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Abstract: In this paper, Lorentz boosts and Wigner rotations are considered from a (complexified)
quaternionic point of view. It is demonstrated that, for a suitably defined self-adjoint complex
quaternionic 4-velocity, pure Lorentz boosts can be phrased in terms of the quaternion square root
of the relative 4-velocity connecting the two inertial frames. Straightforward computations then
lead to quite explicit and relatively simple algebraic formulae for the composition of 4-velocities
and the Wigner angle. The Wigner rotation is subsequently related to the generic non-associativity
of the composition of three 4-velocities, and a necessary and sufficient condition is developed for
the associativity to hold. Finally, the authors relate the composition of 4-velocities to a specific
implementation of the Baker–Campbell–Hausdorff theorem. As compared to ordinary 4× 4 Lorentz
transformations, the use of self-adjoint complexified quaternions leads, from a computational view,
to storage savings and more rapid computations, and from a pedagogical view to to relatively simple
and explicit formulae.
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1. Introduction

The use of Hamilton’s quaternions [1–6] as applied to special relativity has a very
long, complicated, and rather fraught history—largely due to a significant number of
rather sub-optimal notational choices being made in the early literature [7,8], which was
then compounded by the introduction of multiple mutually disjoint ways of represent-
ing the Lorentz transformations [7–10]. Early formulations were heavily influenced by
Minkowski’s x4 = ict notation, with its imaginary time component, essentially using
anti-self-adjoint complexified quaternions, with the result that there were a lot of extra
and ultimately superfluous factors of (complex) i floating around. This made dealing with
Lorentz transformations and Wigner angles more tricky than necessary. Here, c denotes the
speed of light and t is the time. Subsequent developments have, if anything, even further
confused the situation [11–13]. For additional background, see also Refs. [14–16]. Ref. [16]
adopts a particularly unusual notation where the ordinary complex i is denoted by the
@ symbol.

One reason for being particularly interested in these issues is due to various attempts to
simplify the discussion of the interplay between the Thomas rotation [17–25], the relativistic
composition of 3-velocities [26–30], and the very closely related Wigner angle [31–34]. In an
earlier article [34], the authors considered ordinary quaternions and found that it was
useful to work with the relativistic half velocities w, defined by v = 2w/(1 + w2) so that
w = v/(1 +

√
1− v2) = v/2 +O(v3), where c is set to 1. In the current paper, the authors

re-phrase things in terms of self-adjoint complex quaternionic 4-velocities, arguing for a
number of simple compact formulae relating Lorentz transformations and the Wigner angle.
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A second reason for being interested in quaternions is purely a matter of computa-
tional efficiency. Quaternions are often used to deal with 3-dimensional spatial rotations,
and while mathematically the use of quaternions is completely equivalent to working with
the usual 3× 3 orthogonal matrices, that is the group SO(3), the use of quaternions implies
significant savings in storage and significant gains in computational efficiency.

A third reason for being interested in quaternions is purely a matter of pedagogy.
Quaternions give one a different viewpoint on the usual physics of special relativity, and,
in particular, the Lorentz transformations. Using quaternions leads to novel simple results
for boosts where they are represented by the square-root of the relative 4-velocity, and
simple novel results for the Wigner angle.

At a deeper level, the authors formally connect a composition of 4-velocities to a sym-
metric version of the Baker–Campbell–Hausdorff (BCH) theorem [35–39]. Unfortunately,
while certainly elegant, most results based on the BCH expansion seem to not always be
computationally useful.

2. Quaternions

It is useful to consider three distinct classes of quaternions [1–11,34]:

• ordinary classical quaternions,
• complexified quaternions,
• self-adjoint complexified quaternions.

While the discussion in Ref. [34] focussed on the ordinary classical quaternions, and so
was implicitly a space plus time formalism, in this paper, the authors focus on the self-
adjoint complexified quaternions, in order to develop an integrated space-time formalism.
To set the framework, let us consider the discussion just below.

