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Abstract: Recently, I have considered a multi-variable feedforward control practice in a novel way
being called “considerate control”. It was shown how the considerate control is related to Bristol
gains, which indicate accurately either the required increase in input scope or the reduced output
scope as compared to inconsiderate control. Here, considerate control is expanded to regulating
control, necessitating some feedback design. Clearly, high-gain feedback leads to considerate control
results in low frequency. Considerate pre-compensation decouples loops also at higher frequencies.
However, as an analysis of the included examples demonstrates, such considerate design may insert
non-minimum phase-lag into loops that did not have it, thus, reducing the loop bandwidth relative
to that achievable in a skillful inconsiderate design, sometimes very significantly. As is often the case,
there is a trade-off between consideration and performance.

Keywords: system interaction; considerate control; multiloop feedback; Bristol gains; non-minimum
phase-lag

1. Introduction

Successful persons activate available resources to achieve their intended goals. Wise
persons also consider unintended consequences. The same applies to a control system
design. Within the context of control systems in general, and within the context of this
paper in particular, plant inputs are the “resources”. The goals and consequences relate
to plant outputs. For example, electrical power supply voltage may be controlled by a
generator magnetic-field excitation current. Changing the excitation current, however, also
changes the mechanical torque on the turbo-generator shaft and, consequently, the supply
frequency, among other unintended things.

A control system that results after giving due consideration to intended and unin-
tended consequences is called here “considerate control”. It seems elementary that the
amount of unintended consequences depends, among other things, on some measure of
interaction in the system. In [1], I have shown how considerate control is related to Bristol
gains [2] as a measure of plant interaction. The Bristol gains indicate accurately either the
required increase in input scope or the reduced output scope, compared to inconsiderate
control. Only feedforward implementation of considerate control was considered. Here,
the concept of considerate control is extended to regulating feedback control. No previous
publication on this topic is known to the author.

Clearly, high-gain feedback leads to considerate control results within some fre-
quency (usually low-frequency) portion of the loop bandwidth. However, considerate
pre-compensation decouples loops also near the gain crossover and at higher frequen-
cies. The goal of this paper is to compare feedback with and without the considerate
pre-compensation. This paper demonstrates that the considerate design of multivariable
feedback systems may insert non-minimum phase-lag into loops that did not have it, thus
reducing the loop bandwidth relative to that achievable in a skillful inconsiderate design,
sometimes very significantly. As is often the case, there is a trade-off between consideration
and performance.
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The following Sections 2 and 3 revise the foundations from [2]. Sections 4 and 5 extend
the concept of considerate control to multiloop regulation of plant disturbances.

2. Definition of Inconsiderate and Considerate Multiple-Input and Multiple-Output
(MIMO) Control

Linear models with n inputs and n outputs are considered. The plant is modelled as

Y(s) = P(s)U(s). (1)

Here, Y(s) = [Yi(s)]
T and U(s) =

[
Uj(s)

]T are the Laplace transforms of the devi-
ations of output and input vectors from the respective operating values of the possibly
non-linear system. P(s) =

[
Pij(s)

]
is the square system transfer matrix with n rows and n

columns. The Laplace transform variable is the complex-valued s.
It is assumed that an input number j is used as the only (or primary) resource to

achieve a desired output number i. In other words, to each output is allocated an input.
The outputs and inputs can be ordered in such a way that input number i controls an
output with the same number i, but it is convenient to consider the arbitrary ordering for a
while further.

Inconsiderate control by Uj means using only this input to control an output Yi. In

other words, the input vector is defined as U =
[

0 · · · 0 Uj 0 · · · 0
]T . The corre-

sponding output vector indicates the resulting “unintended” consequences or deviations ∆:

Y =



∆Y1
...

Yi
...

∆Yn

 =



P1j
...

Pij
...

