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Abstract: With the vaccination against Covid-19 now available, how vaccination campaigns influence
the mathematical modeling of epidemics is quantitatively explored. In this paper, the standard
susceptible-infectious-recovered/removed (SIR) epidemic model is extended to a fourth compart-
ment, V, of vaccinated persons. This extension involves the time t-dependent effective vaccination
rate, v(t), that regulates the relationship between susceptible and vaccinated persons. The rate v(t)
competes with the usual infection, a(t), and recovery, µ(t), rates in determining the time evolution
of epidemics. The occurrence of a pandemic outburst with rising rates of new infections requires
k + b < 1− 2η, where k = µ(0)/a(0) and b = v(0)/a(0) denote the initial values for the ratios of the
three rates, respectively, and η � 1 is the initial fraction of infected persons. Exact analytical inverse
solutions t(Q) for all relevant quantities Q = [S, I, R, V] of the resulting SIRV model in terms of
Lambert functions are derived for the semi-time case with time-independent ratios k and b between
the recovery and vaccination rates to the infection rate, respectively. These inverse solutions can
be approximated with high accuracy, yielding the explicit time-dependences Q(t) by inverting the
Lambert functions. The values of the three parameters k, b and η completely determine the reduced
time evolution of the SIRV-quantities Q(τ). The influence of vaccinations on the total cumulative
number and the maximum rate of new infections in different countries is calculated by comparing
with monitored real time Covid-19 data. The reduction in the final cumulative fraction of infected
persons and in the maximum daily rate of new infections is quantitatively determined by using
the actual pandemic parameters in different countries. Moreover, a new criterion is developed that
decides on the occurrence of future Covid-19 waves in these countries. Apart from in Israel, this can
happen in all countries considered.
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1. Introduction

Statistical physics of vaccination has a rich history in physics research [1]. The model
proposed here is an extension of an often employed model in epidemics research, the
susceptible-infectious-recovered/removed (SIR) model. While this model can be regarded
as a toy model, it has been proven to at least qualitatively capture important aspects of
an epidemic and is still heavily used to determine parameters characterizing epidemics
or to forecast the amount of required clinical equipment. In this study, vaccinations are
taken into account and the corresponding analytic expressions are derived so that those
can be used without a computer at hand. Of course, numerical models, including neural
networks and artificial intelligence, are convenient frameworks that allow us to take into
account many more effects and data, but the goal of the present study is not to add to this
area of modeling research but to deliver some insight and analytic approximants for the
solution of a well-defined problem, located in the fields of growing dynamical systems
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and nonlinear differential equations, which to be considered is relevant in the context of
Covid-19 research.

There are several variants [2–10] of the SIR model, including stochastic variants [11–24]
and there is a large amount of related work in the context of the SIR model in the presence of
vaccination. Many works deal with vaccination strategies [13,25–43], transmission among
an interconnected group or population [44] and vaccination behavior by coupling the
epidemic spreading with human decisions [45], or policies [46,47] using the SIR model with
limited resources [48]. One of the classical variants focuses on an optimal pulse vaccination
strategy [49–71], others focus on thresholds and bifurcations in the dynamic epidemic
model [72–75], or the analysis of the delayed SIR model [15,16,22,30,51,61,76–79]. There are
several approaches that investigate the optimal control of the model with time-dependent
or nonlinear functions [49,50,55,59,60,62,67–70,75,77–93] and the SIR model had also been
applied to networks [34,94–96]. While it is comparably easy to set up a network or agent-
based [97–99] model or to solve a nonlinear problem numerically, pure analytic works are
relatively scarce [100–111].

In December 2020, the effective mRNA-based Covid-19 vaccine by the companies
Pfizer-BioNTech and Moderna became available. This has led to intensive vaccination cam-
paigns in many countries over the world at different speeds. As two shots per person are
needed for nearly 100 percent protection as of 10 February 2021, Israel with a t-dependent
vaccination rate of v(t) ' 7.0× 10−3 day−1 has the highest, followed by the United Arab
Emirates v(t) ' 4.7× 10−3 day−1, United Kingdom with v(t) ' 2.0× 10−3 day−1, whereas
Germany’s vaccination rate v(t) ' 4.2× 10−4 day−1 is significantly smaller.

The purpose of the present paper is to analytically and quantitatively investigate,
for a given ratio b(t) = v(t)/a(t) of the vaccination rate to infection rate a(t), the effect
on the time evolution of the ongoing epidemic waves. The analysis is based on the SIR
epidemic model [112] augmented by the appropriate vaccination rates leading to the
susceptible-infectious-recovered/removed-vaccinated (SIRV) epidemic model. This model
is a dynamical system for the time-dependent quantities S(t), I(t), R(t) and V(t) denoting
the relative fractions of currently susceptible, S, infectious, I, recovered/removed, R, and
vaccinated, V, persons in the considered population of N persons as a function of time t
(Figure 1). Since each vaccine is characterized by a certain efficiency, (effectively) vaccinated
persons are defined to be no longer susceptible to being infected. In the case of negligible
vaccination, assuming a constant ratio between infection and recovery rate, considerable
improvements of the analytical modelling of epidemics with this compartment model have
been achieved [109,110]. In what follows, these improvements are of a frequent use.
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Figure 1. Three time-dependent rates a(t), µ(t), and v(t) entering the SIRV equations for the
four compartments of susceptible, S, infectious, I, recovered, R, and vaccinated, V, population
fractions. Upon introducing reduced time τ, the model is characterized by the assumed constant
ratios k = µ(t)/a(t) and b = v(t)/a(t).

Application of this earlier study [113] to the monitored second waves in many coun-
tries has indicated initial (t = 0) infection rates of the order of a(0) ∈ [0.1–1.0] day−1,
considerably greater than the above vaccination rates. However, it is important to em-
phasize an essential difference: whereas, the initial vaccination and the recovery rate
can be directly used to estimate the corresponding typical time scales, TV ' 1/v(0) and
TR ' 1/µ(0), for vaccinations and recovery, respectively, the initial infection time scale,
TI = 1/[a(0)I(0)], additionally depends on the initial fraction I(0) of infected persons at
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the onset of the second wave. With this, and depending on the country, the vaccination
time scale TV is often comparable with the infection time scale TI .

The inferred infection rates are slightly larger than the initial recovery rates, µ(0), so
that the ratio of the two, k = µ(0)/a(0) ∈ [0.8, 1). This is consistent with the result [110]
that for a pandemic outburst with a prominent peak at a later time the ratio k has to be
smaller than k < 1− 2η, where η = I(0) is used. For most second waves η � 1 is negligibly
small, so that the determined values of k less than unity are fully consistent. Then, with
the above noted vaccination rates, the ratio of the vaccination to initial recovery rates
b = v(0)/µ(0) is considerably smaller than the ratio k: the values b ∈ [5× 10−4, 10−2]� k
are expected. Consequently, the difference α = k− b is positive and only slightly smaller
than k. One may refer to α as the effective ratio as compared to the ratio k.

It is the purpose of this paper to quantitatively determine the influence of this small
reduction of the ratio k on the time evolution of the pandemic wave. As in our earlier
study [113], the present analytical calculations are based on the assumption that the ratios k
and b are constants; but they hold for arbitrary time dependent infection rates a(t), where,
however, the recovery and vaccination rate follow the very same time dependence as a(t).

Compartment models for epidemics with vaccinations have been considered be-
fore [114–117] but they were more concerned with optimizing the control of the epidemics
by vaccination with limited resources. The main goal of this study is to derive analytical
solutions for the dynamical SIRV. In order to keep the analysis as simple and transpar-
ent as possible, such complicating issues as age grouping, vital dynamics and/or spatial
spread effects, recently investigated in the literature [118,119] with numerical solutions, are
ignored here.

2. General SIRV Equations

The SIRV model is a dynamical system for time-dependent population fractions S(t),
I(t), R(t) and V(t), introduced above. The fractions add up to unity,

S(t) + I(t) + R(t) + V(t) = 1 (1)

at all times (sum constraint). The SIRV differential equations accounting for vaccinations of
the susceptible persons with the vaccination rate v(t) read:

Ṡ = −a(t)SI − v(t)S, (2)

İ = a(t)SI − µ(t)I, (3)

Ṙ = µ(t)I, (4)

V̇ = v(t)S, (5)

where the dot denotes the t-derivative. The SIRV equations are supplemented by semi-time
initial conditions (defining t = 0),

S(0) = 1− η, I(0) = η, R(0) = V(0) = 0, (6)

with η ∈ (0, 1) denoting the fraction of infected persons at time t = 0. One of the four
dynamical equations can also be replaced by the sum constraint (1).

These initial conditions are sufficient to capture applications of the SIRV equations
with non-vanishing R(0) and V(0) as this is identical with the present initial condition
upon subtracting the nonvanishing ∆N = N[R(0) + V(0)] from N. The resulting SIRV
quantities are then fractions of the reduced, susceptible or currently infected population,
and the fractions S and I with respect to the total population N are obtained by multiplying
them both with 1− (∆N/N). Similarly, the total number of recovered and vaccinated
persons is (N − ∆N)R plus NR(0), same for V. More formally, if X̃ denotes one of the
SIRV quantities that fulfills initial condition X̃(0), the time-evolution of X̃ is given by the
time-evolution of X via X̃ = χX for X ∈ {S, I} and X̃ = X̃(0) + χX for X ∈ {R, V} with
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χ = Ĩ(0) + S̃(0). The initial conditions (6) are specified by η̃ = Ĩ(0)/χ, and the parameters
to be introduced next have to be adjusted as well, k̃ = χk and b̃ = χb.

The fractions S(t), I(t), and R(t) are usually not measurable with high confidence,
while the daily new number of infected persons, denoted by

J̇ = a(t)SI, (7)

and the fraction of vaccinated persons, V(t), are two quantities that can be more easily
measured, and are usually reported. Using Equations (2) and (5) the total cumulative
number fraction J of persons, that have been infected up to the time t, is related to the SIRV
quantities via

J(t) =
∫ t

−∞
J̇(ξ)dξ = 1− S(t)−V(t), (8)

or, equivalently, upon making use of the sum constraint (1), by the sum of currently infected
and currently recovered, J(t) = I(t) + R(t).

Following previous investigations [109,110], as well as to make sure that the SIRV
model has any predictive power, the rate a(t) is allowed to have an arbitrary time-
dependency in contrast to the rates µ(t) and v(t) considered to share their time-dependency
with a(t). This assumption leaves us with the two time-independent model parameters,

k =
µ(t)
a(t)

, b =
v(t)
a(t)

. (9)

As it is demonstrated below, the two parameters k and b together with the initial
fraction of infected persons η completely determine the temporal evolution of the pandemic
wave in the reduced time

τ =
∫ t

0
dξ a(ξ) . (10)

2.1. Condition for Pandemic Outburst

It is instructive to calculate, with the first two SIRV equations, the initial variation of
the daily number of the newly infected population fraction,

J̈ = ȧSI + a(IṠ + Sİ)

= J̇[ȧ/a + a(S− I)− µ− v]
= J̇{ȧ/a + a[(S− I)− k− b]}, (11)

where the argument t is omitted for all functions, and Equation (9) is used. In order for a
pandemic outburst with initially rising rates of new infections J̈(0) > 0 to occur, the bracket
on the right-hand side of Equation (11) has to be positive at the starting time t = 0, so that
with initially constant rate values ȧ(0) = 0 it is required that [(S(0)− I(0)]− k− b > 0.
Making use of the first two initial conditions (6), the outburst condition reads:

k + b < 1− 2η. (12)

As k and b have positive values, the condition (12) implies:

(i) If initially more than 50 percent (η > 0.5) are infectious, no new pandemic outburst
will occur. However, such high values of η are unlikely and unrealistic.

(ii) For small given values of η � 0.5 and the ratio of recovered to infection rate k, new
emerging outbreaks can be fully prevented for values of the ratio of vaccination to
infection rate b > 1− k− 2η ' 1− k. The more pathogenic a virus mutation is, the
smaller and closer to zero is the value of the ratio k so that the lower limit for b has to
be close to unity to prevent a new outburst.