2.1. Ordinary Classical Quaternions

The ordinary classical quaternions are generalizations of the complex numbers that
can be written in the form [1–6,34]:

q = a + b i + c j + d k. (1)

Here the corefficients a, b, c, and d are real numbers {a, b, c, d} ∈ R, whereas i, j, and k
are the quaternion units which satisfy Hamilton’s famous relation

i2 = j2 = k2 = ijk = −1. (2)

These ordinary quaternions form a four–dimensional non-commutative number sys-
tem, commonly denoted H in honour of Hamilton, that is generally treated as an extension
of the complex numbers C. Mathematically, the ordinary quaternions are sometimes de-
scribed as a skew field, or a division algebra. Technically, “skew field” is the same as “division
algebra”, though sometimes this usage is refined so that “skew field” is taken to be the same
as “associative non-commutative division algebra”. Note that R and C are commutative,
so they are not skew, while the octonians O are non-associative. The quaternions are often
cited as the premier example of a “skew field”.

Now define the quaternion conjugate of an ordinary quaternion q = a + bi + cj + dk
to be q? = a− bi− cj− dk, and define the norm of q to be

qq? = |q|2 = a2 + b2 + c2 + d2 ∈ R. (3)

For now, focus on the pure quaternions (with no real part). That is, in terms of the
usual vector dot-product, one considers quaternions of the specific form a i + b j + c k =
(a, b, c) · (i, j, k). Define, in general, v = ~v · (i, j, k). In this instance, the product of two
pure quaternions p and q is given in terms of the usual vector dot-product and vector
cross-product by the relation
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pq = −~p ·~q + (~p ×~q) · (i, j, k). (4)

In particular, note that this yields q2 = −~q ·~q = −|q|2. Furthermore, the commutator
and anti-commutator of two pure quaternions is given by:

[p, q] = 2(~p ×~q) · (i, j, k), and {p, q} = −2~p ·~q. (5)

2.2. Complexified Quaternions

In counterpoint, the complexified quaternions are numbers that can be written in
the form

Q = a + b i + c j + d k, (6)

where a, b, c, and d are now complex numbers {a, b, c, d} ∈ C. It is important to note at this
stage that, although it is quite common to embed the complex numbers into the quaternions
by identifying the complex unit i with the quaternion unit i, it is here essential that one
distinguish between i and i when dealing with the complexified quaternions in C⊗H.
(Note that Ref. [16] adopts the unusual convention that i → @ and (i, j, k) → (i, j, k).
Additionally there one deals with anti-self-adjoint complexified quaternions.) As well
as the previously defined ? operation, there are now two additional conjugates one can
perform on the complexified quaternions: In addition to the quaternion conjugate, q? =
a− b i− c j− d k, one can define the ordinary complex conjugate, q = ā + b̄ i + c̄ j + d̄ k,
and a third type of (adjoint) conjugate given by q† = (q)?. Note that this now leads to
potentially three distinct notions of “norm”:

|q|2 = q?q = a2 + b2 + c2 + d2 ∈ C, q̄q = āa− b̄b− c̄c− d̄d ∈ R, (7)

and

q†q = āa + b̄b + c̄c + d̄d ∈ R+. (8)

These complexified quaternions are commonly called “biquaternions” in the litera-
ture [40–45]. Unfortunately, as the word “biquaternion” has at least two other different
possible meanings, it is safer to simply call these quantities the complexified quater-
nions. Some authors unfortunately use the word bi-quaternion to informally refer to
the split-bi-quaternions, or the dual-quaternions (which really should be called the dual-
bi-quaternions), or even the octonions [40–51]. About the only thing on which there is
universal agreement is that the bi-quaternions are taken to be 8-dimensional.

2.3. Self-Adjoint Complexified Quaternions

One of the fundamental issues with trying to reformulate special relativity in terms
of quaternions is that, although both space–time and quaternions are intrinsically four–
dimensional, the norm of an ordinary quaternion q = a0 + a1 i + a2 j + a3 k is given by
|q|2 = a2

0 + a2
1 + a2

2 + a2
3, whereas, in contrast, the Lorentz invariant “norm” of a spacetime

4-vector Aµ is given by the expression ||A||2 = (A0)2 − (A1)2 − (A2)2 − (A3)2. In order to
address this fundamental issue, consider self-adjoint complexified quaternions satisfying
q = q†. That is, consider complexified quaternions with with the real scalar part and the
imaginary vectorial part:

q = a0 + ia1 i + ia2 j + ia3 k = a0 + i(a1 i + a2 j + a3 k). (9)

Here, i ∈ C is the usual complex unit and a0, a1, a2, a3 ∈ R. Self-adjoint quaternions
have the norm,

|q|2 = q?q = (a0 − i(a1i + a2j + a3k))(a0 + i(a1i + a2j + a3k)) = a2
0 − a2

1 − a2
2 − a2

3. (10)
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Thence, from the quaternionic point of view, the most natural signature choice is
the (+−−−) “mostly negative” convention. This particular norm is real, but need not
be positive, and is physically and mathematically appropriate for describing the Lorentz
invariant norm of a spacetime 4-vector in a quaternionic framework.