Pnj

Uj. (2)

Considerate control of Yi, in its purest form, means finding the necessary combination
of the input Ucj with additional deviations of the other inputs that will yield an output
Yi without affecting any of the other outputs. In other words, we start from the required
Yc =

[
0 · · · 0 Yci 0 · · · 0

]T . We introduce the inverse system matrix

V(s) = P−1(s) =
[
Vij(s)

]
. (3)

The corresponding considerate input vector can be defined by

Uc =



∆Uc1
...

Ucj
...

∆Ucn

 =



V1i
...

Vji
...

Vni

Yci. (4)

This should not be misunderstood as “hijacking” all inputs to control just one output,
albeit in a considerate manner. In a more general context, this would amount to plant
inversion. We can prescribe all n outputs in the vector Y and then define all n inputs as

Uc = P−1Yc. (5)
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If we allocate Uj = Ucj to control the allocated Yi, then Equation (4) can be used to
calculate the corresponding additive modifications of all the other inputs. The required
modifications are obtained in the feedforward manner as

∆Uck =
Vki
Vji

Ucj, k = 1, . . . , n; k 6= j. (6)

This feedforward controller is often not implementable. In other words, a perfectly
sensible plant transfer matrix P may easily have an inverse that contains non-causal
elements or their ratios Vki/Vji that do not have a corresponding implementation in the
causal physical world. Some of the elements of P−1 or their ratios Vki/Vji may be improper,
and these cannot be implemented over arbitrarily large bandwidth. Some of the elements of
P−1 or their ratios Vki/Vji may be unstable which we normally do not want to implement,
at least not in a feedforward structure.

For the control to be considerate, only the ratio of the inputs must remain as in
Equation (4). One way to achieve implementable considerate control is to select a suitable
implementable filter Fcj(s) and insert it in Equation (6) as follows:

∆Uck =

[
Vki
Vji

Fcj

](
1

Fcj
Ucj

)
, k = 1, . . . , n; k 6= j. (7)

Fcj must be selected such that
(
Vki/Vji

)
Fcj are implementable for all k. Introduce a

new input UF
cj =

(
1/Fcj

)
Ucj, then Equation (6) is implemented as

∆Uck =
[

Vki
Vji

Fcj

]
UF

cj, k = 1, . . . , n; k 6= j,

Ucj = Fcj UF
cj.

(8)

3. Bristol Gains Constraints Arising from Consideration

In practice, one always needs to be aware of the range of the expected operating output
values and the necessary range of the input values to achieve these output values. In Single-
Input and Single-Output (SISO) systems this is simple—the ranges are related simply by
the frequency-dependent plant gain. In MIMO systems, matters are more complicated.

A comparison of Equations (2) and (4) indicates that the gain between an input Uj and
an output Yi clearly depends on whether this input is used inconsiderately or considerately.

Let us consider first the case where the plant and its actuators are given. That means
the input ranges are independent of how the outputs are controlled. Hence,

Ucj = Uj. (9)

From Equation (2) Yi = PijUj and from Equation (4) Ucj = Vji Yci. Hence,

Yi =
(

PijVji
)
Yci. (10)

The ratio of the achievable ranges of inconsiderately and considerately controlled
output number i is

Yi
Yci

=
(

PijVji
)
. (11)

If, however, the plant output range must be achieved under both control frameworks,
then the input actuator ranges must be modified. Hence, we require

Yci = Yi. (12)

Now:
Ucj =

(
VjiPij

)
Uj. (13)
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The ratio of the required input ranges for considerately and inconsiderately controlled
output number i is

Ucj

Uj
=
(

PijVji
)
. (14)

The ratios in Equations (11) and (14) are identical. Let us denote this ratio with

Bij(s) = Pij(s)Vji(s). (15)

The indices i and j vary between 1 and n for the output and input respectively. To
consider all input–output pairing possibilities, it is convenient to gather all such possible
ratios Bij into a square matrix

B(s) =
[
Bij(s)

]
, whereBij(s) = Pij(s)Vji(s). (16)

In fact, a shorter version of this equation can be written with the help of the Hadamard
(or Schur) product between two matrices:

B(s) = P(s)×VT(s) = P(s)×
[
P−1(s)

]T
. (17)

It should be immediately obvious that large magnitude ratios Bij are problematic
because the considerate control of Yi by Uj either reduces (constrains) the reachable output
range, or scope, by the factor of Bij, or it demands increasing the actuator range by the
same factor Bij. But that is not all.