(iii) For any finite value of η for modeling epidemic outbreaks the relevant range of the
two parameters k and b is 0 ≤ b + k < 1.
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(iv) As an aside comment, let us note that Equation (12) demonstrates that in the SIR model
with b = 0 (no vaccination), a pandemic does not occur if the parameter k = 1. The
SIR model correctly indicates that epidemic waves end in the case k = 1. Therefore,
the recent criticism [120] about the SIR model is inappropriate and misguided.

2.2. Reduced Time

Let us consider the case when the ratios of the recovery to infection rate, µ(t)/a(t) = k,
and the vaccination to infection rate, v(t)/a(t) = b, are semipositive constants independent
of time. This assumption still allows us to account for any given time-dependence of the
infection rate with the caveat that the recovery and vaccination rates have exactly the same
time dependence as the infection rate apart from their different initial values. In terms of
the reduced time scale τ (10), SIRV Equations (2)–(5) reduce to:

dS
dτ

= −SI − bS, (13)

dI
dτ

= SI − kI, (14)

dR
dτ

= kI, (15)

dV
dτ

= bS. (16)

Equations (13) and (14) readily yield:

I = −
(

b +
d ln S

dτ

)
, (17)

S = k +
d ln I

dτ
, (18)

providing for Equations (15) and (16):

d
dτ

(R + k ln S + bkτ) = 0, (19)

d
dτ

(V − b ln I − bkτ) = 0. (20)

Both equations integrate immediately to

R(τ) = −k ln S(τ) + k ln(1− η)− bkτ, (21)

V(τ) = b ln I(τ)− b ln η + bkτ, (22)

where the integration constants have been determined with the initial conditions (6) holding
now at τ = 0. In terms of the reduced time τ the differential new number of infected
persons j(τ) = dJ(τ)/dτ = J̇(t)/a(t) is

j(τ) =
dJ(τ)

dτ
= S(τ)I(τ), (23)

while the corresponding cumulative fraction is

J(τ) =
∫ τ

−∞
j(τ′)dτ′ = 1− S(τ)−V(τ) = I(τ) + R(τ). (24)

At τ = 0, the cumulative J(0) = I(0) + R(0) = η. In reduced time, Equation (11)
corresponds to

1
j

dj
dτ

=
d ln j
dτ

= S(τ)− I(τ)− k− b. (25)
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So far R, V, J, and j were expressed in terms of S and I. An additional relationship
between S and I is provided by the sum constraint (1), as shown next, and this will allow us
to come up with a closed equation for a single variable, to be developed in the next section.

Inserting Equations (17), (18), (21) and (22) provides for the sum constraint (1):

d ln I
dτ
− d ln S

dτ
+ b ln I − k ln S = 1 + b− k + b ln η − k ln(1− η)

= 1 + (b− k)[1 + ln η(1− η)] + k ln η − b ln(1− η). (26)

In the present paper, analytical solutions of Equation (26) are derived for general
non-zero and different values of b 6= k. An implicit analytic solution is obtained that
expresses the reduced τ in terms of a parameter ψ, while all SIRV-functions including j
are expressed in this parameter. Then, a highly accurate analytical approximation for all
SIRV-functions as a function of τ is given. These new analytical solutions reduce in the
appropriate limit to the earlier [109,110,113] solutions for the non-vaccination case b = 0.
The non-recovery case k = 0 and the case of k = b are considered as special cases.

3. Dynamics of the Epidemics
3.1. Summary of Results

In light of the following rather lengthy derivation of the solution of the SIRV
Equations (10)–(16) in reduced time with parameters k and b, and subject to initial condi-
tion, I(0) = 1− S(0) = η and R(0) = V(0), let us start with the final result. An implicit
exact solution τ = τ(ψ) parameterized by ψ is derived, while all SIRV quantities can be
expressed in ψ as well. Provided the reduced vaccination rate b exceeds a critical bc, for
which the explicit expression (92) is provided, it is shown that the explicit solution of the
SIRV equation can be written as follows. With the help of the following expression for a
function ψ(τ) to be defined in the next Subsection,

ψ(τ) = ln
1− η

η
+ (k− b)τ − 1− e−bτ

b
, (27)

one obtains:

S(τ) =
e−bτ

1 + e−ψ(τ)
, I(τ) =

e−bτ

1 + eψ(τ)
, (28)

R(τ) = J(τ)− I(τ), V(τ) = 1− S(τ)− J(τ), (29)

where the differential j and cumulative fractions J of infected persons are given by

j(τ) = S(τ)I(τ), (30)

J(τ) = η +
∫ τ

0
j(τ′)dτ′. (31)

If b is smaller than the critical bc, provided by Equation (92), the SIRV model ap-
proaches the SIR model that has been treated before, and the SIRV quantities are well
captured by a simple linear superposition of the SIR result with the above SIRV solution
evaluated at b = bc. Next, these expressions are derived, additional features of the solution,
such as the final values at t→ ∞, are provided. Afterwards, special cases such as the case
of k = b are treated, and features of the SIRV equations are discussed which give rise to
Equation (27). The solution (27)–(31) of the SIRV model holds for any semipositive values
of k and b.
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3.2. Two Useful Functions

Let us start the mathematical analysis by introducing the function,

ψ(τ) = ln
S(τ)
I(τ)

, (32)

implying
I(τ) = S(τ)e−ψ(τ), (33)

with the usually positive (for initial fractions η < 0.5 of infected persons) initial value,

ψ0 ≡ ψ(τ = 0) = ln
1− η

η
. (34)

The first derivative of ψ (32) is given by

dψ

dτ
=

I dS
dτ − S dI

dτ

IS
= α− (I + S), (35)

where Equations (13) and (14) are used, and the abbreviation

α = k− b (36)

is introduced. Consequently, the function

Φ(τ) = α− dψ

dτ
= I(τ) + S(τ) (37)

is always positive and has values Φ ∈ [0, 1] as I and S are positively valued fractions at
all times.

Equation (22) is identical to I(τ) = η exp[−kτ − (V(τ)/b)], and, since k > 0 and with
V residing in the finite interval [0, 1], one finds that, after infinite time, I∞ = I(τ = ∞) = 0.
Similarly, Equation (21) is identical with S(τ) = (1− η) exp[−bτ − R(τ)/k], so that with
b > 0 and R residing in the finite interval [0, 1], one has S∞ = S(τ = ∞) = 0. Consequently,
Φ∞ = 0 ultimately vanishes as well. At this limit, Equation (37) means that dψ/dτ is
reaching the constant α, and thus ψ∞ = ψ(τ = ∞) = sign(α)∞ is infinitely large, while its
sign is given by the sign of α, as long as α 6= 0. For α = 0, ψ∞ reaches a constant value.

The initial slope of dψ/dτ evaluates to

dψ

dτ

∣∣∣∣
τ=0

= −(1− α), (38)

and is thus negative for all α = k− b < 1 and positive for α > 1. This implies, that the
function ψ decreases initially, undergoes a minimum ψm at Φm = α before increasing to its
final value ψ∞ = ∞, when α ∈ (0, 1). For negative α, ψ monotonously decreases, while for
α > 1 the ψ monotonously increases.

For all non-zero values of k and b the function Φ = I + S, however, decreases at all
times from its initial maximum value Φ(0) = 1 as its derivative is always seminegative, i.e.,

dΦ
dτ

=
dI
dτ

+
dS
dτ

= −(bS + kI), (39)

where Equations (13) and (14) are used again.
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3.3. Mathematical Analysis

With Equation (33), Equations (37) and (39) yield:

Φ = S(1 + e−ψ),
dΦ
dτ

= −S(b + ke−ψ). (40)

The combination of Equations (40) then provides:

dΦ
dτ

= −Φ
[

b + ke−ψ

1 + e−ψ

]
, (41)

or equivalently,
d ln Φ

dτ
+ A(ψ) = 0, (42)

with the function

A(ψ) =
b

1 + e−ψ +
k

1 + eψ =
dB(ψ)

dψ
, (43)

which is written as the derivative of B given by:

B(ψ) = b ln(1 + eψ)− k ln(1 + e−ψ) = kψ− α ln(1 + eψ). (44)

With the function (44), from Equation (37), one obtains for Equation (42) multiplied by
(dψ/dτ) = α−Φ:

(Φ− α)
d ln Φ

dτ
− dψ

dτ

dB
dψ

= Φ
d ln Φ

dτ
− α

d ln Φ
dτ

− dB
dτ

=
dΦ
dτ
− α

d ln Φ
dτ

− dB
dτ

=
d

dτ
[Φ− α ln Φ− B] = 0, (45)

with the first integral,
c0 = Φ− α ln Φ− B(ψ) = 1− B(0). (46)

Here, the integration constant c0 = 1− B(0) is fixed by the initial condition Φ(0) = 1.
Equation (46) then becomes

Φ− α ln Φ = 1 + k(ψ− ψ0)− α ln[η(1 + eψ)], (47)

which is the first important result of this study. Along with Equation (37), this allows us,
first, to identify the relation with earlier obtained solutions for special values of b and k,
and, second, to derive the general solution for the epidemic time evolution for general
values of b and k. As soon as, according to Equations (47) and (37), the time dependences
of Φ(τ) and ψ(τ) are inferred, one obtains:

S(τ) =
Φ(τ)

1 + e−ψ =
α− dψ

dτ

1 + e−ψ , (48)

I(τ) =
Φ(τ)

1 + eψ =
α− dψ

dτ

1 + eψ , (49)

according to Equations (33) and (40). Since R(τ) and V(τ) were already expressed in terms
of S(τ) and I(τ) in Equations (21) and (22), one obtains:

R(τ) = −bkτ − k ln Φ(τ) + k ln[(1− η)(1 + e−ψ)], (50)

V(τ) = bkτ + b ln Φ(τ)− b ln[η(1 + eψ)]. (51)
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3.4. Inverse Solution for the General Case

In the general case of b 6= k, the transcendental Equation (47) is solved in terms
of the Lambert functions [109]. Below, it is discussed which of the two existing real-
valued Lambert functions, W0 (principal) or W−1 (non-principal), has to be applied in the
corresponding parameter ranges. Until then, the W functions are used without any index
representing both alternatives.

As Φ ≤ 1, Φ = e−x is set, with non-negative values of x, in order to find the so-called
Lambert equation for Equation (47):

e−x = −α(x− r), (52)

with

r =
1 + k(ψ− ψ0)

α
− ln[η(1 + eψ)]. (53)

The transcendental Equation (52) has the solution [109]:

x = r + W(− e−r

α
), (54)

so that

Φ = e−r−W(− e−r
α ) = −αW

(
− e−r

α

)
, (55)

where the identity e−uW(z) = [W(z)/z]u with u = 1 is employed. Using r, Equation (53),
one finally finds the exact relationship between Φ and ψ, namely:

Φ = −αW
(
−E(ψ)

α

)
, (56)

with

E(ψ) = η(1 + eψ)e−
[1+k(ψ−ψ0)]

α ≥ 0. (57)

To emphasize is that E is nonnegative irrespective the sign of α. At time τ = 0, E
evaluates to E(ψ0) = e−1/α. It has been already proven above that ψ asymptotically reaches
sign(α)∞. This implies E∞ = limτ→∞ η[eψ(1−k)/α)]. Since α < k and k > 0 in general, the
(1− k)/α has the sign of −α, and E∞ = 0 for any α 6= 0. Further, because the derivative
of E(ψ) with respect to ψ vanishes only at ψ = ln(−k/b), and thus nowhere for positive
k and b, the E(ψ) has no extremum with respect to ψ. For the same reason, E has a local
maximum with respect to time τ when ψ exhibits a corresponding minimum in time, which
is the case for α ∈ (0, 1). For all other α values, E monotonically decreases with time from
its initial value E(ψ0).

Inserting the solution (56) provides for Equation (37), dψ/dτ = α−Φ, the nonlinear
differential equation,

dψ

dτ
= α

[
1 + W

(
−E(ψ)

α

)]
, (58)

with the function E (57). Making use of the initial condition (34), this readily integrates to:

τ =
1
α

∫ ψ

ψ0

dx

1 + W
(
− E(x)

α

) . (59)

One thus arrives at an exact analytical solution of the SIRV equations. This to be called
an inverse solution, as τ is expressed in terms of ψ and not vice versa. This is a remarkably
compact result, especially, since it is already known that ψ(τ), for the relevant case of
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α ∈ [0, 1], is not a monotonous function. However, one has to come up with a unique ψ for
each τ.