Indeed, writing q1 = a0 + i(a1i + a2j + a3k) and q2 = b0 + i(b1i + b2j + b3k), for the
Lorentz invariant inner product of two 4-vectors, one can write:

η(q1, q2) =
1
2
(q?

1q2 + q?
2q1) = a0b0 − a1b1 − a2b2 − a3b3 ∈ R. (11)

3. Lorentz Transformations
3.1. General Form

Quaternionic Lorentz transformations are now uniquely characterized by the two
key features:

• they must be linear mappings from self-adjoint 4-vectors to self-adjoint 4-vectors, and
• they must preserve the Lorentz invariant inner product.

Taking L to be a complexified quaternion, the first condition suggests looking at the
linear mapping

q→ L q L† (12)

because this transformation will preserve the self-adjointness of q. In fact, it is the only
way to build a linear mapping from self-adjoint complexified quaternions to self-adjoint
complexified quaternions using only the quaternion algebra.

The second condition then requires:

q?
1q2 + q?

2q1 = {L?† q?
1 L?} {Lq2L†}+ {L?† q?

2L?} {L q1 L†}
= L?† (q?

1 {L? L}q2 + q?
2{L? L} q1) L†. (13)

Now, if L?L = 1, that is L? = L−1, this simplifies to

q?
1q2 + q?

2q1 = L?†(q?
1 q2 + q?

2q1) L†. (14)

However, then, noting that (q?
1q2 + q?

2q1) ∈ R, one has

q?
1q2 + q?

2q1 = (L?†L†) (q?
1 q2 + q?

2q1) = (LL?)† (q?
1 q2 + q?

2q1) = q?
1q2 + q?

2q1. (15)

So, a necessary and sufficient condition for the quaternionic mapping q→ L q L† to
preserve the quaternionic form of the Lorentz invariant inner product is

L?L = 1; that is, L? = L−1. (16)

Note that this condition implies that the set of quaternionic Lorentz transformations
forms a group under quaternion multiplication. This now uniquely characterizes the
Lorentz group.

3.2. Rotations

The rotations form a well-known subgroup of the Lorentz group, and, in a quaternionic
form, a rotation about the n̂ axis, where n̂ = ~n · (i, j, k), can be represented by

R = exp(θ n̂) = cos θ + n̂ sin θ. (17)

This observation goes back to the days of Hamilton, and the fact that 3-dimensional
rotations can be represented in this quite straightforward manner, is one of the reasons
so much effort was put into development of the quaternion formalism. From the point of
view of the (ordinary) quaternions (not complexified in this case), one has:
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R−1 = exp(−θn̂) = cos θ − n̂ sin θ = R† = R?, (18)

since now q = q̄ and q† = q?.
Indeed, the characterization R−1 = R† = R? is both necessary and sufficient for a

quaternion to represent a rotation.

3.3. Factorization—Quaternionic Polar Decomposition

One can now see how to factorize a general Lorentz transformation into the product
of a boost and a rotation. This is effectively a quaternionic form of the notion of a “polar
decomposition” that one usually encounters in matrix algebra (the discussion has been
made somewhat pedestrian in the interests of pedagogical clarity).

Without any loss of generality, one may always write:

L =
√

LL†
(
(LL†)−1/2L

)
. (19)

To do this one just needs to know that the product of two complexified quaternions is
again a complexified quaternion, and that the multiplication of complexified quaternions
is associative.