The considerate control of a given Yi not only requires a potentially more powerful
actuator number j, but all other actuators may also need to participate in achieving this
considerate Yi without disturbing the other outputs. Let us focus on just one such other
input, Uk, with k 6= j. The required range of this input is determined by the universal
Equation (4), but the question is, what should we compare it to? The answer is relatively
simple. If we compare it to the option of inconsiderate control of Yi by this Uk alone, that
ratio is simply Bik. Further constraints may arise from use of the filter F in Equation (8).

Matrix B in Equations (16) and (17) is well known as the Bristol gains array—see, for
example, Refs. [2,3]. These Bristol gains were introduced in 1966 by Edgar Bristol (not to
be mistaken for an older Edgar Bristol, who together with his brother founded the Foxboro
Company in 1908) in order to describe and understand what happens when multiple
feedback loops are closed around the same plant. They describe some important aspects of
the interaction between the loops.

The Bristol gains are usually called “relative gains” and are sometimes criticized for
describing only the steady-state interaction. As a matter of fact, Bristol did not use in [2]
the label “relative gain,” and he did not limit his paper to steady-state relationships—this
was done later by others in process-control literature. A more subtle observation is the
fact that Bristol [2] posed the problem in a wide practical context but provided a precise
solution only for the ideal case of infinite loop gain (over all frequencies) without explicitly
drawing the reader’s attention to the practical impossibility of an infinite loop bandwidth.

Bristol gains are independent of the loops or the loop design. The re-defined “relative
gains”, as introduced by me in Ref. [3], depend on loop design. For further information on
this topic, the reader is referred to [3] and the references therein.

It was shown in Ref. [1] that, when the input Uj = Ucj is allocated to control the output
Yi considerately, then Equation (6) can be replaced by

∆Uck =
Bik(s)
Bij(s)

Pij(s)
Pik(s)

Ucj, k = 1, . . . , n; k 6= j. (18)



Physics 2021, 3 177

And the more general Equation (8) can be replaced by

∆Uck =
[

Bik(s)
Bij(s)

Pij(s)
Pik(s)

Fcj

]
UF

cj, k = 1, . . . , n; k 6= j,

Ucj = Fcj UF
cj.

(19)

These equations can be used to implement fully or partially considerate feedforward
control schemes as was shown in [1].

4. Considerate Regulation in Multiloop Systems

For ease of notation, it is now assumed that the n inputs and n outputs are ordered such
that Ui is allocated to control the output Yi. That means, j = i in the preceding equations.

A fully considerate feedforward control of a square plant can be implemented as

U = MUc = [MFc]UF
c = MFUF

c , (20)

where Uc = FcUF
c and a diagonal Fc is chosen such that MF = [MFc] is implementable.

In detail,
UF

c =
[

UF
c1 · · · UF

cn
]T ,

Fc =

 Fc1 0 0

0
. . . 0

0 0 Fcn

,

M =
[

Mkj

]
, Mkj =

Vkj
Vjj

=
Bjk(s)
Bjj(s)

Pjj(s)
Pjk(s)

.

(21)

The main object of this paper is to compare feedback with and without the considerate
pre-compensation above. The feedback controller matrix is assumed to be diagonal. The
only cross-loop signal flow outside the given plant P is through the considerate pre-
compensator matrix M, the design of which precedes the feedback loop design. A generic
two-degree-of-freedom feedback control structure is given in Figure 1.

Figure 1. A two-degree-of-freedom MIMO feedback control system block diagram. R, U, D, and
Y are the system reference, plant input, plant disturbance, and system output vectors respectively.
Signal flow direction is shown with the arrows on double lines and the circles indicate summation of
entering signals. P is the given system transfer matrix. G is the to be designed feedback controller
matrix. F is the feed forward reference filter matrix – it may be used for some engineering purposes,
but is assumed to be a unit matrix in the following examples.

