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Abstract: In this paper, a reference to the semiclassical model, in which quantum degrees of freedom
interact with classical ones, is considered. The classical limit of a maximum-entropy density matrix
that describes the temporal evolution of such a system is analyzed. Here, it is analytically shown
that, in the classical limit, it is possible to reproduce classical results. An example is classical chaos.
This is done by means a pure-state density matrix, a rather unexpected result. It is shown that this is
possible only if the quantum part of the system is in a special class of states.

Keywords: classical limit; semiclassical system; semiclassical chaos; clasiccal chaos; maximum
entropy density matrix

1. Introduction

The quantum–classical transition is a frontier issue, a rather transcendental physics
topic [1–5]. The use of semi-classical systems to describe problems in physics has a long
history; see, e.g., [6–12]. A particularly important case to be highlighted is the one, in
which the quantum features of one of the two components of a composite system are
negligible in comparison with those of the other. Regarding the first component as a
classical one simplifies the description and provides deep insight into the combined system
dynamics [13]. This methodology is used for the interaction of matter with a field. In this
effort, one looks at these matters through a known semi-classical model [14,15]. This model
was analyzed from a purely dynamic viewpoint in ref. [15]. Using statistical quantifiers,
derived from information theory, the model was studied in [16,17]. For this model, a
suitable density matrix was found to describe the system towards its way to the classical
limit [18]. The corresponding numerical results were presented earlier in [15].

The aim of this paper is to analytically describe the changes ensuing in the mixed
density matrix in the exact classical limit. Some intriguing insights are obtained.

2. Model Description

Let us consider a Hamiltonian H containing classical degrees of freedom interacting
with strictly quantum degrees of freedom. The dynamical equations for the quantum
operators are the canonical equations [15], i.e., any operator O evolves with time (in the
Heisenberg picture) as

dO
dt

=
i
h
[ H, O ] , (1)

where h is the Planck constant. The evolution equation for the mean value, 〈O〉 ≡
Tr [ρ O(t)], is then:

d〈O〉
dt

=
i
h
〈[ H, O ]〉, (2)
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where the average is taken with respect to a proper quantum density operator, ρ. In
addition, the classical variables obey the Hamilton equations of motion, but the generator
is the mean value of the Hamiltonian, i.e.,

dA
dt

=
∂〈H〉
∂PA

, (3a)

dPA
dt

= −∂〈H〉
∂A

. (3b)

The above equations constitute an autonomous set of coupled differential equations that
allows for a dynamical description in which no quantum rules are violated, e.g., particularly
the principle of uncertainty is conserved at all times. A plays the role of a time-dependent
parameter for the quantum system, and the initial conditions are determined by a proper
quantum density operator, ρ̂.

Let us now consider a semiclassical system [14,15], for which the Hamiltonian is:

H =
1
2

(
p̂2

mq
+

PA
2

mcl
+ mqω2 x̂2

)
, (4)

where x̂ and p̂ are quantum operators, A and PA are classical variables, and e denotes
the charge. The term ω2 = ωq

2 + e2 A2 is an interaction term introducing nonlinearity
in the problem, with ωq being the frequency. mq and mcl are quantum and classical
masses, respectively. The Hamiltonian (4) is a particular case of a family of semiclassical
Hamiltonians, quadratic in x̂ and p̂, without linear terms (see below). This family has as a
time-invariant quantity, I, that is related to the uncertainty principle [15]:

I = 〈x̂2〉〈 p̂2〉 − 〈L̂〉
2

4
≥ h̄2

4
, (5)

and I describes the deviation of the semiquantum system from the classical one given by
I = 0. The quantity L̂ is defined as L̂ = x̂ p̂ + p̂x̂, and h̄ is the reduced Planck constant,
h/2π. To investigate the classical limit, one needs also to consider the classical analogous
of Equation (4), in which all variables are classical; in this case, L = 2xp. It is understood
that the classical limit is reached when the solutions of system (2) coincide with those of
its classical analog. In this study, the limit I → 0 is analyzed. The odinary differential
equation (ODE) establishes a continuous dependence of the ODE solutions on the initial
conditions if the Lipschitz condition is fulfilled [19]. If the ODE solutions remain bounded
with time towards infinity, the condition is always satisfied.