Now, LL† is self-adjoint—so
√

LL† is self-adjoint, and, in turn, (LL†)−1/2 is self-adjoint.
Consequently,(

(LL†)−1/2L
)(

(LL†)−1/2L
)†

=
(
(LL†)−1/2L

)(
L†(LL†)−1/2

)
= 1. (20)

Hence, (
(LL†)−1/2L

)−1
=
(
(LL†)−1/2L

)†
. (21)

Furthermore,

(LL†)? = (L†)?L? = (L?)†L? = (L−1)†L−1 = (L†)−1L−1 = (LL†)−1. (22)

That is, (LL†) is a Lorentz transformation (in fact, a self-adjoint Lorentz transforma-
tion), and, consequently,

√
LL† is also a (self-adjoint) Lorentz transformation. However,

then, by the group property,
(
(LL†)−1/2L

)
must also be a Lorentz transformation, so

(
(LL†)−1/2L

)−1
=
(
(LL†)−1/2L

)∗
. (23)

However, this now implies that R =
(
(LL†)−1/2L

)
must be a rotation, andthis shows

that in general,

L =
√

LL† R. (24)

Indeed, in the next section one can see that the self-adjoint Lorentz transformation
B =
√

L†L is actually a boost and that, in general, one has:

L = B R. (25)

4. Lorentz Boosts

One now shows how quaternions can be used to obtain a pure Lorentz transformation—
a boost, a Lorentz transformation that depends only on the relative velocity, without any
rotation—from the square root of the relative 4-velocity connecting the two inertial frames.
In order to proceed, one must first obtain an explicit expression for the square root of a
four–velocity V.
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4.1. 4-Velocity, and Square Root of 4-Velocity

Represent a position 4-vector ~X = (t, x, y, z) = (t, ~x) by the self-adjoint quaternion

X = t + i(xi + yj + zk). (26)

Consider a parameterized curve X(λ). For two points on the curve one can define

∆X = ∆t + i(∆x i + ∆y j + ∆z k), (27)

and, hence,

∆τ2 = (∆X)? ∆X = ∆t2 − (∆x2 + ∆y2 + ∆z2) (28)

is just the proper time between those two events. Taking appropriate limits, one can
reparameterize the curve X(λ)→ X(τ) as a function of the proper time.

Differentiating with respect to the proper time gives a quaternionic notion of 4-velocity,

V = γ(1 + iv n̂) with |V|2 = V?V = 1. (29)

Here, as usual, γ = 1/
√

1− v2, and v is the usual 3-speed (recall that herein c→ 1).
By construction, V is a self-adjoint complexified quaternion. To explicitly find the square
root, first, one presents an elementary discussion. Let us introduce the notion of rapidity in
the usual manner by setting ξ = tanh−1 v. Then, 4-velocities can be written in the form

V = γ (1 + ivn̂) = cosh ξ + i n̂ sinh ξ = eiξn̂. (30)

The square root of the 4-velocity is then easily seen to be
√

V = eiξn̂/2.
Explicitly, using hyperbolic half-angle formulae, from γ = cosh ξ and v = tanh ξ

one gets:

cosh(ξ/2) =

√
γ + 1

2
, and sinh(ξ/2) =

√
γ− 1

2
. (31)

Thence, explicitly,

√
V =

√
γ + 1

2
+ in̂

√
γ− 1

2
. (32)

In terms of the relativistic half velocity, implicitly defined by v = 2w/(1 + w2), so that
one has w = v/(1 +

√
1− v2), it is easy to check that

w =

√
γ− 1
γ + 1

, and γw =

√
γ + 1

2
. (33)

So, one can write:
√

V = γw (1 + in̂ w). (34)

There are many other ways of getting to the same result. The current discussion has
been designed to be as straightforward and explicit as possible.

4.2. Lorentz Boosts in Terms of Relative 4-Velocity

Now, that one has an expression for the square root of a 4-velocity V, one can show
how a pure Lorentz transformation is obtained from quaternion conjugation by

√
V.