In Figure 1, the loop transfer matrix can be defined as L=PG. The system sensitivity
matrix is accordingly S = [I + L]−1. With this notation, the system output Y tracks the
reference R and regulates the disturbance D as follows:

Y = SD + SLFR. (22)
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In much of the industrial application, scalar feedback loops are designed or tuned in
some suitable sequence. That is equivalent to the feedback matrix in Figure 1 being diagonal:

G = Gd =

 G1 0 0

0
. . . 0

0 0 Gn

. (23)

With this diagonal controller, the loop transfer matrix L is non-diagonal. Nevertheless,
with sufficiently high gain in all feedback loops, S ≈ L−1 and Equation (22) simplifies to

Y ≈ FR. (24)

With a diagonal F, this system tracks reference signals considerately (within the loop
bandwidths). Some measure of robustness against plant uncertainty is automatically built-
in, due to high gain feedback. There is no need for a (complex) pre-compensator design
and tuning. Of course, there is no decoupling at frequencies near loop gain crossover and
higher frequencies.

With the considerate pre-compensator, however, the controller is generally not diagonal:

G = MFcGd. (25)

With this considerate pre-compensation, the loop transfer matrix L is diagonal. To
prove this, let us introduce the diagonal matrix

V−1
d =

 V−1
11 0 0

0
. . . 0

0 0 V−1
nn

 =

 P11/B11 0 0

0
. . . 0

0 0 Pnn/Bnn

. (26)

Now, Equation (25) can be written as

G = VV−1
d FcGd. (27)

Hence, the loop transfer matrix becomes diagonal:

L = PG = PVV−1
d FcGd = V−1

d FcGd. (28)

It follows that the sensitivity matrix S is diagonal and the entire control system in
Equation (22) decomposes into n SISO systems when the reference filter F is diagonal. In
other words, both reference tracking and disturbance regulation happen in a “considerate”
manner without any crossfeed between the loops. This total decoupling is independent of
the loop bandwidths or other aspects of the loop design. One of the problems is that this
theoretical result is not necessarily achievable with fixed controllers because there is often
some uncertainty in the interaction properties of P. However, a rigorous consideration of
uncertainty is outside the scope of this paper.

Even though it may seem easier to design and tune non-interacting SISO loops, it is not
clear that the regulating or tracking performance of these loops is necessarily superior to the
performance of the simple feedback system with the diagonal controller in Equation (23).
In order to get a feeling of what issues may be relevant, a few examples are analyzed below.

5. Examples

Example 1 (by Hovd and Skogestad [4]):
The plant is given as

P(s) =
(1− s)

(1 + 5s)2

 1 −4.19 −25.96
6.19 1 −25.96

1 1 1

. (29)
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The Bristol gains array is independent of frequency:

B(s) =

 1 5 −5
−5 1 5
5 −5 1

. (30)

Feedback control of this system has been analysed by Hovd and Skogestad [4], who
used it as a counterexample to the conventional pairing rule. It was further used by me
in Ref. [3] to demonstrate the importance of sub-plant Bristol gains in the feedback loop
design and tuning. If we pair the inputs and outputs according to i = j, then considerate
control does not restrict the on-channel input or output scope, because all Bii are equal to
1. However, the off-channel interaction increases the required input scope by a factor of 5
and some input signs will be reversed too.

To summarize the design of three single loop Proportional plus Integral (PI) controllers
by Hovd and Skogestad [4] and by me in Ref. [3], the following seems pertinent. Straight-
forward pairing on Bii = 1 yielded counter-intuitively poor regulating performance in all
three loops. The achieved gain crossover frequency was ωgc ≈ 0.07. The non-minimum
phase-lag zero in Equation (29) suggests (misleadingly perhaps) an order of magnitude
of higher achievable gain crossover atωgc ≈ 0.5. Input-output pairing on Bij = 5 yielded
improved performance. Hovd and Skogestad [4] achievedωgc between 0.1 and 0.3 in two
of the loops while the third remained practically open withωgc ≈ 0.005. I have designed
three identical loops withωgc < 0.2 in Ref. [3].

