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Abstract: Recent developments in the gravitational waves interferometry require more pertinent
theoretical models of gravitational waves generation and propagation. Untouched possible mecha-
nisms of spin-2 spacetime perturbations production, we will consider their subsequent scattering
on other black holes (BHs). Specifically, we consider a generalization of the Regge-Wheeler-Zerilli
equations for the case of distorted BHs (BHs surrounded with matter) in Minkowski and Anti-de
Sitter spacetimes, the metric potential of which obeys the Liouville equation. We establish significant
differences in scattering characteristics of waves of different spins and angular momenta, including
the gravitational waves, caused by losing the spherical symmetry of their propagation background.
In particular, we demonstrate the strong impact of the background geometry deformation on the
grey-body factors, hence on the absorption cross-sections of scattering waves, and explore the issue
of stability of the background geometry upon changing the deformation degree parameters.
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1. Introduction

Progress in observation astronomy is going so fast that we become beholders of
transforming astrophysics into genuinely physical discipline, where theoretical predictions
are supervised with experimentally verified data. A lot of discoveries in the field were done
since the century beginning. We will outline just a few breakthroughs in the contemporary
multi-messenger astrophysics [1], related in different ways to black holes (BHs):

• First, we have the LIGO-Virgo scientific collaborations to mention for their fundamen-
tal contribution in registrations of gravitational waves (GWs) [2]. It is believed that
the GWs are mostly induced in processes which involve BHs.

• Second, it is important to notice the detection of ultra high energy cosmic rays
(UHECRs) of energy ∼1019 eV—that far exceeds energies of the LHC (Large Hadron
Collider)—coming from active galactic nuclei (AGN) [3]. It is believed that super-
massive BHs (SMBHs) are located in the core of the AGN [4,5], and mechanisms of
the UHECRs generation are directly related to BH physics; see, e.g., Refs. [6–19], in
this respect.

• Next, it is worth mentioning achievements of the Event Horizon Telescope (EHT)
collaboration in revealing the BH event horizon (for M87 SMBH with the mass
6.5 × 109 M� [20]). Due to the EHT activity it is believed more and more that As-
trophysical BHs (BHs in the sky) share common properties with mathematical BHs
(solutions to Einstein equations).

• Last but not least: the recent data analysis of the EHT team puts the Einstein theory
on the test [21]. It turns out that general relativity works well, and many alternative
theories of gravity should be discarded as that of contradicting experimental data.
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However, one has to notice that the conclusions of Ref. [21] cannot be considered as
ultimate ones; see, e.g., Ref. [22], in this respect.

The mentioned achievements in contemporary astrophysics show how various studies
of compact astrophysical objects give new prospects in resolving old and revealing new
problems, which impact the development of physics at whole.

A large enough amount of information on BHs comes with d-waves (spin 2 waves;
GWs). In view of this fact, any current studies of d-waves become potentially important.
One of the branches in this activity is scattering d-waves on compact astrophysical objects.
Starting from first seminal papers on scattering of different spin particles on Kerr and
Schwarzschild BHs [23–29], it has been obtained, analytically and numerically, cross-
sections and grey-body factors of external particle fluxes propagating in effective potentials
of various BH models; see, e.g., Refs. [30–43].

In what follows, we will be interested in solving to the scattering problem for the GWs
in the background of the so-called distorted BHs. Rationales behind appearing the distorted
BHs on the scene come from the point that the Schwarzschild solution is highly idealized
and cannot be fully employed in any real astrophysical problem; the same concerns the Kerr
solution. Any presence of matter does not just change the metric, but may drastically change
its type, due to the backreaction of matter fields enforcing the spacetime geometry to evolve
in time. However, time-dependent solutions to the Einstein equations in analytical form are
extremely rare (and for very specific matter fields) [44,45] and generally require involved
numerical simulations. A significant simplification occurs upon replacing the backreaction
of matter with an effective distortion of a static/stationary BH metric with keeping the
time-independence of the solution. Then, the solution describing a static distribution of
matter localized outside the BH horizon and the vacuum spacetime at its proximity is called
the distorted BH [46,47]; also see Refs. [48,49]. There are various astrophysical applications
for the distorted BH-type metrics (see, e.g., Refs. [50–57]), among which one can find the
effective description of a double (neutron) “star” system, when the tidal forces of one of
the components deforming the shape of the other are mimicked in the solution [58–60].