Without any loss of generality, define V = γ(1 + iiv), which is the four–velocity for an
object travelling with speed v in the x̂ direction, and represent the four–vector ~X = (t, x, y, z)
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by the self-adjoint quaternion X = (t + iix + ijy + ikz) = (t + i(ix + jy + kz)). Now,
consider the transformation of X given by X 7→

√
V X
√

V. That is,

X 7→
√

V(t + iix + ijy + ikz)
√

V

=
√

V(t + iix)
√

V +
√

V(ijy + ikz)
√

V (35)

= (t + iix)V + (ijy + ikz)
√

V?
√

V,

where in the last equality one can use the fact that
√

V commutes with i, and the anti-
commutativity of i with j and k to write

√
V j = j

√
V?, and

√
V k = k

√
V?. Explicit

calculation of
√

V?
√

V yields:
√

V?
√

V = exp(−iξi/2) exp(iξi/2) = 1. (36)

That is,
√

V is a unit quaternion. Thus,
√

V X
√

V = (t + iix)V + (ijy + ikz). (37)

Using the above expression for V, we find (t + iix)V = γ{(t + vx) + ii(x + vt)},
giving a final result:

X = (t + iix + ijy + ikz) 7→ γ{(t + vx) + ii(x + vt)}+ (ijy + ikz), (38)

which are the well–known inverse Lorentz transformations—boosts in the (−x̂) direction.
Although, for the purpose of simplifying the presentation, one defines the i axis to lie in the
direction of the boost, it should be clear that this argument is in fact completely general, one
merely needs to rotate the i axis into the direction of the general boost n̂. This is compatible
with the general definition of the 4-vector ~X ↔ X.

That is, a boost—a pure Lorentz transformation that depends only on relative velocities
but without any rotation—corresponds to:

X→
√

V X
√

V = eiξn̂/2 X eiξn̂/2. (39)

A related formula can be found in Ref. [16], modulo the notational changes i → @,
and (i, j, k)→ (i, j, k), and switching to anti-self-dual 4-vectors, which consequently require
extraneous factors of the symbol @.

4.3. Combination of 4-Velocities

Starting in the rest frame of some object, where V0 = 1, successively apply two boosts,
V1 = γ1(1 + in̂1v1) and V2 = γ2(1 + in̂2v2), in directions n̂1 and n̂2 with velocities v1
and v2, respectively. The result of this is to shift one’s rest frame to a frame moving with
4-velocity V1⊕2, which is equivalent to relativistically combining the two 4-velocities V1
and V2. This method has the added benefit that it obtains an expression for the γ–factor of
the frame, γ1⊕2, and, hence, its speed without having to take the norm of V1⊕2, thereby
avoiding lots of tedious algebra.

One begins by boosting the initial rest frame starting with with V0 = 1 as in Section 4.2:

V1⊕2 =
√

V2
√

V1 V0
√

V1
√

V2 =
√

V2 V1
√

V2. (40)

Similarly,

V2⊕1 =
√

V1
√

V2 V0
√

V2
√

V1 =
√

V1 V2
√

V1. (41)

That is, the relativistic combination of 4-velocities simply amounts to

V1⊕2 =
√

V2 V1
√

V2, V2⊕1 =
√

V1 V2
√

V1. (42)
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This makes it obvious that V1⊕2 6= V2⊕1 unless [V1, V2] = 0, which, in turn, requires
the 3-velocities ~v1 and ~v2 to be parallel. In the special case, where the 4-velocities do
commute, one has:

V1⊕2 = V1V2 = V2V1 = V2⊕1. (43)

In terms of rapidities, the general case is:

V1⊕2 = eiξ2n̂2/2 eiξ1n̂1 eiξ2n̂2/2, V2⊕1 = eiξ1n̂1/2 eiξ2n̂2 eiξ1n̂1/2. (44)

Viewed in this way, the relativistic combination of 4-velocities can be interpreted as
an application of the symmetrized version of the BCH expansion [35–39]. Indeed, taking
logarithms:

ξ1⊕2 n̂1⊕2 = −i ln
{

eiξ2n̂2/2 eiξ1n̂1 eiξ2n̂2/2
}

, (45)

ξ2⊕1 n̂2⊕1 = −i ln
{

eiξ1n̂1/2 eiξ2n̂2 eiξ1n̂1/2
}

. (46)

Unfortunately this formal result, despite being quite elegant, is not really computa-
tionally effective. One could, for instance, fully expand the expression in Equation (44) and
isolate the real part to deduce

ξ1⊕2 = ξ2⊕1 = cosh−1(cosh ξ1 cosh ξ2 + sinh ξ1 sinh ξ2 cos θ), (47)

where θ is the angle between n̂1 and n̂2. As expected, for collinear 3-velocities this
reduces to

ξ1⊕2 = ξ2⊕1 → |ξ1 ± ξ2|. (48)

To check this for consistency, note that

γ1⊕2 = η(V0, V1⊕2) =
1
2
(V?