The solution to this at first sight apparent contradiction is provided by the two real-
valued Lambert functions W0(x) and W−1(x) that have different values over a range of
negative x ∈ [−e−1, 0] values. For positive values of x, only W0(x) is real-valued. The
range of application of the two Lambert functions will be discussed in Appendix A. Here,
the main outcome of these considerations is stated.

As long as ψ exhibits a minimum, which is the case for all α ∈ (0, 1), Equation (59)
must be interpreted as:

τ =


1
α

∫ ψ
ψ0

dx
1+W−1

(
− E(x)

α

) , ψ ≤ ψm,

τm + 1
α

∫ ψ
ψm

dx
1+W0

(
− E(x)

α

) , ψ ≥ ψm,
(60)

or, alternatively, in a more symmetric fashion, as:

τ = τm +


1
α

∫ ψ
ψm

dx
1+W−1(z(x)) , ψ ≤ ψm,

1
α

∫ ψ
ψm

dx
1+W0(z(x)) , ψ ≥ ψm,

(61)

where the crossover is located at Φ = α, that is, where ψ = ψm has reached its minimum,
and the time, where this minimum occurs, is given by

τm =
1
α

∫ ψm

ψ0

dx

1 + W−1

(
− E(x)

α

) . (62)

In the absence of a minimum of ψ, that is, for α /∈ (0, 1), there is no crossover, the ψ is
monotonous, and one can use Equation (59) throughout. For α < 0 the argument of the
Lambert function is positive, so that one has to use Equation (59) with W = W0.

For α > 1, the minimum of ψ coincides with ψ0, hence, τm = 0, so that only the
second term in the second case of Equation (61) survives, again involving the principal
W0 only. The non-principal Lambert function W−1 thus only plays a role in the case
α = k− b ∈ (0, 1).

3.5. Determination of the Minimum Value ψm for α ∈ (0, 1)

In order to evaluate τ given by Equation (61) for the case of α ∈ (0, 1), one needs to
specify ψm. As it was noted above, see Equation (37), the function ψ attains its minimum,
ψm at Φm = α, and a minimum exists for all α ∈ (0, 1). According to the solution (56),
one finds the minimum value ψm from Φm = α = −αW(−Em/α), where Em = E(ψm),
yielding W(−Em/α) = −1. Both, the principal and the non-principal Lambert functions
have the same value −1 at −1/e, so that Em = α/e. Along with Equation (55) this yields
the equation that determines ψm:

e
k
α (ψm−ψ0)

1 + eψm
=

η

α
e1−(1/α). (63)

Since ψm is the value at the minimum, the inequality ψm ≤ ψ0 automatically holds.
This nonlinear Equation (63) for ψm cannot be solved analytically in general. For some spe-
cial cases such as b = k/2 one can still write down an analytical solution. An approximant
for ψm is derived below.
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4. Approximated Reduction of the Exact Solution
4.1. Approximate Inverse Solution τ(ψ)

Here, an approximant is derived for the exact inverse solution τ(ψ) that later is
inverted exactly in order to obtain ψ(τ) in the next Subsection. Upon introducing z =
−E(x)/α with E(x) given by Equation (57), the previous inverse solutions (59) and (61) for
τ, and also τm defined by Equation (62), are of the form

τ =
1
α

∫ ψ2

ψ1

dx

1 + Wµ(− E(x)
α )

=
1
α

∫ z(ψ2)

z(ψ1)

dz
(dz/dx)[1 + Wµ(z)]

, (64)

where ψ1, ψ2 and µ = 0, or µ = −1 are treated as arbitrary coefficients for the time being,
as Wµ stands for any of the two Lambert functions, so that τ is of the form (64) for any
α /∈ {0, 1}. Evaluating the required derivative of z with respect to x gives:

dz
dx

=

(
1

1 + e−x −
k
α

)
z. (65)

The first term can be approximated by unity when x � 1 and thus e−x � 1, and
k/α not too close to unity, i.e., b not too small. The precise range of validity of this
approximation will be worked out in Appendix B and in Section 4.4, where a critical bc is
specified, below which the current approximation needs not be used. For α > 1 and α < 0,
e−x < e−ψ0 , so that this approximation is applicable for any η � 1 when α /∈ [0, 1]. For
α ∈ (0, 1), e−x < e−τm , so that the approximation is excellent as long as τm � 1. Under
such circumstances, that is, for b > bc, Equation (65) is well approximated as

dz
dx
'
(

1− k
α

)
z = − b

α
z, (66)

with α = k− b. Hence, Equation (64) is well approximated by

τ ' 1
b

∫ z(ψ1)

z(ψ2)

dz
z[1 + Wµ(z)]

. (67)

Then, with the substitution z = wew, corresponding to w = Wµ(z), and
dz/dw = (1 + w)ew, one can calculate the integral (67) in closed form:

τ =
1
b

∫ Wµ(z(ψ1))

Wµ(z(ψ2))

dw(1 + w)ew

wew(1 + w)
=

1
b

∫ Wµ(z(ψ1))

Wµ(z(ψ2))

dw
w

=
1
b

ln
[−Wµ(z(ψ1))

−Wµ(z(ψ2))

]
. (68)

The minus sign is kept in the nominator and denominator as Wµ is typically negative.
For α ∈ (0, 1), ψ initially decays with time until reaches its minimum ψm. At the minimum,
Wµ(z(ψm)) = −1. Since Wµ(z) = 0 only for z = 0 and E(x) is positive for all η >
0, Equation (68) removes the problem with the pole at z = 1/e at starting point, in
Equation (64).

Having arrived at Equation (68), one can now identify placeholders ψ1, ψ2 and µ in all
three equations (59) (with µ = 0), (61), and (62), to write down τ for the various cases as
well as τm.

Let us start with the case of α ∈ (0, 1) and ψ ≤ ψm. Upon comparing the first line in
Equations (61) and (64), ψ1 = ψm and ψ2 = ψ along with µ = −1 for the regime ψ ≤ ψm
need to be used. Since α is positive and, thus, z is negative, using Equation (68), this
provides immediately:

τ = τm +
1
b

ln
[
−W−1(z(ψm))

−W−1(z(ψ))

]
(α ∈ (0, 1), ψ ≤ ψm). (69)
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Since z(ψm) = −1/e, Wµ(−1/e) = −1, the term ln[−Wµ(−1/e)] = ln(1) = 0 van-
ishes for both µ. The nominator in Equation (69) can thus be replaced by unity. Exactly
the same procedure, applied to the remaining cases, yields the final expression for the
approximate inverse solution when α ∈ (0, 1):

τ =


τm − 1

b ln[−W−1(−E(ψ)/α)], 0 ≤ τ ≤ τm,

τm − 1
b ln[−W0(−E(ψ)/α)], τ ≥ τm,

(70)

with E(ψ) from Equation (57). Similarly, the time τm can be read off from Equation (68) by
choosing ψ1 = ψ0, ψ2 = ψm, and µ = −1. Hence,

τm =
1
b

ln

[
−W−1

(
− e−1/α

α

)]
= − ln(α)

b
, (71)

where E(ψ0) = e−1/α and E(ψm)/α = 1/e and the identity −αW−1(z(ψ0)) = 1 (see proof
in Appendix C) are used to simplify the expression. Such time τm only exists for α ∈ (0, 1).

There is the remaining case of α /∈ [0, 1]. Equation (59) implies using ψ1 = ψ0, ψ2 = ψ,
and the principal Lambert function (µ = 0), as already discussed. As z(ψ) and, thus,
W0(z(ψ)) have different signs for α < 0 and α > 1, both the nominator and denominator in
Equation (68) are multiplied by α, to get rid of two different signs for positive and negative
values of α. At the same time, because of the identity −αW0(z(ψ0)) = 1 (see proof in
Appendix C), which holds for all α /∈ (0, 1), the logarithm of this quantity vanishes, and
one arrives at the final expression for the approximate inverse solution valid for all τ ≥ 0
and all α /∈ [0, 1],

τ = −1
b

ln[−αW0(−E(ψ)/α)]. (72)

Notice that the argument of the logarithm is positive for both α < 0 and α > 1.
It is important to realize that the value for ψm has completely disappeared within the

approximate case. Still, we can use a very similar approximation done here to obtain an
explicit expression for ψm, that might be helpful for the evaluation of the exact inverse
solution and the exact ψm as long as α ∈ (0, 1). If b is not too small, we can approximate
the term 1 + eψm in Equation (63) by eψm and solve it for ψm analytically. This yields (see
Figure 2):

ψm ' ψ0 −
1− α + α ln α− α ln(1− η)

b
. (73)

Note that this value has the feature W−1[−E(ψm)/α] = −1 for η = 0. In practise, for
η � 1, the ln(1− η) term can be safely neglected so that

ψm ' ψ0 −
1− α + α ln α

b
, (74)

can be used, while it is possible to add this ln(1− η) correction throughout the rest of
this paper.
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Figure 2. Exact ψm versus k and b in the lower right triangle, and approximate ψm using Equation (74)
above the diagonal (mirrored, to allow for a simple comparison with the exact ψm). All analytic
results for the SIRV functions in terms of reduced time τ are basically exact for those k and b for
which ψm is well described by its approximant. The white space in the lower left corner is the regime
of b < bc, where the SIRV model results are captured by linearly interpolating between the SIR model
and the SIRV model evaluated at the critical b = bc.

4.2. Approximate Direct Solution ψ(τ)

Next, the approximate inverse solution is inverted in order to come up with an ap-
proximate direct solution of the SIRV equations. With Equations (70)–(72), the approximate
expressions for τm, and τ as function of ψ are provided for any negative or positive α.
Fortunately, one can proceed and invert the relationships without any further assumption
to come up with the corresponding, much more convenient, explicit solution ψ(τ). As
soon as all SIRV functions are expressed in terms of ψ, all these quantities are then given as
function of the reduced time τ.

Let us begin with an illustrative example. In Equation (71), τm is given in terms of b
and α. One can invert the relationship to obtain α from τm and b, namely:

e−1/α

α
= exp

(
bτm − ebτm

)
. (75)

To prove the equivalence between Equations (71) and (75), one has to just insert
Equation (75) into Equation (71) and to use the fact that the Lambert function W(x) is
the inverse function of x(W) = WeW . More specifically, consider y(ζ) = ln[−W(ζ)]. Its
inverse is given by ζ(y) = − exp(y− ey) because ζ(y) = − exp[ln(−W(ζ))− eln(−W(ζ))] =
W(ζ)eW(ζ) = ζ. To derive Equation (75) one thus has identified ζ = −e−1/α/α and
y(ζ) = bτm. The same procedure can be applied to all expressions from the previous
Section using different choices for y and ζ.

One more required ingredient is however an expression for ψ in terms of E. It can be
readily deduced using the existing assumption that lead to Equation (74). To derive this
Equation (74), one assumes that 1 + eψm ≈ eψm . Since the minimum ψm ≤ ψ at all times,
the assumption 1 + eψ ≈ eψ is even more appropriate within all remaining times. With this
replacement, Equation (57) reads:

E(ψ) ' η exp
[

kψ0 − 1− bψ

α

]
, (76)
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and this can be solved for ψ to arrive at

ψ(τ) ' ψ0 −
1− α ln(1− η) + α ln[E(τ)]

b

= ψm −
α

b
ln

eE(τ)
α

, (77)

with E(τ) = E(ψ(τ)), and where Equation (73) is used. Here, the symbol E is introduced
instead of E only to highlight the different argument and to avoid potential confusion. Note
that this generalization of Equation (74) is compatible with the special case ψm = ψ(τm)
because E(τm) = E(ψm) = α/e. As before, it is even more convenient to drop a term
of O(η), so that ψ(0) coincides with the exact value. Since E(0) = E(ψ0) = e−1/α, the
correction becomes simpler:

ψ(τ) = ψ0 −
1 + α ln[E(τ)]

b
. (78)

Having expressed ψ in terms of τ and ln[E(τ)], what is left to do is to write down
expressions for ln[E(τ)]. With such expressions at hand, Equation (78) is the explicit
solution of the SIRV equations. The ln[E(τ)] depends on the α range.