Common to all above design attempts was the appearance of large phase-angle
deviations from the usual loop frequency response. Hence the low-frequency loop gain
always remained counter-intuitively low. For example, the three identical loops, designed
by me in Ref. [3], had a gain of merely 12 dB atω = 0.005. With a normally encountered
slope of between −20 and −30 dB/decade near the gain crossover, this gain should have
been somewhere in the range of 30 to 50 dB [5].

Now, let us first establish a considerate feedforward control structure and then design
the three decoupled PI control loops. For this demonstration, we shall pair inputs and
outputs on Bii = 5 (as recommended by Hovd and Skogestad [4] in a slightly different
context). This is equivalent to reordering the plant outputs so that the last becomes the first:

P(s) =
(1− s)

(1 + 5s)2

 1 1 1
1 −4.19 −25.96

6.19 1 −25.96

. (31)

The Bristol gains array is independent of frequency:

B(s) =

 5 −5 1
1 5 −5
−5 1 5

. (32)

We use Equation (21) with Fc = I. Hence, UF
c = Uc and the pre-compensator matrix is

M =

 1 −0.838 4.195
−1 1 −5.195
0.2 −0.161 1

. (33)

There is no theoretical problem with implementing this compensator; hence, the
compensated (considerate) plant transfer matrix is now

Pc(s) = P(s)M =
(1− s)

(1 + 5s)2

 0.2 0 0
0 −0.838 0
0 0 −5.19

. (34)
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The following three PI controllers yielded identical loop transfer functions, as is shown
in Figure 2:

G11 = 11.5
(

1 + 1
10s

)
,

G22 = −2.745
(

1 + 1
10s

)
,

G33 = −0.443
(

1 + 1
10s

)
.

(35)

Figure 2. Identical loop frequency responses on the logarithmic complex plane with considerate
input–output pairing on B11 = B22 = B33 = 5. The vertical axis shows the dB magnitude of the
loop transfer function and horizontal axis shows the loop transfer function phase angle in terms
of π radians. Five frequency values (in rad/s) are indicated on the blue frequency response. The
closed-loop sensitivity magnitudes of 0 dB and 6 dB are indicated with the dotted red lines. The red
6 dB sensitivity oval was used as the stability margin for the shown design.

Using some lead-lag compensation (such as is available in some commercial propor-
tional plus integral plus so-called derivative controllers) would improve somewhat the
gain cross-over frequency, but not by much.

Next, the achieved time-domain performance of the closed loop system is compared
to that without the pre–compensator. The following PI controllers, for B11 = B22 = B33 = 5,
are copied from Equation (5.21) of Ref. [3].

G11 = 0.9
(

1 + 1
10s

)
,

G22 = −0.215
(

1 + 1
10s

)
,

G33 = −0.0347
(

1 + 1
10s

)
.

(36)

Figure 3 shows the corresponding reference and disturbance step responses. Figure 4
shows the reference and disturbance step responses with the considerate pre-compensation
according to Equation (33). The PI controllers are given in Equation (35). Both control
schemes result in considerate control eventually. The pre–compensator yields decoupled
loops and; hence, it is easier to achieve better results, at least in this example.
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Figure 3. Inconsiderate reference tracking and disturbance regulation. Upper plot shows the system
outputs y1, y2, and y3, as functions of time. Lower plot shows the system inputs u1, u2, and u3, as
functions of time. All references and output disturbances in Figure 1 are zero, except r3 = σ(t) and
d2 = σ(t− 500), where σ(t) is the unit step function (or rather distribution) at time t = 0.