0V1⊕2 + V?
1⊕2V0) =

1
2
(V1⊕2 + V?

1⊕2). (49)

Thence,

γ1⊕2 =
1
2

(√
V2 V1

√
V2 +

√
V?

2 V?
1

√
V?

2

)
. (50)

As soon as γ1⊕2 is real and
(√

V2
)−1

=
(√

V2
)?, then:

γ1⊕2 =
(√

V2

)?
γ1⊕2

√
V2 =

1
2
(V1V2 + V?

2 V?
1) =

1
2
(V1V2 + (V1 V2)

?). (51)

It is then easy (indeed, almost trivial) to see that

γ1⊕2 = γ1γ2(1 +~v1 ·~v2) = γ2⊕1. (52)

While this very easily yields the magnitude of the combined 3-velocities |~v1⊕2| =
|~v2⊕1|, isolating the direction of the combined 3-velocities is much more subtle. Note that
v̂1⊕2 6= v̂2⊕1 in general, see Equations (45) and (46).

The rapidity formalism is also particularly useful for quickly double-checking formal
relationships such as

√
V? = e−iξn̂/2 =

(√
V
)?

=
√

V−1 =
(√

V
)−1

. (53)



Physics 2021, 3 360

One can also use this formalism to write a general Lorentz transformation in the form

L = B R = eiξn̂/2 eθm̂/2. (54)

Here, n̂ is the direction of the boost B and m̂ is the axis of the rotation R.

5. Wigner Rotation

One now derives an explicit quaternionic formula for the Wigner rotation; for relevant
background, see references [31–34]. Note that for 4-velocities:

V = V†, V−1 = V?,
√
(V)−1 =

(√
V
)−1

, (55)

while for rotations one has:

R† = R?; R−1 = R† = R?. (56)

Now, note

V1⊕2 =
√

V2 V1
√

V2 =
√

V2
√

V1
√

V1
√

V2 (57)

Define a quaternion R by taking√
V1⊕2 R =

√
V2
√

V1, (58)

and then checking to see that this quaternion does in fact correspond to a rotation. First,

R =
√

V−1
1⊕2

√
V2
√

V1, R† =
√

V1
√

V2

√
V−1

1⊕2. (59)

Now,

RR† =
√

V−1
1⊕2

√
V2
√

V1
√

V1
√

V2

√
V−1

1⊕2

=
√

V−1
1⊕2

√
V2V1

√
V2

√
V−1

1⊕2

=
√

V−1
1⊕2V1⊕2

√
V−1

1⊕2

= 1. (60)

That is, R−1 = R†. Now, consider

R? =
√

V∗1
√

V∗2
√

V1⊕2, (61)

and compare it to

R† =
√

V1
√

V2

√
V−1

1⊕2, (62)

Actually, R? = R†, though at first this might not be obvious. Calculate

R?
√

V1⊕2 =
√

V∗1
√

V∗2
√

V1⊕2
√

V1⊕2 =
√

V∗1
√

V∗2V1⊕2. (63)

Thence,

R?
√

V1⊕2 =
√

V−1
1

√
V−1

2

(√
V2 V1

√
V2

)
=
√

V1
√

V2. (64)
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Hence,

R?
√

V1⊕2 =
√

V1
√

V2 = R†√V1⊕2. (65)

Therefore, R? = R† as claimed. Accordingly, R is indeed a well-defined rotation.
Explicitly one has:

R =
√

V−1
1⊕2

√
V2
√

V1 =

√√
V−1

2 V−1
1

√
V−1

2

√
V2
√

V1. (66)

Note that from Equation (65) one has:

R†√V1⊕2 =
√

V1
√

V2, (67)

and so, along with the defining relation Equation (58), one deduces

V2⊕1 =
√

V1 V2
√

V1 =
√

V1
√

V2
√

V2
√

V1 = R† √V1⊕2
√

V1⊕2 R. (68)

That is,

V2⊕1 = R† V1⊕2 R. (69)

Therefore, R is indeed the Wigner rotation as claimed.