Consider semiquantum systems composite by operators that close a partial Lie algebra
with the Hamiltonian. These dynamics are governed by closed systems of equations,
involving also the classical variables. This system depends in continuous fashion on
the initial conditions. For instance, this happens in the case studied here with the set
(x̂2, p̂2, L̂) [15]. This feature guarantees an existence of the limit I → 0 [15].

3. Semiquantum Maximum Entropy Operator

The following assumptions are made:

• complete knowledge about the initial conditions of the classical variables;
• incomplete knowledge regarding the system’s quantum components;
• only the initial values of the quantum expectation values of the set of operators

Ô1 = x̂2, Ô2 = p̂2, Ô3 = L̂;
• the set considered is the smallest one that carries information regarding the uncertainty

principle (via I).
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The normalized maximum-entropy statistical operator ρ̂ is given, as described in [18],
in terms of Lagrange multipliers, λi(t):

ρ̂(t) = exp
[
−
(

λ0 Î + λ1(t)x̂2 + λ2(t) p̂2 + λ3(t)L̂
)]

, (6)

for all t, since it verifies the Liouville–von Neumann equation. This is because the
set Ô1 = x̂2, Ô2 = p̂2, and Ô3 = L̂ verifies a partial Lie algebra with respect to the
Hamiltonian [20,21]. The λi(t) (including the initial conditions) are obtained by means of

〈Ô〉(t) = Tr[ρ̂(t)Ô]. (7)

This system of equations is solved via a unitary transformation-dependent λi(t) [18]
(for simplicity, here on, the λi notation is used instead of λi(t)):

x̂ =

√
2

2

(
λ2

λ1

)1/4
[(

λT
λV

)1/4
X̂ +

(
λV
λT

)1/4
P̂

]
, (8a)

p̂ =

√
2

2

(
λ1

λ2

)1/4
[
−
(

λT
λV

)1/4
X̂ +

(
λV
λT

)1/4
P̂

]
, (8b)

where λV =
√

λ1λ2 + λ3 and λT =
√

λ1λ2 − λ3, which allows us to rewrite Equation (6)
in a convenient form:

ρ̂(t) = exp(−λ0) exp
[
−Iλ

(
X̂2 + P̂2

)]
, (9)

where Iλ =
√

λ1λ2 − λ2
3 is an invariant of motion [18]; see [18] also for mathematical

details on existence and convergence. The temporal dependence of ρ appears through
the temporal dependence of the operators X̂ and P̂. The operator X̂2 + P̂2 is expressed in
action units. It can be recast as X̂2(t) + P̂2(t) = h̄ (2 â†(t) â(t) + 1). Thus, ρ̂ possess the
eigenvalues,

exp(−λ0) exp[−h̄Iλ(2 n + 1)], n = 0, 1, 2, . . . , (10)

if one uses the basis of eigenvectors, |0>, |1>, |2>, . . ., of â†(t) â(t), that are also the
eigenvectors of ρ(t). These eigenvalues depend on time in complicated fashion that
involves the unitary transformation (8) that is employed here. Being unitary, it conserves
the commutation relations, [X̂, P̂] = [x̂, p̂] = i h̄, and, therefore, [â†, â] = 1. Here, the †
symbol denotes hermitian conjugation.

An important result corresponds to the normalization constant,

λ0 = − ln[exp(h̄ Iλ)− exp(−h̄ Iλ)]. (11)

Some other convenient mathematical results can be found in [18].

4. Useful Previous Results

In [18], the dynamics described by the density operator (6) was numerically investi-
gated as a function of the dimensionless relative energy, Er, defined as Er = |E|/(

√
I ωq),

where E = 〈H〉 is the total energy of the system. The classical limit is obtained for Er → ∞,
which actually means |E|

√
I ωq.