Figure 4. Reference tracking and disturbance regulation with considerate pre-compensation. Upper
plot shows the system outputs y1, y2, and y3, as functions of time. Lower plot shows the system
inputs u1, u2, and u3, as functions of time. All references and output disturbances in Figure 1 are zero,
except r3 = σ(t) and d2 = σ(t− 500), where σ(t) is the unit step function (or rather distribution) at
time t = 0.

Example 2: Considerate control with no “Bristol interaction”.
The plant is given as

P =

[
P11 P12
0 P22

]
=

[
1

1+10s e−s 1
1+10s

0 1
1+s

]
. (37)
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The Bristol gains array is independent of frequency and indicates no interaction in the
context of feedback loop design:

B(s) =
[

1 0
0 1

]
. (38)

In this case, it was justified to follow the practitioner’s rule of pairing inputs and
output on unit Bristol gains. Considerate control did not restrict the on-channel input or
output scope. However, a fully considerate control would have required modification of
the first input as follows.

From Equation (21), after a little calculation,

M =

[
1 −es

0 1

]
. (39)

However, M12 = −e+s is non-causal and not implementable. To implement this
de-coupler, it would need to be post-multiplied with something like

Fc =

[
1 0
0 e−s

]
. (40)

Thus, an implementable considerate pre-compensator would be given as

MF =

[
1 −1
0 e−s

]
. (41)

The compensated (considerate) plant transfer matrix would now be

Pc(s) = P(s)M =

[
1

1+10s e−s 0
0 1

1+s e−s

]
. (42)

In the original plant, the first loop gain cross-over frequency was limited to about 1,
but the second loop had no theoretical bandwidth limitation. The following PI controllers
were selected for comparison purposes:

G11 = 6
(

1 + 1
3s

)
,

G22 = 7
(

1 + 1
s

)
.

(43)

In the considerately compensated plant as defined by Equation (42), however, both
loops had the same gain crossover frequency limitation. A quick tuning yielded the two
controllers as

G11 = 6
(

1 + 1
3s

)
,

G22 = 1.1
(

1 + 1
1.83s

)
.

(44)

Figures 5 and 6 show various reference and disturbance step responses in the incon-
siderate and considerate configurations, respectively.
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Figure 5. Reference tracking and disturbance regulation without de-coupling. Upper plot shows
the system outputs y1 and y2 as functions of time. Lower plot shows the system inputs u1 and
u2 as functions of time. The references in Figure 1 are r1 = 0.5σ(t− 10) and r2 = 1. The output
disturbances in Figure 1 are d1 = 0 and d2 = −σ(t− 2), where σ(t) is the unit step function (or rather
distribution) at time t = 0.

Figure 6. Reference tracking and disturbance regulation with considerate pre–compensation. Upper
plot shows the system outputs y1 and y2 as functions of time. Lower plot shows the system inputs u1

and u2 as functions of time. The references in Figure 1 are r1 = 0.5σ(t− 10) and r2 = 1. The output
disturbances in Figure 1 are d1 = 0 and d2 = −σ(t− 2), where σ(t) is the unit step function (or rather
distribution) at time t = 0.

The inconsiderate regulation of y2 was significantly better than the considerate version.
However, this performance came at the cost of disturbing y1. In this example, having
consideration in the first loop, reduced performance of this loop.

Example 3 (by Yaniv and Gutman [6]):
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The plant is given as

P(s) =

 1/4
s+1

2
s+5

1/2
s+1

1/2
s+1

2
s+1

1
s+1

7/8
s+6

2/3
s+1

1/2
s+1

. (45)

Note that element (3, 2) of this plant was reported with an error in Equation (5.5) of
Ref. [3]. However, the Bristol gains array was reported correctly:

B(s) =


4(1+s/5)(1+s/6)

3(1−s)(1−s/3)
−2(1+s)
3(1−s/3)

(1−17s/3)(1+s/5)
3(1−s)(1−s/3)

16(1+s/6)
15(1−s/3)

5(1+s/5)
3(1−s/3)

−26(1+19s/39)
15(1−s/3)

−7(1+s)
5(1−s) 0 12(1+s/6)

5(1−s)

. (46)

In Ref. [3] I have analyzed pure diagonal feedback. Using 2 × 2 sub-plant Bristol
numbers in addition those in Equation (46) led to the recommendation of closing the second
loop first, then the third loop. The first loop was to be tuned or designed last. This way,
arbitrary bandwidth was achievable in the second and third loops. The first loop suffered
the consequence of this plant’s right half–plane transmission zeros.