6. Non-Associativity of the Combination of Velocities

From the above, one notes that

V(1⊕2)⊕3 =
√

V3
√

V2 V1
√

V2
√

V3, (70)

whereas

V1⊕(2⊕3) =

√√
V3V2

√
V3 V1

√√
V3V2

√
V3. (71)

This explicitly verifies the general non-associativity of composition of 4-velocities,
and furthermore demonstrates why left-composition is much nicer than right-composition.
There has in the past been some confusion in this regard [26–28]; see also the recent
discussion in reference [34], where an equivalent discussion was presented in terms of
quaternionic 3-velocities.

From the above,

V(1⊕2)⊕3 =
√

V3
√

V2

√√
V−1

3 V−1
2

√
V−1

3

√√
V3V2

√
V3 V1

×
√√

V3V2
√

V3

√√
V−1

3 V−1
2

√
V−13

√
V2
√

V3. (72)

That is,

V(1⊕2)⊕3 =
√

V3
√

V2

√√
V−1

3 V−1
2

√
V−1

3 V1⊕(2⊕3)

√√
V−1

3 V−1
2

√
V−13

√
V2
√

V3. (73)

However, from Equation (66) for the Wigner rotation

R1⊕2 =
√

V−1
1⊕2

√
V2
√

V1 =

√√
V−1

2 V−1
1

√
V−1

2

√
V2
√

V1, (74)

this now implies

V(1⊕2)⊕3 = R†
2⊕3V1⊕(2⊕3)R2⊕3. (75)
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So, the Wigner rotation is not just relevant for understanding generic non-commutativity
when composing two boosts, is also relevant to understanding generic non-associativity
when composing three boosts.

Suppose now one considers a specific situation where the composition of 4-velocities
is associative, that is, assume:

V(1⊕2)⊕3 = V1⊕(2⊕3). (76)

Under this condition, one would now have:√
V3
√

V2 V1
√

V2
√

V3 =

√√
V3V2

√
V3 V1

√√
V3V2

√
V3, (77)

whence one would need:√√
V−1

3 V−1
2

√
V−1

3

√
V3
√

V2 V1
√

V2
√

V3

√√
V−1

3 V−1
2

√
V−1

3 = V1. (78)

One can rewrite this condition in terms of the Wigner rotation as

R2⊕3 V1 R†
2⊕3 = V1. (79)

That is,

R2⊕3 V1 R−1
2⊕3 = V1, (80)

whence

[R2⊕3, V1] = 0. (81)

Hence, the combination of velocities is associative: V(1⊕2)⊕3 = V1⊕(2⊕3), if and only
if the boost direction in V1 is parallel to the rotation axis in R2⊕3. However, this holds if
and only if

[v1, [v2, v3]] = 0 (82)

or, in more prosaic language, if and only if

~v1 × (~v2 ×~v3) = 0. (83)

The authors had almost derived this result in Ref. [34], but only as a sufficient condition;
it was never quite established as a necessary and sufficient condition.

7. BCH Approach to the Combination of 4-Velocities

Now consider yet another way of understanding combination of velocities, this time
in terms of the (symmetrized) BCH theorem. On has already seen (Equation (44)) that

V1⊕2 = exp
(

iξ2ξ̂2/2
)

exp
(

iξ1ξ̂1

)
exp

(
iξ2ξ̂2/2

)
. (84)

Now, differentiate

∂V1⊕2

∂ξ2
=

i
2

{
ξ̂2, exp

(
iξ2ξ̂2/2

)
exp

(
iξ1ξ̂1

)
exp

(
iξ2ξ̂2/2

)}
, (85)

and rewrite this as

∂V1⊕2

∂ξ2
=

i
2

exp
(

iξ2ξ̂2/2
){

ξ̂2, exp
(

iξ1ξ̂1

)}
exp

(
iξ2ξ̂2/2

)
, (86)
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However, note that{
ξ̂2, exp

(
iξ1ξ̂1

)}
=

{
ξ̂2,
(

cosh(ξ1) + i sinh(ξ1)ξ̂1

)}
=

(
2 cosh(ξ1)ξ̂2 + i sinh(ξ1){ξ̂2, ξ̂1}

)
. (87)

Furthermore, since {ξ̂2, ξ̂1} ∈ R, this implies:[
ξ̂2,
{

ξ̂2, exp
(

iξ1ξ̂1

)}]
= 0. (88)