For α ∈ (0, 1), in view of Equation (70), one needs to use y(ζ) = b(τm − τ) and ζ =
z(ψ) = −E(ψ)/α to obtain the explicit ζ(y) = − exp(y− ey), or equivalently, ln[−ζ(y)] =
y− ey. Replacing y and ζ, one thus finds:

ln[E(τ)] = ln(α)− b(τ − τm)− e−b(τ−τm) (79)

for α ∈ (0, 1).
Note that there is no need to consider two regimes before and after the peak anymore.

While the two Lambert functions W0 and W1 are very different, they share a common
inverse, and Equation (79) is valid over the whole τ ≥ 0 range.

To summarize, upon inserting Equation (79) into Equation (78), one ends up with a
final expression for ψ(τ) for all α ∈ (0, 1),

ψ(τ) = ψm + α(τ − τm)− α

b

[
1− e−b(τ−τm)

]
= ψ0 + ατ − 1− e−bτ

b
, (80)

where τm and ψm were used from Equations (71) and (74) to arrive at the second line.
Figure 3 compares the approximant of Equation (80) with the exact solution for three
different α values. For the remaining cases of α /∈ [0, 1], Equation (72) has to be inverted.
Repeating the above procedure, one gets: ln[E(τ)] = −bτ − α−1 exp(−bτ) for α /∈ [0, 1].
Upon inserting this term into Equation (78), one arrives at the explicit approximate solution
of the SIRV equations for α /∈ (0, 1):

ψ(τ) = ψ0 + ατ − 1− e−bτ

b
. (81)

Not only is this result exactly of the form we obtained for α ∈ (0, 1), it is moreover
valid also for the special values of α = 0 and α = 1, as all—at first glance problematic—
divergencies have dropped out. From Equation (81), one can see that ψ∞ = limτ→∞ ψ(τ) =
sign(α)∞ except for α = 0 or b = k, where ψ∞ = ψ0 − 1/k approaches a finite value. The
full expression valid for all α is thus:

ψ∞ =

(
ψ0 −

1
k

)
δα,0 + (1− δα,0)sign(α)∞, (82)

in full accord with the exact SIRV solution.
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Figure 3. Comparison of the approximant (80) for ψ(τ)/ψ0 with the exact solutions (59) and (61)
(black curves) for three different α values at η = 10−6 and a relatively low b = 0.02. For the
approximant (green), ψm and τm are given by Equations (71) and (74), respectively. For larger b the
performance of the approximant is even better.

4.3. Time-Dependency of All Remaining SIRV Quantities

With ψ(τ) given by Equation (81) and the corresponding

Φ(τ) = α− dψ

dτ
= e−bτ (83)

for all values of α, it is now straightforward to write down all remaining SIRV quantities,
as they have been expressed in terms of ψ above. It is perhaps interesting to note that
the approximant shares the most relevant features with the exact solution: ψ(τm) = ψm,
ψ(0) = ψ0, Φ(0) = 1, and ψ′(0) = α− 1 (as required by Equation (38)) for all α. In the limit
of infinitely long times, Φ∞ = 0, according to Equation (83) unless b = 0.

All remaining SIRV quantities to be obtained from Equations (81) and (83) using ψ(τ)
and Φ(τ):

S(τ) =
Φ(τ)

1 + e−ψ(τ)
, (84)

I(τ) =
Φ(τ)

1 + eψ(τ)
, (85)

j(τ) = S(τ)I(τ), (86)

J(τ) = η +
∫ τ

0
j(τ′)dτ′, (87)

R(τ) = J(τ)− I(τ), (88)

V(τ) = 1− S(τ)− J(τ). (89)

For α = 0, for which one can use ψ(τ) from Equation (81) with b = k, these expressions
solve the SIRV Equations (13)–(15) exactly, as can be verified by direct insertion into
Equations (13)–(16). An alternative proof is provided in Appendix G.1. Otherwise, they
solve the SIRV equations to within O(η). The version J(τ) given by Equation (87) ensures
that j = dJ/dτ holds exactly.

It is a rather tedious exercise to insert the ψ and Φ functions into Equations (85)–(89).
In evaluating the limiting values for τ → ∞, one has to carefully consider the qualitatively
different regimes α < 0, α = 0, α ∈ (0, 1) and α ≥ 1, as well as k = 0 when α = 0. This
can be done but we refrain from writing down all equations for the approximate explicit
solution of the SIRV equations. Instead, in Appendix G, exact solutions for special cases
are provided and the approximate explicit solution are compared with the exact numerical
solution for several cases. To provide an example, inserting ψ (81) and Φ (83) into the
expressions for S (84) and I (85) yields:
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S(τ) =
e−bτ

2

{
1 + tanh

[
αbτ + bψ0 + e−bτ − 1

2b

]}
, (90)

I(τ) =
e−bτ

2

{
1− tanh

[
αbτ + bψ0 + e−bτ − 1

2b

]}
. (91)

Next, let us focus on the most relevant, measurable features of the SIRV model, that to
be derived from the analytic approximant.

4.4. Critical Reduced Vaccination Rate bc

As it is demonstrated below, the approximants (81) and (83) capture the exact solution
very well (or also exactly for some special cases like α = 0) except for the regime where b
stays below a critical bc. The limiting case of b = 0 is known as SIR model and had been
treated elsewhere, so that the failure of the approximant obtained does not seem to pose a
problem. It is, however, possible to quantify the range of validity of Equations (81) and (83).
This is done in Appendix B and leads to a critical value bc in terms of η and k,

bc =
(

32πkη2
)3/5

exp
{

W0

[
6(1− k + k ln k)

5(32πkη2)3/5

]}
, (92)

for the reduced vaccination rate, beyond which the approximant is very accurate; see Figure 4
for a plot of bc versus k and η. The critical bc decreases with increasing k and decreasing
η, while it is quite sensitive to k values close to unity. At k = 1, Equation (92) evaluates to
(32πη2)3/5 ≈ 15.9 η6/5 and bc is thus roughly proportional to η in that case.
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Figure 4. The critical bc versus k and η. The coloring scheme uses the decadic logarithm of bc, and
the vertical axis is also logarithmic. Only a relevant range of k values is shown.

For the remaining range of the b values below bc one can make use of the known
solution of the SIR model, that corresponds to the SIRV model with b = 0. To be specific,
the characteristics of time-evolution such as peak time and height of the differential rate, or
the final fraction of infected population are well captured by a simple linear interpolation
between SIRV values at b = bc and the SIR values. This is worked out next to conclude
with approximants that are valid for any b.

4.5. Peak Times and Peak Amplitudes

While S(τ) decreases monotonically with time, both I(τ) and j(τ) = S(τ)I(τ) exhibit
a maximum, whose position and amplitude one can calculate from Equations (90) and (91).
Whereas the general case of arbitrary η is treated in Appendices E and F, here, let us limit
the analysis to the relevant case of a small initially (and simultaneously) infected fraction
η � 1 of the population. In this limit, one obtains to leading order for all α:
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I(τ) ' ηe
1−e−bτ

b −kτ +O(η2), (93)

S(τ) ' e−bτ +O(η), (94)

implying for the differential fraction of newly infected persons,

j(τ) ' ηe
1−e−bτ

b −(k+b)τ +O(η2). (95)

The peak time of the maximum in I(τ) is thus

τ I
max = − ln(k)

b
+O(η), (96)

so that a peak in I exists only if k < 1. For the fraction of currently infected persons at peak
time, one has:

Imax = I(τ I
max) ' ηe1/b

(
k
e

)k/b
+O(η2). (97)

Likewise, the peak time of the maximum in j(τ) is at (thin colored lines in Figure 5)

τ
j
max = − ln(k + b)

b
+O(η), (98)

where j achieves the value

jmax(k, b) = ηe1/b
(

k + b
e

)(k+b)/b
, (99)

or, equivalently, as the following expression is much more conveniently evaluated at small
b (thin colored lines in Figure 6):

ln jmax(k, b) = ln(η)− 1 +
1− k

b
+

k + b
b

ln(k + b). (100)
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Figure 5. Reduced peak time, τ
j
max, of the newly infected population fraction, j(τ), versus reduced

vaccination rate, b, for various k at η = 10−6 (double-logarithmic plot). The exact numerical solution
(solid black) is compared with the approximant (98) within the regime of b > bc (thin colored),
and by the corresponding linear interpolant (thick colored) for the remaining regime of very small
b < bc. The limiting value τ

j
max(b → 0) exactly coincides with the τSIR

max(k) of the SIR model (see
Appendix G.2).
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Figure 6. Peak value of the newly infected population fraction jmax versus reduced vaccination
rate, b, for various k at η = 10−6 (double-logarithmic plot). The exact numerical solution (solid
black) is compared with the approximant (99) within the regime of b > bc (thin colored), and by the
interpolant (101) (thick colored) for the remaining regime of very small b < bc. The limiting value
jmax(b→ 0) exactly coincides with the jSIR

max(k) of the SIR model (Appendix G.2).

Thus, a peak in j occurs only for k + b < 1, in agreement with the consideration above
(see Equation (12)), as small η, η � 1, is assumed here. While the peak time τ

j
max increases

with increasing b in the regime of b < bc, it decays with b for b > bc.
The maximum rate (99) is not applicable for b < bc below a critical, very small bc,

given by Equation (92). For small b < bc, one can make use of the known [110] exact result
jSIR
max of the SIR model, reproduced in Equation (A63), and linearly interpolate as (thick

colored lines in Figure 6)

jmax(k, b) =
b
bc

jmax(k, bc) +
bc − b

bc
jSIR
max(k), (101)

where jmax(k, bc) and jSIR
max(k) are given by Equations (99) (evaluated at b = bc) and (A63),

respectively. The analytical expressions for time and amplitude of the daily number
of infected persons are two of the more important results of this study. They can be
immediately used to rate the effect of vaccination rate for all b, using Equation (99) for
b ≥ bc and Equation (101) for b < bc, where the critical rate bc is given by Equation (92).

One should keep in mind that the maximum of the j(τ) is not located at τ = τm, which
marks the time of the minimum in ψ(τ). There is also a remaining apparent contradiction.
While the initial slope of j(τ) is positive for k + b < 1− 2η and j(τ) thus going through a
peak at a future time in that case, and taking identical values at different times, the ψ(τ)
exhibits a minimum for all α ∈ (0, 1). Under such latter conditions, there are at least two
times that exhibit the same ψ value. The apparent contradiction finds its explanation in the
fact that j(τ) cannot be expressed in terms of ψ(τ) alone, but also involves the derivative
of ψ with respect to τ, which is contained in Φ. In other words, both Lambert functions
are sometimes (when k− b ∈ (0, 1) and k + b > 1− 2η) required to describe j(τ) that is
monotonically decreasing, and a single Lambert function is sometimes (when k− b /∈ [0, 1]
and k + b < 1− 2η) sufficient to describe j(τ) that exhibits a maximum. Another way to
understand this feature is the fact that the expressions for the SIRV quantities have the
same form irrespective the value for α, that is, irrespective the occurrence of a minimum
in ψ(τ).

4.6. Total Fraction of Infected Persons

The differential j(τ) given by Equation (95) can be integrated to obtain the cumulative
fraction J(τ), as shown in Appendix D. For J∞, one, thus, obtains (thin colored lines
in Figure 7):

J∞(k, b) = ηkb
b
k−1e

1
b γ

(
k
b

,
1
b

)
, (102)
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in terms of the lower incomplete gamma function γ [121]. For the special case of α = 0
(k = b), Equation (102) agrees with the exact result (A54) up to order O(η2). As for jmax,
one has to distinguish two regimes: (i) the regime of b > bc, where this expression (102) is
useful, (ii) the regime of small b < bc, for which one needs, on one hand, the known exact
result of the SIR model, JSIR

∞ , and on the other, the value for J∞ given by Equation (102),
evaluated at b = bc. Since bc is so very small, the direct insertion into (102) is numerically
impossible. Therefore, a limiting expression is derived in Equation (A16) of Appendix D,
valid for small values of b such as b = bc, that enters Equation (103) just below. Using
exactly the same interpolation approach as before for jmax, the J∞ within the regime of small
b < bc is approximated with the help of Equation (102) by (thick colored lines in Figure 7):

J∞(k, b) =
bη

bc

√
2πk
bc

e
1−k+k ln k

bc +
bc − b

bc
JSIR
∞ (k), (103)

where JSIR
∞ (k) is the known analytical expression [110] for the SIR model, reproduced

in Equation (A62), and bc is given by Equation (92).
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Figure 7. Final (infinite time) fraction of infected persons, J∞, versus reduced vaccination rate, b,
for various k at η = 10−6 (double-logarithmic plot). The exact numerical solution (solid black)
is compared with the approximant (102) within the regime of b > bc (thin colored), and by the
interpolant (103) (thick colored) for the remaining regime of very small b < bc. The limiting value
J∞(b→ 0) exactly coincides with the JSIR

∞ (k) of the SIR model (see Appendix G.2).