In [18], it was also shown that, by increasing Er (for example, decreasing I), the
system passes through the three zones: a quasiquantal zone, a transitional zone, and a
classical zone (see Figures 1 and 2 in [18]). As Er increases, eventually, chaos emerges in
the transitional zone augmenting notably in the classical zone. This is a phenomenon of
semi-classical nature, since the classical dynamics-stage has, obviously, not been reached
so far. Note the coexistence of the uncertainty principle with chaos and that, having ρ̂(t),
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one can know the time dependence of any expectation value via Equation (7). On the other
hand, the analogous classical system is chaotic. Both cases are shown in Figure 1.
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Figure 1. Poincaré surfaces for the system total energy, E = 0.6 (in arbitrary units), the time
t-dependent classical variable A(t = 0) = 0 of the model Hamiltonian and, respectively, the
Hamiltonian quantum and classical masses, mq = mcl = ωq = e = 1, where ωq is the quantum
system frequency and e is the charge. (a) Quantum operators 〈x̂2〉 vs. 〈 p̂2〉 for the relative energy (a
pure number) because is a ratio of two energies. Er = 1, 5492. The Poincare surface is enclosed by the
curves 〈 p̂2〉/mq +mqω2

q〈x̂2〉 = 2E and 〈x̂2〉〈 p̂2〉 = I corresponding to the uncertainty principle. Here,
one can observe the coexistence of a chaos with the uncertainty principle that represents semiquantum
chaos. (b) Classical functions x2 vs. p2, corresponding to lim

h̄→0
lim

I→h̄2/4
〈x̂2〉 and lim

h̄→0
lim

I→h̄2/4
〈 p̂2〉 (see

text), which coincides with the classical instance I = 0. The surface is bounded only by p2/mq +

mqω2
qx2 = 2E. Here, one can visually detect the classical chaos presence in the graphs. The accuracy

of the results were checked by verifying the constancy with time of the dynamical invariants E and I
(with precision of 10−10).

5. Results Regarding the Classical Limit

In [18], the classical limit was studied numerically. In the present paper, our attention
is focused on a particular instance of the limit Er → ∞ to be scrutinized in analytic fashion.
To this end, let us concentrate on the limit I → 0 of the density operator (6). This entails
keeping the values of both E and ωq fixed in the dimensionless quantity Er = |E|/

√
I ωq

while diminishing I. Remember that both E and I are motion invariants; thus, I → 0 entails
Er → ∞.

One needs the relation between the mean values and Lagrange multipliers. From
Equation (7), one gets:

Iλ 〈x̂2〉 =
√

I λ2, (12a)

Iλ 〈 p̂2〉 =
√

I λ1, (12b)

Iλ 〈L̂〉 = −2
√

I λ3. (12c)

Using Equations (7) and (11) along with Equation (12), one finds an important relation,

Iλ =
1

2 h̄
ln

(√
I + h̄

2√
I − h̄

2

)
, (13)

which relates Iλ with I. This result was already obtained in [18] using a different approach.
Let us now return to the classical limit. In this limit, one has to respect the restriction (5),

i.e., confronting only two possible ways (both ways are correct). The first way is to
scrutinize the h̄→ 0 calculation. However, the following difficulties are encountered.
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1. First, an a priori natural one: take h̄→ 0 and, then, I → 0. However, this way does
not suit the present study purposes. Classical statistics and quantum statistics, both
are compatible with Equation (5) for any h̄ > 0 (in addition, in classical case, h̄ = 0 is
possible). Therefore, by taking the limit h̄→ 0, the statistical aspect of the problem
is not eliminated, but only converts the quantum statistics to the classical statistics.
Therefore, the limit I → 0 cannot be taken within the quantum context. However,
some interesting results can be found in the associated calculations.
In the h̄→ 0 limit, the density matrix (9) adopts the form,

ρ =
I

Tr[I ] , (14)

where I is the identity matrix. Then, one has:

lim
h̄→0

Iλ =
1

2
√

I
, (15)

as a result of
lim
h̄→0

h̄ Iλ = 0, (16)

where Equation (13) is employed. Equation (14) represents the maximally mixed
density matrix with the diagonal elements 1/n, n εN (the set of natural numbers),
n → ∞. Such matrix is the result of a decoherence process. This way one obtains
a statistical quantum limit. The limit I → 0 would entail classicality and cannot be
taken now. To better understand the issue, an analysis within classical statistics is
considered in Appendix A.