The following diagonal controller was recommended as one of the many arbitrary
possibilities:

G(s) =

 2
(

1 + 1
2s

)
0 0

0 50 0
0 0 200

. (47)

Of course, integral action could have been added to channels 2 and 3, but it was
not necessary because of the arbitrarily high gain. Figure 7 shows various reference and
disturbance step responses in this inconsiderate configuration.

Figure 7. Inconsiderate reference tracking and disturbance regulation. Upper plot shows the system
outputs y1, y2 and y3 as functions of time. Lower plot shows the system inputs u1, u2 and u3 as
functions of time. The references in Figure 1 are r1 = 1 and r2 = r3 = 0. The output disturbances in
Figure 1 are are d1 = 0, d2 = −σ(t− 10) and d3 = −0.5 σ(t− 20), where σ(t) is the unit step function
(rather distribution) at time t = 0.
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We used Equation (21) with Fc = I. Hence, UF
c = Uc and

M =


1 32(s+6)

15(s+5) −2
15(s−1)
8(s+6) 1 0
−(17s−3)

4(s+6)
−4(19s+39)

15(s+5) 1

. (48)

There was no theoretical problem with implementing this compensator, so the com-
pensated (considerate) plant transfer matrix became

Pc(s) =
1

(1 + s)


15(1−s)(3−s)
8(5+s)(6+s) 0 0

0 2(3−s)
(5+s) 0

0 0 5(1−s)
4(6+s)

. (49)

The following three PI controllers maximized each of the three loop bandwidths with
some reasonable gain and phase margins:

G11 = 2
(

1 + 1
s

)
,

G22 =
(

1 + 1
s

)
,

G33 = 3
(

1 + 1
s

)
.

(50)

Figure 8 shows the step responses in this considerate configuration.

Figure 8. Reference tracking and disturbance regulation with considerate de-coupling. Upper plot
shows the system outputs y1, y2 and y3 as functions of time. Lower plot shows the system inputs u1,
u2 and u3 as functions of time. The references are in Figure 1 are r1 = 1 and r2 = r3 = 0. The output
disturbances in Figure 1 are d1 = 0, d2 = −σ(t− 10) and d3 = −0.5 σ(t− 20), where σ(t) is the unit
step function (rather distribution) at time t = 0.

The inconsiderate regulation of y2 and y3 was significantly better than the considerate
version. However, this performance was obtained at the cost of significant cross-channel
disturbances in y1. This disturbance was not well regulated because the system interaction
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and high-gain in the second and third loops caused rather severe bandwidth limitation in
the first loop.

In this example, having consideration eliminated the very large cross-channel dis-
turbances. The price was the appearance of the right half-plane transmission zeros also
in the second and third loops with the associated reduction of the second and third loop
bandwidths and their regulating performance.

6. Discussion

Considerate control in interacting plants requires coordination of inputs in such a way
that outputs of the plant are changed independently without consequential disturbance
of other outputs. Considerate control can be achieved by fixed feedforward if plant
uncertainty is negligible. It may be achieved by feedback alone, but not necessarily always
and never over all frequencies.

Considerate control in interacting plants changes the achievable output or the required
input ranges. This change is fully characterized by Bristol gains and it does not matter if
the channel crossfeed is eliminated by feedforward pre-compensation or by sufficiently
high-gain feedback within the loop bandwidths.

As the examples in Section 5 illustrated, considerate pre-compensation improves some
aspects of MIMO tracking and regulating performance. However, degradation of other
aspects–such as the appearance of additional non-minimum phase-lag—cannot necessarily
be excluded.
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