

n(n− 1)xn+2 . 10−122. (17)

Assuming x = e−β ∼ 10−10 (well in the range (16)), and using Equation (17), the
following two options can be considered:

(i) λ = 0, n(n− 1)× 10−10n−2 . 10−122 ⇒ n ≥ 12.

(ii) λ 6= 0, then one can rewrite Equation (17) as

λ =
1
2

n(n− 1)× 10−20 +O(10−122+10n),

thus, the estimate of λ depends on n, which can now be smaller than 12, but a considerable
fine tuning is necessary; for example,

n = 10 ⇒ λ = 45× 10−20 ±O(10−22),

n = 5 ⇒ λ = 10−19 ±O(10−72).

In all cases, Equations (11) and (12) should be solved numerically.

4.2. The Jordan Frame

If one assumes that the observed space-time metric is ds2
J = e−nβds2

E, the cosmological
metric can be expressed as

ds2
J = e−nβ

[
dt2 − a2(t)d~x2

]
= dτ2 − a2

J (τ)d~x
2, (18)

where τ is cosmological time such that dτ = e−nβ/2dt, and aJ(τ) = e−nβ/2a(t) is the
Jordan-frame scale factor.

Now, the Hubble parameter is defined as

H =
1
aJ

daJ

dτ
=

(
ȧ
a
− 1

2
nβ̇

)
e−nβ/2, (19)

which leads to the estimate:
ȧ
a
− 1

2
nβ̇ ∼ Hxn/2. (20)

On the other hand, β̇ is subject to the observational constraint on possible variations of
the effective gravitational constant G (it is a true constant in the Einstein frame but varies in
Jordan’s proportionally to e−nβ, see Equation (6)): according to [33,34], one has to assume
(1/G)|dG/dτ| . 10−3H, whence it follows that

|β̇| . 10−3Hxn/2. (21)
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It means that the second term in Equation (20) can be neglected and simply ȧ/a ∼
Hxn/2. Applying this to Equation (11) in the same manner as in the Einstein frame, one
finds the relation:

λ− 1
2

n(n− 1)x2 ∼ 10−122, (22)

which means, for any reasonable choice of x, an unnatural fine tuning of the value of λ.
Recalling that x = e−β varies with time while λ = const, one comes to the conclusion
that the Jordan frame does not lead to a plausible cosmology in the present statement of
the problem.

5. The Metric of a Region with R → 0. Numerical Simulations

The main result of the previous discussion is the following: if an observer is inside
such a region, then an unnaturally strong fine tuning of the model parameter λ is neces-
sary (except for n ≥ 12 in the Einstein frame). Furthermore, the first- and second-order
derivatives of the potential are not defined at the point φ ≡ Rn → 0, so that there are
no oscillations around such a minimum. However, such oscillations are necessary for a
successful reheating just after inflation. Therefore, our Universe is hardly described by the
metric discussed above.

Nevertheless, such regions could exist somewhere in the Universe, probably not
too close to the Milky Way galaxy; otherwise, it could disturb too strongly the known
observable picture. It is a separate problem how we, being external observers for such
regions, could detect signals coming from there. Let us note that a similar problem was
discussed some years ago concerning possible large-scale antimatter regions [35,36].

It seems worthwhile to analyze the possible metrics inside such regions. The first field
equation for β(t) (excluding a(t) with Equation (11)) reads:

β̈ + β̇

√
3
[

1
2

n(n + 2)β̇2 + V(β)

]
+

1
n(n + 2)

Vβ = 0. (23)

The second Equation (11) is necessary for obtaining the 4D scale factor.
There are no restrictions by the observational arguments if a region in question is much

smaller than the whole Universe, but it should be assumed to be large and homogeneous
enough so that the cosmological metric (9) could be applicable. On the other hand, no such
severe fine tuning is needed there for the model parameters since it is not necessary to
require an extreme smallness of the extra dimensions.

The field motion near a nonzero minimum of V(φ) in Figure 1 corresponds to the
observable inflation for specific parameter values [24]. Only one of the parameters is
needed, namely, λ = ΛD = 0.0125. Furthermore, one consideres V(β) = ΛDe−nβ, see
Equation (13). A numerical solution to these equations is presented in Figure 2. One can see
that the extra dimensions expand very slowly—the dynamics during the most interesting
time interval from the sub-Planckian time scale to the post-inflationary period (109∼10−34 s
in the units used here) is shown. The behavior of the curves remains roughly the same up
to the present time. It is of interest that the expansion rate strongly depends on the number
n of extra dimensions: the rate is inversely proportional to n.

This was the Einstein frame. A transition to the Jordan frame, written explicitly
using Equation (18), gives no new results simply because of a very slow variation of the
extra-space metric.
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Figure 2. Time dependence of the size of extra space (solid line) and the main 4-dimensional space
(dashed line) in a logarithmic scale; extra dimension, n = 5, the D-dimensional cosmological constant,
ΛD = 0.0125.

6. Discussion and Conclusions

The space domains containing the expanding extra dimensions such as those described
above could exist in our Universe. It would be of interest to study light propagation with
this observation in mind.

The compact extra-dimensional metric could play a crucial role in the physical param-
eter values such as particle masses and the relevant coupling constants [8]. The nuclear
reaction rates inside such domains, and hence the final chemical content and temperature,
could differ from the conditions in the surrounding space. The search for such regions is
topical now [37]. It is worth mentioning that these regions could be connected with our
space through wormholes [38–40]. Another kind of signal from an anomalous domain of
space could be related to the so-called leakage phenomena studied in [41].

It is also of interest to study the stability of such regions from the point of view of an
external observer: Do the regions expand or shrink? The answer to this question is not
evident. A potential maximum separates two minima, as in Figure 1. In this case, a closed
wall is formed [42], which could expand or shrink, sweeping out the internal domain. At
first glance, it seems that a closed wall must quickly shrink due to the wall tension. It
looks quite probable, but there is an argument against this conclusion. Indeed, the closed
walls have a very complicated shape from the beginning. In this case, the walls fluctuate
instead of shrinking [43] and produce gravitational waves. As it was shown in [44], the
waves energy spectrum could explain the observable one. The wall motion through the
surrounding media leads to the wall deceleration, which is quite effective if the wall tension
σ is not very strong. Estimation gives:

σ ∼
√

Vmaxφmin ∼ 10−3m3
D ∼ 10−6M3

Pl. The numbers Vmax ∼ 0.0002, φmin ∼ 0.1, and
the relation for the units mD = 0.1MPl are taken from Figure 1. The tension appears to be
quite strong, and therefore, wall fluctuations could last for a long time.

As was discussed in [26,45,46], shrinking walls could cause multiple formations
of black holes in the Universe. This could solve the problem of primordial black hole
formation [35,47].
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