4.7. Differential Rate

Next, an analytical approximant for the time-dependent differential rate j(τ) is pro-
vided, valid for any b, and small η, η � 1. For b exceeding the critical bc, one can just use
the expression (95). The comparison with the analytic result is excellent, see Figure 8a–c.
For b < bc, on the other hand, it was already shown above that the peak time and peak
amplitude are well approximated analytically by a linear superposition between the SIRV
approximant evaluated at the critical bc, and the analytical SIR expression. The analytical
expression for the full time-dependency of j(τ) in this subcritical regime of b < bc is
therefore not just a linear superposition of the j(τ) for SIRV and SIR model, because such
superposition would not recover the already determined peak time and height. Instead, as
it is demonstrated in Figure 8d–f and inspired by the earlier observation that the Gauss
model [99,122] captures the differential rate very well, the j(τ) is well described for b < bc
by the Gaussian,

j(τ) = jmax exp

[
− (τ − τ

j
max)

2

w2

]
, (104)
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with the width w, determined by [99]

w =
J∞√

π jmax
, (105)

where jmax and J∞ are given by Equations (101) and (103), respectively.
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Figure 8. Differential rate, j(τ), of infected population fraction versus reduced time, τ, for three
different k ∈ {0.85, 0.90, 0.95} and various reduced vaccination rates, b/bc. Here, η = 10−6 is used.
The panels (a–c) show the regime b > bc, while (d–f) show results for b < bc including b = 0 (SIR
model). To rate the effect of the parameters, all three plots of each row are shown on identical scales.
While the peak time increases with increasing k and decreasing b, the peak height dramatically
decreases with increasing b. The critical bc depends on k and η, see Equation (92) and Figure 4. The
area under the curves is the total cumulative fraction J∞ of infected persons. The black lines are the
exact numerical results, the green lines are the analytical approximant, given in Section 4.7.

4.8. Time Scales

Summarizing the above-made analysis, let us emphasize that SIRV-pandemic waves
in the case 0 < b � α < 1 exhibit a clear asymmetry with respect to the peak time in
reduced and real time. The fraction of infected, I, and recovered, R, persons as well as the
daily rate of new infections, j, vary rapidly on the order of the recovery reduced time scale
τR ' α−1 ' k−1, corresponding to recovery real time scale TR ' 1/µ(0). Alternatively,
the fraction of susceptible (S) and vaccinated (V) persons as well as the sum, Φ = S + I,
vary slowly on the order of the much greater vaccination reduced time scale τV ' b−1,
corresponding to the vaccination real time scale TV ' 1/v(0). Third, the cumulative
fraction of newly infected persons, J(τ), exhibits an asymmetric time structure determined
both by τR and τV . These behaviors are clearly visible in Figure 9b–d or, alternatively, in
Figure 9f–h, where the time distribution of all SIRV quantities is shown in one plot for
different values of b at k = 0.9. The behavior is qualitatively similar but quantitatively
different for other values of k. Comparing the asymmetric time distribution of J(τ) with
empirical data then should allow the determination of both the parameters b and k.

For comparison, Figure 9a,d shows the SIR-time distributions. Here, definitely, no
enhanced asymmetry occurs. Apart from the absent V(τ), all SIR quantities vary on the
same recovery reduced time scale k−1. Moreover, the SIR S(τ) saturates at the finite value
given by SSIR

∞ = 1− JSIR
∞ , whereas the SIRV S(τ) approaches zero after infinite time as a

consequence of vaccinations.
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Figure 9. Suitable normalized SIRV quantities S, I/Imax, R/R∞, V, and J/J∞ versus τ for the four
different reduced vaccination rates at k = 0.9 and η = 10−6: (a,e) b = 0 (SIR model), (b,f) b = 0.1 bc,
(c,g) b = bc, and (d,h) b = 10 bc. While the upper row presents the data in a linear scale, the bottom
row shows the same but in a semilogarithmic fashion to appreciate the two well separated time scales.

5. Comparison of Approximate with Exact Solutions

All model parameters, such as η, k, and b, were determined using currently available
public data [123,124] for the population amount, vaccination rate, daily number of newly
deceased persons. The parameters as well as the SIRV prediction are collected in Table 1
for various countries. It should be noted here that there is some significant variation of
the experimental data depending on the data source used, and that the determined model
parameters are quoted here without error bars for the reason that the differences in the data
bases have not yet been fully resolved. On the other hand, a statistical error can be estimated
from the variation of the model parameters with time. For this reason, the daily updated
model parameters are determined and reported as part of our Supplementary Material.

The exact numerical solution of the SIRV model is compared with the approximant for
various typical choices of k and b in Figure 8. To highlight the effect of reduced vaccination
rate b, six cases for each k are shown: b = 2bc, b = 3bc, b = 5bc, vanishing b (SIR model),
b = bc/5, and b = bc/2. These six values capture the qualitative behavior for all b. For
b� bc, vaccination is basically ineffective in reducing the number of infections. For b� bc,
the vaccination program is highly effective. The crossover is at b = bc, where the reduction
becomes significant and where it depends roughly linearly on b. The critical bc as function
of k and η is shown in Figure 4. While bc basically coincides with η for k→ 1, at smaller k,
the critical bc behaves nonlinear with k and η, as it is shown.

In Figure 7, the exact result (solid black lines) for J∞ versus b for various k is compared
with the approximant (colored lines). The gap in the colored curves marks the crossover
regime, b = bc. For any b, the exact solution is captured by the SIRV approximant. The
same is true for remaining quantities such as peak height jmax and peak time τ

j
max, as it is

demonstrated by Figures 5 and 6.
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Table 1. Analysis using data from 18 March 2021. For η, k and a the current values for the second wave, that started at tII
0 are used, all from the online resource [124]. The starting time, tV ,

of the vaccination program and the mean daily fraction v of vaccinated population since then are retrieved from Ref. [123] assuming that each person has to be vaccinated twice and that
the vaccination is effective two weeks after the second shot. The remaining quantities are derived from Equations (9) and (36), i.e., via µ = ak, b = v/a, α = k− b, and ∆ = 1− 2η − k− b
is positive if the outburst condition (12) is fulfilled. bc is calculated via Equation (92). Furthermore, included are the infected population fraction at various times: (i) JI

∞ at the end of the
first wave, J∞(tV) at the onset of vaccinations, (iii) Jb=0

∞ assuming no vaccinations, (iv) Jb=b
∞ assuming ongoing vaccination at the present rate, (v) Jb=2b

∞ assuming the vaccination rate had
been twice as large. The t99% denotes the date at which 99% of the final J∞ has been reached, and J̇max = jmaxa× 105/N is the number of newly infected persons per 100,000 inhabitants
within a single day, at peak time. The difference between Jb=b

∞ and Jb=0
∞ is the population fraction that profits from the current vaccination program. For all countries, η � 1, k ∈ [0.7, 1],

α ∈ [0.7, 1], b� 1 hold. A daily updated and extended table containing more numbers such as η, v is part of our Supplementary Material.

Country k a µ b b/bc α ∆ tII
0 tV JI

∞ J(tV ) Jb=0
∞ Jb=b

∞ Jb=2b
∞ J̇max t99%

α3 Code [d−1] [d−1]

ARG 0.912 0.125 0.114 0.0022 0.039 0.910 0.07 20-08-17 20-12-28 0.069 0.228 0.282 0.277 0.274 129 21-10-17
AUT 0.905 0.520 0.471 0.0013 0.841 0.904 0.09 20-07-29 20-12-26 0.008 0.128 0.191 0.182 0.177 219 21-07-29
BEL 0.896 0.551 0.494 0.0011 0.271 0.895 0.10 20-09-06 20-12-27 0.162 0.313 0.332 0.330 0.329 244 21-05-26
BRA 0.790 0.046 0.037 0.0099 0.202 0.780 0.19 20-07-05 21-01-14 0.145 0.247 0.489 0.432 0.398 86 22-09-29
CAN 0.962 1.018 0.980 0.0004 0.692 0.962 0.04 20-09-26 20-12-13 0.049 0.069 0.121 0.106 0.099 68 21-06-05
CHE 0.894 0.458 0.409 0.0023 1.237 0.891 0.10 20-07-22 21-01-22 0.044 0.216 0.240 0.236 0.234 231 21-09-05
DEU 0.915 0.559 0.511 0.0012 1.077 0.913 0.08 20-08-16 20-12-26 0.019 0.069 0.182 0.158 0.143 180 21-08-06
ESP 0.876 0.175 0.153 0.0046 1.120 0.871 0.12 20-04-29 21-01-02 0.092 0.207 0.309 0.283 0.270 115 22-01-28
FIN 0.997 3.858 3.848 0.0002 2.181 0.997 0.00 20-12-21 20-12-30 0.007 0.008 0.019 0.012 0.011 17 21-02-21
FRA 0.886 0.228 0.202 0.0027 0.973 0.883 0.11 20-05-11 20-12-26 0.082 0.183 0.284 0.263 0.252 127 21-12-25
GBR 0.867 0.389 0.337 0.0053 1.741 0.862 0.13 20-09-09 20-12-12 0.120 0.151 0.343 0.257 0.223 200 21-06-16
ISR 0.855 0.050 0.042 0.1283 2.518 0.727 0.00 20-08-20 20-12-18 0.035 0.100 0.330 0.142 0.127 62 21-09-07
ITA 0.873 0.289 0.252 0.0022 0.982 0.871 0.12 20-05-27 20-12-26 0.114 0.233 0.329 0.315 0.306 189 21-11-04
MEX 0.712 0.038 0.027 0.0044 0.052 0.707 0.27 20-07-13 20-12-23 0.123 0.234 0.586 0.559 0.535 124 22-11-23
NLD 0.929 0.397 0.369 0.0022 2.039 0.927 0.07 20-06-11 21-01-15 0.072 0.149 0.201 0.186 0.179 89 21-11-18
RUS 0.933 0.337 0.314 0.0008 0.423 0.933 0.07 20-07-22 20-12-14 0.003 0.049 0.135 0.118 0.107 74 21-10-30
SWE 0.922 0.652 0.601 0.0010 0.540 0.921 0.08 20-10-11 20-12-26 0.126 0.167 0.260 0.240 0.229 162 21-06-04
USA 0.868 0.218 0.189 0.0081 0.948 0.860 0.12 20-09-03 20-12-19 0.094 0.167 0.326 0.263 0.238 156 21-07-28
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6. Application to Real Data

To make predictions and to draw conclusions from the SIRV model about the on-
going pandemic and the vaccination efforts, current values of infection, vaccination and
recovery rates are collected, as well as population sizes, by making use of existing online
resources [123,124]. Then, the SIRV model is applied to calculate the time evolution of all
the SIRV quantities, including final number of infected persons, or maximum daily number
of newly infected persons. Examples are shown in Table 1, while a corresponding, daily
updated table that includes even more characteristics of the second pandemic wave is part
of the Supplementary Material.