In the next parts of the paper, we will explore the scattering of d-waves on another
class of distorted BHs, in which spacetime configuration is defined by a specific solution
originally proposed and studied in Refs. [61–64] and later rediscovered in Ref. [65] in a dif-
ferent context. In Section 2, we briefly discuss the relationship between the standard metric
of axisymmetric distorted BH [46,47] and the quasi-spherical BH solution of Refs. [61–64].
In its customary formulation, the Weyl solution includes two metric potentials (functions of
the radial direction and polar angle) and describes a family of distorted BHs in dependence
on their specific choice. The proposed generalization of the Weyl solution with third metric
potential, in Section 2, now depending on two angles, breaks the original axial symmetry.
It results in fixing two metric potentials of the Weyl solution, so that the final geometry
becomes that of a quasi-spherical BH, the metric potential of which obeys the Liouville
equation. The quasi-spherical solution also describes a family of BHs, now determined
by the choice of a single metric potential. The local spacetime geometry we will explore
further on is that of a static neutral distorted BH. It is evidently not enough to describe real
astrophysical problems in full extent (see more on a quasi-spherical generalization of the
Kerr solution in the last section). However, it is sufficient to reveal main features in the
scattering processes of external particle fluxes, which will also be inherent in scattering by
rotating distorted black holes.

In Section 3, we consider equations for gravitational perturbations over backgrounds
of quasi-spherical neutral BHs in Minkowski and anti-de Sitter (AdS) spacetimes and
examine the issue of separation of variables. As it is well known, a possibility to separate
the variables in dynamical equations of relativistic fields in a curved background is related
to symmetry properties of the background spacetime. By use of the Newman-Penrose
formalism, we figure out the spacetime of quasi-spherical BHs is of type D in the Petrov
classification. Therefore, the radial and angular parts of equations for small perturbations



Physics 2021, 3 19

over the quasi-spherical BH background can be set apart, and the resulting expressions
generalize the Regge-Wheeler-Zerilli equations and the spherical harmonics equation.

In Section 4, we focus on the angular part of the scattering problem and survey
differences in solution to the angular differential equation for the distorted/quasi-spherical
spacetime in compare to the standard Schwarzschild background. In general, the solution to
the angular equation in a quasi-spherical BH background is reduced to the spectral problem
for infinite-dimensional matrices. For the background with axial symmetry, viable in many
astrophysical problems, we can make further simplifications, and to solve the spectral
problem numerically. Here, we find the principle difference between the quasi-spherical
and spherically-symmetric cases, which will have the foremost impact on the scattering
process: the eigenvalues of the examined spectral problem are not integers anymore; for
each scattering mode, there is a set of eigenvalues, the number of which is determined by
the corresponding to spherical symmetry value of the scattering mode angular momentum
and by its projections (i.e., by the set of (l, m)); and finally, the eigenvalues depend on the
deformation degree of the background geometry from spherically-symmetric, specified by
a single parameter. On account of numerical computations we recovered the functional
dependence of the generalized eigenvalues on the degree of deformation in the axially-
symmetric case.

Section 5 contains computations of the grey-body factor for different scattering waves
on a quasi-spherical Schwarzschild BH and further comparison of the regular spherically-
symmetric case [43] to its counter-part with a non-trivial deformation. Because the gen-
eralized eigenvalues found in the preceding section carry on two indices and enter the
Regge-Wheeler-Zerilli equations via the separation constant, numerically computed grey-
body factors for each type of perturbations—scalar, vector, and tensor—also become
differentiated by (l, m) indices. Explicitly, for every scattering mode with the angular
momentum l, we find l + 1 different values of the grey-body factor, properties of which
were compared to that of the spherically-symmetric case. In particular, we find that the
grey-body factors, as functions of the deformation degree, increase with increasing the
value of this parameter, as well as that the transparency of the effective potential is reached
for (l, l) scattering modes at the lowest value of corresponding frequencies.