2. Proceed now to affect, first, the limit I → h̄2/4, i.e., take the system to its quantum
minimum value and then let h̄ → 0. This choice respects the restriction (5) and
constitutes the correct method. According to Equations (11)–(13), one has:

lim
h̄→0

( lim
I→h̄2/4

Iλ) = ∞, (17a)

lim
h̄→0

( lim
I→h̄2/4

h̄ Iλ) = ∞, (17b)

lim
h̄→0

( lim
I→h̄2/4

λi) = ∞, i = 0, 1, 2, (17c)

lim
h̄→0

( lim
I→h̄2/4

|λ3|) = ∞. (17d)

Note that, in the first instance, when I tends towards its possible minimum value
of h̄2/4, ρ (Equation (9)) tends towards its ground state. Thus, considering the pseudo-
generalized temperature 1/Iλ, one ascertains that 1/Iλ → 0. Let us remark that Iλ depends
on both the classical variables and the initial conditions for the eigenvalues. Note that the
results obtained hold also for h̄→ 0.

From Equation (17c), one can see that exp(−λ0) → ∞. However, closer scrutiny of
the asymptotic behavior of λ0 in Equation (11) ascertains that exp(−λ0) ∼ exp(h̄ Iλ). Thus,
the eigenvalues (10) tend towards asymptotic values of the form exp (−2 n h̄Iλ), n = 0, 1, 2,
etc.

Keeping in mind Equation (17b), one finds the classical limit of ρ given by Equation (9).
Thus, at the classical limit, ρ (in its eigen-basis) is represented by the associate density
matrix,

R(t) =


1 0 0 . . .
0 0 0 . . .
0 0 0 . . .

...

. (18)

Thus, one finds that the classical limit is represented by a pure-state density matrix.
This is rather surprising.
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As shown in Figures 1 and 2 of [18], not only the classical features of the semiclassical
evolution are represented by a mixed quantum density, matrix but also the purely classical
results with I = 0 are masked by a pure-state density matrix. In the former case, a semi-
classical chaos is obtained; in the latter case, a totally classical chaos is obtained [18]. The
expectation values 〈X̂n P̂m〉 are null at all times, thus being of a trivial classical nature. Fur-
thermore, the eigenvalues of the set (x̂2, p̂2, and L̂) evolve asymptotically with the classical
equations corresponding to the classical counterpart of the quantum Hamiltonian (4). Any
other asymptotic value of a given eigenvalue can be calculated using Equations (7) and (8).

As a proof of the correctness of results obtained here, it is enough to note that I
calculated with ρ(t), given by (18), vanishes. Denoting the ground state by |0>, one gets:
<0|X̂2|0>=<0|P̂2|0>= lim

h̄→0
h̄/2 and <0|L̂|0>= 0, so that I = 0. Moreover, via the

maximum entropy expression, S(ρ̂) = −Tr [ ρ̂ ln ρ̂ ] = λ0 + ∑3
i=1 λi〈Ôi〉, one obtains for

the entropy:
S = λ0 + 2 Iλ

√
I, (19)

an increasing monotonic function of I with asymptotic value S = 0, as expected for a pure
state. This way, the density operator smoothly becomes less and less mixed, as soon as I
tends towards zero, until the density operator is represented by a pure-state density matrix.

6. Conclusions

In this paper, the classical limit of a density operator, ρ, is investigated being associated
with a known nonlinear semi-classical system that possesses both classical and quantum
interacting degrees of freedom. This study continues the earlier invetigation [18] where ρ
was considered in the context of incomplete prior information.