Besides the input parameters of the SIRV model, such as the rates, Table 1 offers the
dimensionless values for k, b, and α = k − b, the criterion ∆ = 1− 2η − k − b, the date
tV marking the beginning of the vaccination program, and various values for the final
population fraction that is getting infected before all population has been either recovered
or vaccinated. As long as ∆ has positive values, new pandemic waves can occur. Table 1
indicates that apart from Israel (ISR) this can happen in all countries considered. Only Israel
has applied a high enough vaccination rate so that no further Covid-19 waves can occur.
Table 1 lists the population fraction JI

∞ that had been infected up to the end of the first
pandemic wave, the cumulative fraction J∞(tV) at the time the first person got vaccinated,
the hypothetical cumulative fraction Jb=0

∞ assuming there was no vaccination program, the
J∞ = Jb=b

∞ using the current value for the mean number of vaccinated persons that gave
rise to b, and the hypothetical Jb=2b

∞ assuming vaccinations could have been performed at
twice the actual speed. In addition, Table 1 shows the maximum number of newly infected
persons per day and per 100,000 inhabitants, J̇max, and the date t99% for which 99% of the
ultimately infected population fraction has been reached. Note that Jb=2b

∞ is not always
much smaller than J∞ because the vaccination program eventually started after the peak
time and because the first wave cumulative fraction JI

∞ sets already a lower limit.
Adding the data for all countries of Table 1 to Figure 4, one ends up with with Figure 10,

where another colormap is used for the specific purpose of this Figure. The brightness
represents log10(bc), shown as function of k and η. Circles for countries have been placed
at positions k and η according to Table 1, and the brightness of a filled circle corresponds
to the reduced vaccination rate b, also taken from Table 1. If the brightness of a circle
exceeds the one of the background, the vaccination rate resides above the critical bc for
that country. This is the case, e.g., for Israel (ISR), Great Britain (GBR), and Finland (FIN).
Circles darker than background, such as for Belgium (BEL), Mexico (MEX) and Argentina
(ARG) highlight the case when b < bc.
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Figure 10. Same as Figure 4 but using another colormap, where countries have been added. The
brightness represents log10(bc), shown as function of k and η. Circles for countries have been placed
at positions k and η according to Table 1, and the brightness of a filled circle corresponds to the
reduced vaccination rate b, also taken from Table 1.

7. Summary and Conclusions

With the now available vaccination against COVID-19 it is quantitatively explored
how vaccination campaigns influence the mathematical modeling of epidemics. For this
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purpose, the well-known susceptible-infectious-recovered/removed (SIR) epidemic model
is extended to the fourth compartment, V, of vaccinated persons and the time t-dependent
vaccination rate, v(t), that regulates the relation between susceptible and vaccinated
persons. The vaccination rate v(t) competes with the infection, a(t), and recovery, µ(t),
rates in determining the time evolution of epidemics. In order for a pandemic outburst
with rising rates of new infections to occur, it is required that k + b < 1 − 2η, where
k = µ(0)/a(0) and b = v(0)/a(0) denote the initial ratios of the three rates, and η � 1 is
the initial fraction of infected persons.

Apparently for the first time, analytical solutions for the time-dependence of all
relevant quantities Q ∈ [S, I, R, V, j, J] of the SIRV model are derived, where j and J are
the daily and cumulative fraction of new infections, respectively. Similar to the earlier
analyses [109,110] of the SIR model, one of the time-dependent rates is eliminated by
using the new reduced time-variable τ defined with the infection rate by dτ/dt = a(t).
Moreover, the semi-time case is adopted with assumed-to-be-constant ratios k = µ(t)/a(t)
and b = v(t)/a(t) between the infection, recovery and vaccination rates. This assumption
still allows us to account for any given time-dependence of the infection rate with the
caveat that the recovery and vaccination rate have exactly the same time-dependence as the
infection rate apart from their different initial values. Exact analytical inverse solutions t(Q)
for all relevant quantities Q of the resulting SIRV model in terms of Lambert functions are
derived. The values of the three parameters k, b and η completely determine the reduced
time evolution the SIRV-quantities Q(τ).

These inverse solutions can be approximated with high accuracy yielding the explicit
reduced time-dependences Q(τ) by inverting the Lambert functions. For a given time-
dependence of the infection rate a(t), the real time-dependence Q(t) can be inferred. The
inversion of the Lambert functions operates well for all ratios b exceeding a small but
finite critical value bc. In the range of b ∈ [0, bc] the solution is interpolated using the
exact SIR solution derived before at b = 0 and the inverted SIRV solution at bc. This
approach is remarkably accurate as the comparison with the exact numerical solutions of
the SIRV equations indicates. The analytical solutions show that SIRV-pandemic waves
in the relevant case 0 < b � α < 1 exhibit a clear asymmetric distribution in reduced
and real time. The fractions of infected, I, and recovered, R, persons as well as the daily
rate of new infections, j, vary rapidly on the order of the recovery reduced time-scale,
τR ' 1/a ' 1/k. Alternatively, the fractions of susceptible, S, and vaccinated, V, persons
as well as the sum, Φ = S + I, vary slowly on the order of the much greater vaccination
reduced time-scale τV ' 1/b. This asymmetric SIRV-time behavior is significantly different
from the SIR-time behavior, where no time asymmetry occurs, and, apart from the absent
V(τ), all SIR quantities vary on the same recovery reduced time scale k−1.

Clearly, the analytical solutions obtained here are superior to all numerical ones in the
literature as they allow us to identify the main determining parameters of the epidemic
waves and to understand the correlations between various monitored observables. The use
of these exact analytical solutions is also valuable as a benchmark for solutions obtained by
solving the SIRV-equations numerically.

The influence of vaccinations on the total cumulative number and the maximum rate
of new infections in different countries is calculated by comparing the results obtained here
with monitored real time Covid-19 data. The reduction in the final cumulative fraction
of infected persons and in the maximum daily rate of new infections is quantitatively
determined by using the actual pandemic parameters a(0), k and b in different countries.
The corresponding numbers for a hypothetical adopted doubled (as compared to the actual
one) vaccination rate are also given, which allows us to quantitatively assess the total and
maximum casualties caused by the delayed and low-level vaccination coverage in many
countries. Moreover, a new criterion is developed that decides on the occurrence of future
Covid-19 waves in these countries. Apart from in Israel, this can happen in all countries
considered. Only Israel has applied an high enough vaccination rate so that no further
Covid-19 waves can occur.



Physics 2021, 3 410
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Appendix A. Range of Application for the Two Lambert Functions

As discussed before in Appendix G of Ref. [109], there is a single real-valued solution
W0(y) of Lambert’s equation for arguments y ≥ 0, referred to as the principal. There
are two real-valued solutions for y ∈ [−e−1, 0]: the principal one W0 ∈ [−1, 0] and the
non-principal solution W−1 ≤ −1. For arguments below y < −e−1, only complex-valued
solutions exist, which are of no interest here because the function Φ is real-valued.

As the function Φ = I + S ∈ [0, 1], for the general solution (56), it is required that

− αW
(
−E

α

)
∈ [0, 1] , (A1)

with E > 0 always. While for α < 0 the only real-valued Lambert function is W0, for the
values α > 0 being of a particular interest here, the argument of the Lambert function is
always negative. For those α values, real-valued solutions exist only if

E ≤ α

e
' 0.368α . (A2)

Figure A1 shows the two functions, −αW0(−E/α) and −αW−1(−E/α), entering the
constraint (A1). The black line represents the upper limit (A2) and the red line represents
the initial E(ψ0) = e−1/α. For α /∈ [0, 1], the initial value provides a more restrictive upper
limit for E, as E is monotonically decreasing in those cases, as already proven above.

The lower bound of the constraint (A1) is automatically fulfilled for all negative
arguments of the Lambert function. The principal Lambert function applies for −1 ≤
W0(−E/α) ≤ 0, corresponding to the range

− αW0

(
−E

α

)
∈ [0, α] , (A3)

which automatically fulfils the upper bound of the constraint (A1) when α < 1. The
coloured area in Figure A1b represents the constraint (52). When α > 1 or α < 0, the
constraint (A1) is still fulfilled as long as E ≤ e−1/α, as this value for E, inserted into
Equation (A1), gives unity. As already shown above, ψ monotonically increases (decreases)
with time τ for α > 1 (α < 0), E(ψ) varies monotonically with ψ, and E∞ = 0. The E(ψ),
therefore, monotonically decreases with time for both α > 1 and α < 0, and thus stays
below e−1/α at all times, since E(ψ0) = e−1/α. The constraint (A1) is, therefore, not only
fulfilled automatically for α ∈ (0, 1), but for all α. The only exception from this statement
are α = 0 and α = 1, but these special cases are not discussed here.

https://www.complexfluids.ethz.ch/SIRV


Physics 2021, 3 411

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

Figure A1. Values of the (left) non-principal and (right) principal Lambert functions determining Φ
in Equation (56). The solid black line represents the upper limit, E = α/e = 0.368α (for all α > 0),
where Φ = α. Only for the coloured region below this line real-valued solutions of Equation (56)
exist. The red line represents the initial E(ψ0), which serves as a more restrictive upper limit for
α > 1. In their coloured areas, the corresponding Lambert functions apply, while the white regions
cannot be reached. Points residing in (α, E)-space that are shared by both Lambert functions are
visited at different times, as exemplarily shown by the white arrows for α = 0.4. At earlier times the
non-principal Lambert function W−1 describes Φ, while W0 overtakes at later times. The crossover
occurs at Φ = α. At this moment, both Lambert function exhibit exactly the same value. For negative
α < 0, the accessible E span the huge range E ∈ [0, e−1/α] and are therefore not shown. For such
α < 0, the colored region exists only for W0.

Likewise, the non-principal Lambert function potentially applies for W−1(−E/α) < −1,
corresponding to the range −αW−1(−E/α) > α. Together with the right-hand side of the
constraint (A1), one finds that the non-principal solution potentially applies as solution in
the range

− αW−1

(
−E

α

)
∈ [α, 1] . (A4)

The coloured area in Figure A1a represents the constraint (A4). It is not obvious at
first glance why there are regions in the α–E-space that fulfill both inequalities (A3) and
(A4). In those regions, only one of the two Lambert functions can lead to the true Φ. The
transition between the two Lambert functions is where they meet, i.e., when Φ = α. When
α ∈ (0, 1), Φ at early times involves W−1. This continues until a point in time where Φ = α
is reached. From then on, Φ is determined by the principal solution W0.

Appendix B. The Critical Vaccination Rate bc

It is straightforward to estimate the value bc of the parameter b, below which the approx-
imations (81) and (83) break down. This occurs when the approximation in Equation (66),
based on the assumption of values of ψ� 1, is no longer valid, i.e., when the minimum ψm
of Equation (74) exceeds a certain value of order unity. Consequently, the approximation
tends to break down if the following equation is fulfilled for bc,

1 = ψ0 −
1− (k− bc) + (k− bc) ln(k− bc)

bc
. (A5)

This Equation (A5) can be cast into the form of the Lambert Equation (52) with
the solution

b†
c = k− e2−ψ0 exp

{
W0

[
− (1 + k− kψ0)

e2−ψ0

]}
(A6)

in terms of the principal Lambert function W0. The solution is denoted here by b†
c , as

the bc to be used is slightly different, as it is shown below. The non-principal Lambert
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function would produce large bc values for which the approximants do not require any
special treatment. Using ψ0 = ln[(1− η)/η], the expression (A6) may be rewritten further.
It is important to note that the approximants for the regime b < bc cannot be evaluated
anymore for values well below b†

c , especially for k very close to unity. In Table A1, therefore,
the best values for bc, that were obtained upon fitting the exact solution with the obtained
approximant, are collected and compared with those of expression (A6) as well as with
another formula to be derived next, that will actually be used as it captures the best bc with
much higher accuracy than b†

c from Equation (A6).