Consequently, one can pull the factor exp
(

iξ2ξ̂2/2
)

through the anti-commutator,
and rewrite the derivative as

∂V1⊕2

∂ξ2
=

i
2

{
ξ̂2, exp

(
iξ1ξ̂1

)}
exp

(
iξ2ξ̂2

)
. (89)

Integrating over ξ2:

V1⊕2 = V1 +
i
2

∫ ξ2

0

{
ξ̂2, exp

(
iξ1ξ̂1

)}
exp

(
iξ2ξ̂2

)
dξ2. (90)

Pulling the constant (with respect to ξ2) anti-commutator outside the integral,

V1⊕2 = V1 +
i
2

{
ξ̂2, exp

(
iξ1ξ̂1

)} ∫ ξ2

0
exp

(
iξ2ξ̂2

)
dξ2, (91)

and performing the integral, one finds:

V1⊕2 = V1 +
i
2

{
ξ̂2, exp

(
iξ1ξ̂1

)}exp
(

iξ2ξ̂2

)
− 1

iξ̂2
. (92)

Noting that (iξ̂)2 = 1 this simplifies to:

V1⊕2 = V1 −
1
2

{
ξ̂2, exp

(
iξ1ξ̂1

)}
ξ̂2

(
exp

(
iξ2ξ̂2

)
− 1
)

. (93)

That is,

V1⊕2 = V1 −
1
2
{ξ̂2, V1}ξ̂2(V2 − 1). (94)

A more tractable result is:

V1⊕2 = V1 −
1
2

(
ξ̂2V1ξ̂2 −V1

)
(V2 − 1). (95)

Thence,

V1⊕2 = V1 +
1
2

(
V1 − ξ̂2V1ξ̂2

)
(V2 − 1). (96)

Rearranging:

V1⊕2 = V1V2 −
1
2

(
V1 + ξ̂2V1ξ̂2

)
(V2 − 1). (97)

This gives the composition of 4-velocities V1⊕2 algebraically in terms of V1 and V2 and,
at worst, some quaternion multiplication (the need to explicitly evaluate

√
V2 has been

side-stepped).
Note that this has the right limit for parallel 3-velocities. When [V1, ξ̂2] = 0, one sees

V1⊕2 → V1V2, (98)
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as it should be.
For perpendicular 3-velocities,

V1⊕2 = V1 −
1
2
{ξ̂2, V1}ξ̂2(V2 − 1) (99)

reduces to

V1⊕2 → V1 + γ1(V2 − 1). (100)

Then (see Equation (29)),

V1⊕2 → γ1(1 + v1) + γ1γ2(1 + v2)− γ1, (101)

implying

V1⊕2 → γ1γ2

(
1 +

√
1− v2

2 v1 + v2

)
. (102)

That is,

v1⊕2 =
√

1− v2
2 v1 + v2, (103)

and

|v1⊕2|2 = v2
1 + v2

2 − v2
1v2

2, (104)

exactly as expected for perpendicular 3-velocities.

8. Summary

The method of complexified quaternions allows one to prove several interesting
results.

• General Lorentz transformations can be factorized into a boost times a rotation:

L = B R = eiξn̂/2 eθm̂/2, (105)

with n̂ being the direction of the boost B, while m̂ is the axis of the rotation R.
• Conjugation by the square root of a 4-velocity implements a Lorentz boost:

X→
√

V X
√

V. (106)

• The relativistic combination of 4-velocities has the simple algebraic form:

V1⊕2 =
√

V2 V1
√

V2, V2⊕1 =
√

V1 V2
√

V1. (107)

• The Wigner rotation is given by:

R =
√

V−1
1⊕2

√
V2
√

V1 =

√√
V−1

2 V−1
1

√
V−1

2

√
V2
√

V1. (108)

• The Wigner rotation satisfies, in terms of the generic non-commutativity of two boosts,

V2⊕1 = R† V1⊕2 R, (109)

and, in terms of the generic non-associativity of three boosts,

V(1⊕2)⊕3 = R†
2⊕3 V1⊕(2⊕3) R2⊕3. (110)
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Overall, some rather complicated linear algebra involving 4× 4 matrices has been
reduced to relatively simple algebra in the C⊗H complexified quaternion number system.
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