In [18], three well-delimited and different zones towards the classical limit were
numerically detected. These zones were found to be characterized by the dimensionless
parameter Er = |E|/(

√
Iωq), con Er → ∞, with E being the total energy and I being a

dynamical invariant intimately linked to the uncertainty principle. A quasiclassical zone, a
transitional zone, and a classical zone were determined. As Er increases, the complexity
augments and, eventually, a chaos emerges. This phenomenon is of a semi-classical nature.
On the other hand, the analogous classical system is chaotic.

In the prsent paper, an analytical treatment is performed for a special case of the limit
Er → ∞. This entails keeping the E and ωq values fixed while diminishing I.

Two possible ways were contemplated to perform the study. The first way is to perform
the h̄→ 0 calculation. Some difficulties encountered in such instance are discussed.

The second way turned out to be both correct and coherent. It consists of taking, first,
limit I → h̄2/4 and approaching the minimum I value that quantum mechanics permits.
A posteriori, one deals with the limit h̄→ 0. In quite a counterintuitive expectation, one
stumbles on an asymptotic density matrix,R, corresponding to a pure state (18); the latter
is shown to adequately describe classical features. Indeed, the eigenvalues of the set evolve
asymptotically with the classical equations corresponding to the classical counterpart of
the Hamiltonian. In particular, it is conclusively shown thatR describes the classical chaos.
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Appendix A. The Pertinent Classical Statistical Limit Treatment

For completeness, let us consider the concomitant classical statistical procedure. This
analysis could shed some clarity on the calculations made above. The inequality (5) is
satisfied both for the pure quantum case and for both quantum and classical statistics. To
avoid notation problems, let us rewrite Equation (5) for the classical case as

Icl = 〈x2〉〈p2〉 − 〈L〉
2

4
≥ k2

4
, (A1)

where Icl is the classical version of Equation (5) and x2, p2, and L = 2xp are simple functions.
Let us also introduce the constant k for an obvious convenience: k is any number that
verifies k ≥ 0 and plays the role of h̄ here. Obviously, taking the limit h̄→ 0 in Equation (5)
is equivalent to taking the limit k→ 0. In other words, this limit is compatible with both
statistics and the result does not express certainty in any case. To solve this situation in the
quantum case, it is clear that the second way, discussed in Section 5 to be used.

Let us now see how to proceed in the classical case. To this end, let us consider the
equivalent classical statistical case. The pertinent maximum entropy probability density
function corresponding to Equation (6) is:

ρ(x, p, t) = exp−
(

λ0cl + λ1cl(t)x2 + λ2cl(t)p2 + λ3cl(t)L
)

. (A2)

The mean value of any general function, F(x, p, t), for all t, is given via
∫ ∞
−∞

∫ ∞
−∞ F(x, p, t)

ρ(x, p, t) dxdy. Using a transformation equivalent to Equation (8), while for classical vari-
ables, one obtains the classical version of Equation (9) with λ0 cl = ln(π/Iλ cl). After some
manipulation, one finds:

Iλ cl 〈x2〉 =
√

Icl λ2 cl , (A3a)

Iλ cl 〈p2〉 =
√

Icl λ1 cl , (A3b)

Iλ cl 〈L〉 = −2
√

Icl λ3 cl , (A3c)

where
Iλ cl =

√
λ1 clλ2 cl − λ3 cl

2 , (A4)

is a time-invariant quantity, since λi cl obeys the same system of equations used in the
quantum treatment. Moreover, Equation (A3) is an equivalent of Equation (9). However, in
this instance, the dependence of Iλ cl on Icl is not given by Equation (13), since

Iλ cl =
1

2
√

Icl
, (A5)

but coincides with Equation (15), as one may expect. Evidently, to complete the present
analysis, the limit given by Icl → 0 (or Iλ cl → ∞) is demanded. The probability density
function (A2), then, reads:

lim
Icl→0

ρ(x, p, t) = δ(X)δ(P), (A6)

and is a Dirac delta function of X and P, as one should expect. In the limit (A6), 〈X̂n P̂m〉 = 0
also at all times, and all results with total certainty are obtained via the classical equivalent
to Equation (8).
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