Table A1. Critical value bc of the reduced vaccination rate b to be used in the interpolants (101) and
(103). Mentioned for comparison are: the best fitted value bfit

c , the analytic expression (92) for bc

that is used throughout this paper and the rough estimate b†
c according to Equation (A6). The value

η = 10−6 is used for this table; the analytic expression (92) works equally well for any η � 1.

k log10(bfit
c ) log10(bc) log10(b†

c)

0.100 −1.18 −1.19 −1.18
0.300 −1.44 −1.44 −1.53
0.500 −1.75 −1.74 −1.88
0.650 −2.06 −2.05 −2.25
0.800 −2.51 −2.50 −2.77
0.850 −2.74 −2.73 −3.03
0.900 −3.05 −3.04 −3.39
0.950 −3.56 −3.57 −4.00
0.980 −4.21 −4.23 −4.80
0.990 −4.69 −4.70 −5.41
0.995 −5.13 −5.13 −6.01

Upon inspecting the fitted bc, bfit
c , values for various k and η, one finds that bc � 1,

J∞(k, bc) � η, and there is a constant proportionality between J∞ and b1/3
c . In light of

Equation (A16), this translates into the following equation for bc:√
k
bc

exp
(

1− k + k ln k
bc

)
=

b1/3
c

η
√

C
, (A7)

with some coefficient C = 32π, which is determined empirically (Figure 2) upon comparing
the exact solution with the approximant. Equation (A7) is solved for bc as follows:

bc =
(

32πkη2
)3/5

exp
{

W0

[
6(1− k + k ln k)

5(32πkη2)3/5

]}
. (A8)

This final expression for bc is compared with the bfit
c values, and the above estimate b†

c
in Table A1. The agreement between fitted and analytic bc is found to be excellent for all η
and k (Table 1 shows the comparison only for a selected, representative η value).

Appendix C. Proof of Equation (72)

Here, it is proved that W0(z(ψ0)) = −1/α for all α /∈ [0, 1), where to recall is that
z(ψ0) = −e−1/α/α. This identity was used in the derivation of Equation (72). Making use
of the inverse Lambert function W−1

0 (w) = wew, one can take the inverse on both sides:

z(ψ0) = −
e−1/α

α
= W−1

0

(
− 1

α

)
= − 1

α
e−1/α , (A9)

which completes the proof, but one has to be careful here. The identity holds only for those
α for which W0(z) resides on its real-valued regime, i.e., W0 ∈ [−1, ∞] for z ∈ [−e−1, ∞].
Because the argument −α−1 of the inverse Lambert function is ≥−1 only for α < 0 and
α ≥ 1, the identity does not hold for α ∈ [0, 1). If W0 is replaced by W−1, the identity holds
for the opposite case of α ∈ (0, 1].
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Appendix D. Proofs of Equations (102) and (103)

With the approximate expression (95), that is useful up to order O(η2), one obtains
for corresponding cumulative number fraction, with the substitution ξ = e−bτ′/b:

J(τ) = J(0) +
∫ τ

0
j(τ′) dτ′

= η

{
1 + b

k
b e

1
b

∫ 1
b

e−bτ

b

ξ
k
b e−ξ dξ

}
(A10)

= η

{
1 + b

k
b e

1
b

[
γ

(
1 +

k
b

,
1
b

)
− γ

(
1 +

k
b

,
e−bτ

b

)]}
,

where J(0) = η is inserted and the lower incomplete gamma function [121] defined by

γ(s, x) =
∫ x

0
ξs−1e−ξ dξ (A11)

is used. After infinite time, from (A10), one readily obtains:

J∞(k, b) = η

[
1 + b

k
b e

1
b γ

(
1 +

k
b

,
1
b

)]
= ηkb

k
b−1e

1
b γ

(
k
b

,
1
b

)
, (A12)

where, in the last step, the recurrence formula [121] γ(1 + s, x) = sγ(s, x) − xse−x for
s = k/b and x = 1/b is used. For the special case of b = k, the obtained expression (A12)
indeed reproduces Equation (A54) of Appendix G.1 (where we treat this special case of
b = k in detail) up to order O(η2), i.e.,

J∞(k, k) = ηk(e1/k − 1) , (A13)

where γ(1, x) = 1− e−x is used. For the special case of k = 0, Equation (A12) simplifies to

J∞(0, b) = e1/bη . (A14)

As already discussed, Equation (A12) is useful when b does not exceed bc. This avoids
that the latter expression (A14) exceeds unity and, thus, fails when b is too small.

With the asymptotic behavior of the gamma function,

γ(s, x � 1) ' Γ(s)− xs−1e−x ' Γ(s) , (A15)

from Equation (A12), one obtains for small values of b� 1:

J∞(k, b� 1) ' ηkb
k
b−1e

1
b Γ
(

k
b

)
' η

√
2πk

b
exp

(
1− k + k ln k

b

)
, (A16)

where the Stirling’s formula Γ(s� 1) ' (2π)1/2ss− 1
2 e−s is used in the last step.

Appendix E. Cumulative Fraction of Infected Persons J(τ) for Arbitrary η

Starting from the found approximants for S(τ) and I(τ) given by Equation (28), with
ψ(τ) from Equation (27), i.e.,

ψ(τ) = ψ0 + ατ − 1− e−bτ

b
, α = k− b , (A17)

the differential rate j(τ) = S(τ)I(τ) (30) is written as

j(τ) =
e−2bτ

4 cosh2 ψ
2

=
e−2bτ−ψ(τ)

(1 + e−ψ)2 =
eψ(τ)−2bτ

(1 + eψ)2 . (A18)
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Here, we are interested in an expression for the integrated j(τ) for arbitrary initial
conditions η, contained in ψ0 = ln[(1 − η)/η], while a result valid for small η � 1
was already provided with Equation (A10). To this end, using Equations (31) and (A18)
one gets:

J(τ) = η +
∫ τ

0
dτ′ j(τ′)

= η +
∫ τ

0
dτ′

e−2bτ′−ψ(τ′)

(1 + e−ψ(τ′))2

= η +
∫ τ

0
dτ′

e−[ψ0+(2b+α)τ′− 1−e−bτ′
b ]

(1 + e−[ψ0+ατ′− 1−e−bτ′
b ])2

. (A19)

Substituting ξ = e−bτ′/b then yields:

J(τ) = η +
∫ 1

b

e−bτ

b

dξ
(bξ)

α
b +1e

1
b−ψ0−ξ

[1 + (bξ)
α
b e

1
b−ψ0−ξ ]2

. (A20)

To be able to calculate this integral, let us introduce yet another but simpler integral
U(c), parameterized by c:

U(c) = cη + b
∫ 1

b

e−bτ

b

dξ

1 + e
1
b−ψ0(bξ)

α
b e−cξ

. (A21)

Because the derivative of U(c) with respect to c evaluates to

dU(c)
dc

= η +
∫ 1

b

e−bτ

b

dξ
e

1
b−ψ0(bξ)

α
b +1e−cξ

(1 + e
1
b−ψ0(bξ)

α
b e−cξ)2

, (A22)

the cumulative fraction (A20) can be expressed in terms of U(c) as

J(τ) =
dU
dc

∣∣∣∣
c=1

. (A23)

What is left to do is to calculate the integral (A21). Using the identity

1
1 + e−x =

∞

∑
n=0

(−1)ne−nx, (A24)

applied to Equation (A21), provides:

U(c) = cη +
∞

∑
n=0

(−1)ne
n
b−nψ0 b

nα
b +1

∫ 1
b

e−bτ

b

dξ ξ
nα
b e−cnξ

= cη + 1− e−bτ +
∞

∑
n=1

(−1)ne
n
b−nψ0

(
b
n

) nα
b +1 ∫ n

b

ne−bτ

b

dz z
nα
b e−cz, (A25)

where z = nξ is substituted in the last step. Equation (A25) readily yields, upon replacing
τ0, and, using the binomials Bm,n = m!/[n!(m− n)!],
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J(τ) =
dU(c)

dc

∣∣∣∣
c=1

= η +
∞

∑
n=1

e−nψ0 Jn(τ)

= η +
∞

∑
n=1

(
η

1− η

)n
Jn(τ)

= η +
∞

∑
m=1

[
m

∑
n=1

Bm−1,n−1 Jn(τ)

]
ηm , (A26)

with the coefficients,

Jn(τ) = (−1)n+1e
n
b

(
b
n

) nα
b +1 ∫ n

b

ne−bτ

b

dz z
nα
b +1e−z , (A27)

that all vanish for τ = 0. The exponential weight containing ψ0 in front of the coefficient
Jn(τ) in Equation (A26) is kept, as this allowed us to see that one needs to take into account
the first m terms of the sum, and the first m coefficients Jm to come up with J(τ) up to order
O(ηm). The integral in the coefficient can be expressed in terms of the lower incomplete
gamma function, γ, so that, finally, J(τ) is obtained as an infinite sum, with summands
given by

Jn(τ) = (−1)n+1e
n
b

(
b
n

) nα
b +1

[
γ
(nα

b
+ 2,

n
b

)
− γ

(
nα

b
+ 2,

ne−bτ

b

)]
. (A28)

To confirm that the obtained general expression reduces to (A10) already derived for
small η � 1, let us evaluate Equation (A26) to first order in η. With B0,0 = 1, Equation (A26)
implies:

J(τ) ' η + J1(τ)η

= η + ηe
1
b b

α
b +1

[
γ

(
α

b
+ 2,

1
b

)
− γ

(
α

b
+ 2,

e−bτ

b

)]

= η

{
1 + e

1
b b

k
b

[
γ

(
1 +

k
b

,
1
b

)
− γ

(
1 +

k
b

,
e−bτ

b

)]}
, (A29)

where J1 is taken from Equation (A28), and α is replaced by k− b. The obtained Equation (A29)
is indeed identical to Equation (A10).

One can rewrite J(τ) further in a way that helps calculating J∞ = limτ→∞ J(τ) using
the recurrence formula for the lower incomplete gamma function,

γ(a + 1, x) = aγ(a, x)− xae−x (A30)

Using this recurrence in Equation (A29), one ends up with

J(τ) =
1

ebτ + eψ0+kτ− 1−e−bτ

b

+
∞

∑
n=1

(−1)n+1χne
n
b−nψ0

(
b
n

)χn

×
[

γ
(

χn,
n
b

)
− γ

(
χn,

ne−bτ

b

)]
, (A31)

where the abbreviation,
χn = 1 +

nα

b
, (A32)

is used only to shorten the expression. Note that χ1 = k/b. To derive expression (A31), the
following identities,

∞

∑
n=1

(−1)ne−nx = − 1
1 + ex (A33)
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as well as
∞

∑
n=1

(−1)n+1e−nψ0 =
∞

∑
n=1

(−1)n+1e−nψ0 =
1

1 + eψ0
= η (A34)

are used. After infinite time the first term of Equation (A31) vanishes, and γ(χn, 0) = 0 can
be used. Hence,

J∞ =
∞

∑
n=1

(−1)n+1χne
n
b−nψ0

(
b
n

)χn

γ
(

χn,
n
b

)
. (A35)

While this appears as a tractable expression, it cannot be directly evaluated numerically
for small b such as b = bc, because en/b poses a problem. To circumvent this problem,
Stirling’s formula and γ(χn, ∞) = Γ(χn) is used. For small values of b, one then obtains:

Jb�1
∞ '

∞

∑
n=1

(−1)n+1χne
n
b−nψ0

(
b
n

)χn

Γ(χn)

=
∞

∑
n=1

(−1)n+1χne
n
b−nψ0

(nα

b

)( b
n

)χn

Γ
(nα

b

)
'
√

2πbα
∞

∑
n=1

(−1)n+1χnα
nα
b e−n[ψ0+

α−1
b ]

√
n

, (A36)

where, eventually, χn from Equation (A32) is re-inserted. For small values of η, η � 1, one
takes only the first term in this sum providing with α = k− b ' k:

Jb�1,η�1
∞ ' η

√
2πbα

k
b

α
k
b−1e

1−α
b = η

√
2πk

b
exp

(
1− k + k ln k

b

)
, (A37)

which agrees exactly with Equation (A16). It is worthwhile noticing that for very small
b: b � 1 the higher order terms in the sum must be taken into account, even at small η,
as this ensures that J∞ stays below unity. One needs to calculate J∞ only down to b = bc,
while the form (92) for bc ensures that J∞ < 1.

Appendix F. Peak Time and Amplitude for b ≥ bc and Arbitrary η

The approximant j(τ), valid for b ≥ bc and given by Equation (A18), can be written as:

j(τ) = eAb2F(x), F(x) =
x2+pe−x

(1 + eAxpe−x)2 , (A38)

with p = α/b, eA = e−ψ0 e1/bbp = ηe1/bbp/(1− η), and x = e−bτ/b, so that F(x) contains
the dependency on time τ via x. Note that x is positive at all times, because b is positive.
As soon as x varies monotonically with τ, to find the peak time τ

j
max and peak height jmax,

one needs to determine the position and value of F(x) at its maximum, provided such
maximum exists. For the derivative of F(x) with respect to x, one has:

F′(x) =
exx1+p[(2 + p− x)ex + eAxp(2− p + x)

[e2 + eAxp]3
. (A39)

Hence, the derivative vanishes at x = xmax, where xmax solves the highly nonlin-
ear equation,

exmax−A

xp
max

=
p− xmax − 2
p− xmax + 2

(A40)

or equivalently and more suitable for any numerical implementation,

xmax − A− p ln(xmax) = ln
(

p− xmax − 2
p− xmax + 2

)
. (A41)
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Inserting Equation (A41) into Equation (A38) then provides for the differential rate at
peak time:

jmax = j(xmax) =

(
bxmax

2

)2
[

1−
(

2
p− xmax

)2
]

. (A42)

This is an expression valid for arbitrary η and b ≥ bc in terms of the solution xmax
of Equation (A41), that can only be obtained numerically. For the special case of small
b� k, one can proceed analytically that would provide an approximate solution for xmax.

Special Case of bc ≤ b� k

For this case of small b � k, the above p-variable (see (A38)) becomes large and is
well approximated by p ' k/b. At the same time, the right hand side of Equation (A41)
vanishes. The resulting equation for xmax,

xp
maxe−xmax = e−A , (A43)

is solved with the help of Lambert’s principal function as:

xmax = −α

b
W0

(
− e−A/p

p

)
= −α

b
W0

− e−
(1−bψ0)

α

α

 , (A44)

where p is replaced and properties of the Lambert function are used. The corresponding
jmax is still given by Equation (A42). Because ψ0 is of order unity, and if bψ0 � 1 holds
as well, the argument of W0 simplifies for b � k to −e−1/k/k. This latter argument
equals −1/e to within 2.5% for all k ∈ [0.8, 1], so that xmax ' α/b = p, and equivalently,
τmax ' − ln(α)/b can be used under such circumstances.

Appendix G. Exact Solutions for Special Cases

Appendix G.1. The Equal Value Case b = k Corresponding to α = 0

The general analysis above can also be used for a number of special cases to be
investigated in this and the next Appendices. Let us start with the special case α = 0, so
that the general Equations (37) and (47) simplify to

Φ = −dψ

dτ
= 1 + k(ψ− ψ0) . (A45)

With the initial condition ψ(0) = ψ0, Equation (A45) immediately integrates to

ψ(τ) = ψ0 +
e−kτ − 1

k
, (A46)

implying

Φ(τ) = I(τ) + S(τ) = −dψ

dτ
= e−kτ . (A47)

This proves that, for special case of α = 0, Equation (80) is actually exact and not an ap-
proximant. With Equations (A46) and (A47), one readily obtains for Equations (48) and (49):

I(τ) =
e−kτ

1 + eψ =
e−kτ

2

[
1− tanh

ψ

2

]
=

e−kτ

1 + exp[ψ0 − 1−e−kτ

k ]
, (A48)

S(τ) =
e−kτ

1 + e−ψ =
e−kτ

2

[
1 + tanh

ψ

2

]
=

e−kτ

1 + exp[ 1−e−kτ

k − ψ0]
. (A49)
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Consequently, the rate of new infections is then given by

j(τ) = S(τ)I(τ) =
e−2kτ+ψ(τ)

(1 + eψ)2 =
1

4e2kτ cosh2
(

1−e−kτ

2k − ψ0
2

) . (A50)

Using Equation (51) and Φ from Equation (A47), V(τ) is written in terms of ψ as:

V(τ) = −k ln[η(1 + eψ)] . (A51)

With the help of the sum constraint (1), the remaining R(τ) is given by

R(τ) = 1− e−kτ + k ln[η(1 + eψ)] . (A52)

With J(τ) = I(τ) + R(τ), there is no need to integrate j(τ) in order to come up with a
final expression for J(τ) using I(τ) and R(τ) from Equations (A48) and (A52).

At infinite time τ = ∞, from Equations (A46), (A48), and (A49), one finds:

ψ∞(k, k) = ψ0 −
1
k

, (A53)

as well as I∞ = S∞ = j∞ = 0, R∞ + V∞ = 1 and J∞ = R∞. The only nontrivial quantity is,
thus, J∞, which one obtains from Equation (A53), inserted into Equation (A52):

J∞(k, k) = 1 + k ln
{

η
[
1 + eψ0−(1/k)

]}
= k ln η + kψ0 + k ln(1 + e

1
k−ψ0)

= k ln(1− η) + k ln(1 + e
1
k−ψ0) . (A54)

For small values of k, J∞ ' 1 + k ln η which for k = 0 correctly provides J∞ = 1. All
other expressions can also be readily evaluated in this limit with the help of limk→0[1−
e−kτ ]/k = τ. For α = k = b = 0, one, thus, gets: ψ(τ) = ψ0 − τ and Φ(τ) = 1, and all
above expressions simplify considerably. For example,

Jk=0(τ) =
1
2

[
1 + tanh

τ − ψ0

2

]
. (A55)

This completes the analysis of the special case of equal values of b = k, or equivalently,
α = 0. The most noteworthy result is the significant reduction in the final cumulative
number of new infections with increasing values of k = b as compared to the SI-case with
k = b = 0, cf. Equation (A62).

Appendix G.2. SIR-Case b = 0, k > 0

For no-vaccination campaigns (b = 0), the SIRV model reduces to the SIR model
analyzed before [110,113]. For b = 0, implying α = k ≥ 0, Equation (47) simplifies to:

Φ− k ln Φ + k ln(1 + e−ψ) = 1− k ln(1− η), (A56)

or, with Φ = I + S and Equation (48), to:

I + S− k ln S = 1− k ln(1− η). (A57)

For b = 0, Equation (17) simplifies to I = −d ln S/dτ, so that Equation (A57) becomes:

− d ln S
dτ

+ S− k ln S = 1− k ln(1− η) . (A58)
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In terms of the positively-valued function G = − ln(S), Equation (A58) reads:

dG
dτ

= 1− e−G − kG− k ln(1− η), (A59)

which agrees exactly with the integrable Equation (24) in Ref. [110] yielding:

I(τ) =
dG
dτ

, S(τ) = e−G , (A60)

and for the rate of new infections j and the corresponding cumulative number J:

j(τ) = SI =
de−G

dτ
, J(τ) = 1− e−G. (A61)

To summarize, one finds [110] for the SIR model, the special case of the SIRV model
with b = 0,

JSIR
∞ = 1 + kW0

(
1− η

ke
1
k

)
, (A62)

jSIR
max =

k2

4

([
1 + W−1

(
2(1− η)

ke
1
k +1

)]2

− 1

)
. (A63)

Alternative Inverse Solution

For b = 0, one obtains α = k, so that Equation (37) reads:

dψ

dτ
= k−Φ. (A64)

Likewise, the general solution (56) reduces to

Φ = −kW
(
−E0(ψ)

k

)
(A65)

with the positive expression

E0(ψ) = η(1 + e−ψ)eψ0− 1
k = (1− η)e−

1
k (1 + e−ψ) ≥ 0, (A66)

Inserting the solution (A65) then provides for Equation (A64):

dψ

dτ
= k

[
1 + W

(
−E0(ψ)

k

)]
. (A67)

which, with the initial condition (34), readily integrates to the inverse exact solution:

τ =
1
k

∫ ψ

ψ0

dx

1 + W
(
− E0(x)

k

) . (A68)

Hence, practically all previous general results obtained in Sections 3 and 4 also hold
here with α replaced by k. For values of k ∈ (0, 1), Equation (A68) yields:

τ = τm +


1
k

∫ ψ
ψm

dx
1+W−1(−

E0(x)
k )

, ψ ≤ ψm,

1
k

∫ ψ
ψm

dx
1+W0(−

E0(x)
k )

, ψ ≥ ψm,
(A69)
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where the time where the minimum ψm occurs, is given by

τm =
1
k

∫ ψm

ψ0

dx

1 + W−1

(
− E0(x)

k

) . (A70)

The minimum value ψm for the case of k ∈ (0, 1) is determined by the condition
E0,m = E0(ψm) = k/e along with Equation (A66):

ψm = − ln

[
ke

1
k−1

1− η
− 1

]
. (A71)

Following Appendix G.3, one can further reduce the inverse solution (A68) written as:

τ =
1
k

∫ ψ2

ψ1

dx

1 + Wµ(− E0(x)
k )

=
1
k

∫ z0(ψ2)

z0(ψ1)

dz0

(dz0/dx)[1 + Wµ(z0)]
(A72)

with

z0(x) = −E0(x)/k = −A(1 + e−x)

k
,

A = (1− η)e−
1
k . (A73)

Evaluating
dz0

dx
=

Ae−x

k
= −A + kz0

k
(A74)

then provides for Equation (A72):

τ = −
∫ z0(ψ2)

z0(ψ1)

dz0

(A + kz0)[1 + Wµ(z0)]
. (A75)

The substitution z0 = wew then yields:

τ =
∫ Wµ(z0(ψ1))

Wµ(z0(ψ2))

dw
kw + Ae−w , (A76)

as the exact solution of the SIR model considered in the current Appendix G.2. With the
substitution y = e−w the solution (A76) can be further rewritten. Integrals of this form
have been approximated in Ref. [109].

Appendix G.3. SIV-Case b > 0, k = 0

In the case of a negligible recovery rate k = 0, implying α = −b, Equation (47)
simplifies to:

Φ + b ln Φ− b ln(1 + eψ) = Φ + b ln
Φ

1 + eψ = 1 + b ln η, (A77)

or with Φ = I0 + S0 (the index 0 indicates that the limit k = 0 is considered here) and
Equation (49):

I0 + S0 + b ln I0 = 1 + b ln ηb. (A78)

Appendix G.3.1. Symmetry Argument

By a simple symmetry argument, the solution of Equation (A78) can be expressed in
terms of the SIR-function [109] G obeying Equation (A59). Setting

I0 = S, S0 = I, b = −k, ηb = 1− η, (A79)
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Equation (A78) reads:

I + S− k ln S = 1− k ln(1− η), (A80)

which is identical to Equation (A57). Therefore, one can use the SIR-function G(τ), obey-
ing Equation (A59), but now with negative values of k, to obtain for the SIV solutions,

S0(τ) =
dG
dτ

, I0(τ) =
dG(τ)

dτ
,

j(τ) =
de−G

dτ
, J(τ) = 1− e−G . (A81)

If to follow this approach, one needs to calculate the function G for negative values
of k.

Appendix G.3.2. Alternative Inverse Solution

For k = 0, one obtains α = −b, so that Equation (37) reads:

dψ

dτ
= −(b + Φ). (A82)

Likewise, the general solution (56) reduces to

Φ = bW0

(
Eb(ψ)

b

)
(A83)

with the positive expression

Eb(ψ) = ηe
1
b (1 + eψ) ≥ 0. (A84)

As its argument is positive, it has to be the principal Lambert function in Equation (A83).
Inserting the solution (A83) then provides for Equation (A82):

dψ

dτ
= −b

[
1 + W0

(
Eb(ψ)

b

)]
, (A85)

which, along with the initial condition (34), readily integrates to the inverse exact solution:

− bτ =
∫ ψ

ψ0

dx

1 + W0

(
Eb(x)

b

) . (A86)

Here also, nearly all previous general results obtained in Sections 3 and 4 hold with α
replaced by −b. With

zb(x) = Eb(x)/b =
1 + ex

D
, D =

b

ηe
1
b

, (A87)

implying

x = ln(Dzb − 1),
dx
dzb

=
D

Dzb − 1
, (A88)

one finds for Equation (A86):

− bτ = D
∫ 1+eψ

D

1
ηD

dzb
(Dzb − 1)[1 + W0(zb)]

. (A89)
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The substitution zb = wew then yields:

− bτ = D
∫ W0(

1+eψ

D )

W0(
1

ηD )

dw
Dw− e−w , (A90)

which is an exact expression for the reduced time τ of the SIV model considered in the
current Appendix G.3.
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