In Section 6, we consider the issue of stability of BH backgrounds by studying the
quasinormal modes (QNMs). Here, we briefly review the relation between the stability of
a spacetime and positivity of effective potentials in the Regge-Wheeler-Zerilli equations.
Since the effective potential of small perturbations over distorted/quasi-spherical BH
backgrounds depends on the deformation degree, this parameter becomes crucial for
determining the stability of the background geometry against small perturbations. We find
that the value of the deformation degree equal to one is the critical value for the stability of
an axially-symmetric quasi-spherical Schwarzschild BH in Minkowski and AdS spacetimes.
And, if the result does not depend on the size of a BH in flat spacetime, the instability of
a Schwarzschild-AdS BH may only be encountered for the so-called large BHs, the event
horizons of which are of the next order in compare to the characteristic scale of empty
AdS space.

Finally, discussion of the results and summary of our findings are collected in the
last section.

2. Background Metric: From Distorted to Quasi-Spherical Black Hole

Let us begin with a clarification of how the background metric, mainly used through-
out the paper, is related to the metric of a distorted BH.

A distorted BH solution to the flat spacetime Einstein vacuum equations is tradi-
tionally described by the Weyl axisymmetric metric [46] in the cylindrical space-time
coordinates (t, ρ, θ, ϕ) [47], t is the time coordinate. However, when the case is about a
static axisymmetric solution with an arbitrary quadrupole moment, things get essentially
simplified in the prolate spheroidal space-time coordinates (t, x, y, ϕ) [66], in which the
line element looks as follows:
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ds2 = −e2ψ(x,y)dt2 + M2e−2ψ(x,y)

[
e2γ(x,y)(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
. (1)

To obey the Einstein equations in vacuum, the metric potentials ψ(x, y) and γ(x, y) of
(1) should fulfill the following set of equations [66,67]:

∂x

(
(x2 − 1)∂xψ

)
+ ∂y

(
(1− y2)∂yψ

)
= 0, (2)

∂xγ =
1− y2

x2 − y2

[
x(x2 − 1)(∂xψ)2 − x(1− y2)(∂yψ)2 − 2y(x2 − 1)∂xψ∂yψ

]
, (3)

∂yγ =
x2 − 1
x2 − y2

[
y(x2 − 1)(∂xψ)2 − y(1− y2)(∂yψ)2 + 2x(1− y2)∂xψ∂yψ

]
, (4)

where ∂a ≡ ∂/∂a.
Equations (2)–(4) leave enough freedom in choosing the specific form of the metric

potentials. The entering (1) constant M is associated to the mass of the BH.
A non-trivial generalization of (1), which includes the third metric potential Φ, now

dependent on (y, ϕ) coordinates, therefore breaking the axisymmetric invariance of the
original metric, is

ds2 = −e2ψ(x,y)dt2 + M2e−2ψ(x,y) ×
[

e2γ(x,y)(x2 − y2)

(
dx2

x2 − 1
+

eΦ(y,ϕ)dy2

1− y2

)
+ eΦ(y,ϕ)(x2 − 1)(1− y2)dϕ2

]
. (5)

In this case, the presence of the third metric potential with the specific dependence on
coordinates puts strong restrictions on the metric potentials ψ(x, y) and γ(x, y). In particu-
lar, the non-triviality of Φ(y, ϕ) results in the appearance of non-diagonal terms in the Ricci
tensor that, in the absence of matter in the Einstein equations, sets the following constraints
on γ(x, y):

∂xγ =
x(1− y2)

(x2 − y2)(x2 − 1)
, ∂yγ =

y
x2 − y2 , (6)

the further account of which leads to the additional restriction on ψ(x, y):

∂xψ ∂yψ = 0. (7)

A general solution to (6) comes as follows:

γ(x, y) =
1
2

ln
x2 − 1
x2 − y2 + Cγ; (8)

then, solving for the corresponding equation for ψ(x, y) constrained by (7), we get

ψ =
1
2

ln
x− 1
x + 1

+ Cψ. (9)

Note that (9) is a particular solution for ψ, which is convenient to choose in this
form to establish in what follows the relation of (5) to a quasi-spherical Schwarzschild BH
metric. With γ and ψ of (8), (9), the metric potential Φ(y, ϕ) is confined by the following
differential equation:

∂y

(
(y2 − 1)∂yΦ

)
− 2(eΦ − 1) + e2Cγ

∂2
ϕΦ

y2 − 1
= 0. (10)
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Fixing two integration constants Cγ and Cψ to be zero and introducing new coordinates
(r, θ), related to (x, y) via

x =
r
M
− 1, y = cos θ, (11)

we recover the metric of a neutral BH [63,64] (also see Ref. [65]) in the spherical coordinates

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2eχ(θ,ϕ)

(
dθ2 + sin2 θ dϕ2

)
, (12)

with the standard red-shift factor f (r) = 1− 2M/r and the “smearing” function of the
BH horizon χ(θ, ϕ), which follows from Φ(y, ϕ) after the coordinate transformations (11).
Equation (10) turns into the spherical Liouville equation

∆θ,ϕ χ(θ, ϕ) + 2(eχ(θ,ϕ) − 1) = 0, (13)

with

∆θ,ϕ =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2 . (14)

Recall that the Liouville equations are exactly-solvable and possess general analytic
solutions in terms of unrestricted functions; see, e.g., Refs. [68,69], or a brief summary in
Refs. [61,64] and Appendix A in below. Therefore, we have enough freedom in choosing a
function to fit the desired shape of a two-dimensional surface. For a BH, this surface is a
quasi-spherical/distorted horizon; in the case of a rigid celestial body (as a neutron star),
the two-dimensional surface is a 2-dimensional (2D) slice of the 3D surface, deformed by
the tidal forces of another star/BH.

Therefore, we have established the generalization of the standard Weyl-Erez-Rosen
distorted BH solution (1) with additional, breaking the axial symmetry, metric potential
(cf. (5)). As a result of such modification, the solution becomes more rigid, and corresponds,
after turning to the standard spherical coordinates, to the neutral BH solution with the
Liouville mode [61–64]. That makes possible to consider the BH solution of Refs. [61–65]
as a specific distorted BH. Taking this point of view, we will not differentiate further on
distorted and quasi-spherical BHs and will freely use both terms on equal footing.

To sum up this part of the work, the spacetime background we will consider through-
out the paper is defined by the line element

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2eχ(θ,ϕ)(dθ2 + sin2 θdϕ2), (15)

with
f (r) =

∆
r2 , ∆ = r2 − 2Mr + κ2r4. (16)

A non-trivial valueof κ2 = −Λ/3, where κ is the inverse characteristic length of AdS
spacetime and Λ is its cosmological constant, corresponds to the AdS-Schwarzschild BH;
κ = 0 is that of the flat spacetime. To solve the vacuum Einstein equations, the metric
potential χ(θ, ϕ) has to be confined to the spherical Liouville Equation (13) with the angular
Laplacian (14).

3. Basic Equations and Separation of Variables

Technically, we would like to extend the known Regge-Wheeler-Zerilli [70,71] equa-
tions for small d-wave perturbations over the background (15) and to solve them. First
step on this way is to separate the variables in the corresponding relativistic spin equation.
Our previous experience with s-wave perturbations over such a background [64] indicates
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the possibility to separate variables in the massless Klein-Gordon equation, the explicit
form of which in the background (15) is as follows:

− 1
f

∂2
t Φ +

1
r2 ∂r(r2 f ∂rΦ) +

e−χ(θ,ϕ)

r2 4θ,ϕ Φ = 0, (17)

by use of the separation ansatz

Φ(t, r, θ, ϕ) = e−iωt Q0(r)Θ(θ, ϕ). (18)

But it is well-known that the (im)possibility to separate the variables strongly depends
on special properties of the spacetime upon the consideration, specifically on its type within
the Petrov spacetime classification scheme [72,73].

To determine the Petrov type of the metric in hand, we follow the Newman-Penrose
(NP) formalism [74] and introduce the null tetrad

eµ

(1) = lµ, eµ

(2) = nµ, eµ

(3) = mµ, eµ

(4) = m̄µ, (19)

which is standardly related to the metric via gµν = e(a)
µ η(a)(b)e

(b)
ν with

η(a)(b) =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

. (20)

The curved space indices µ, ν run over 0, 1, 2, 3; ”0” corresponds to time direction. The
latin indices ”(a)” are that of flat tangent space and run over 1, 2, 3, 4.

Explicitly, for the metric (15), we get

lµ = δµ0 −
δµr

f (r)
, nµ =

f (r)
2

δµ0 +
δµr

2
, mµ =

r√
2

e
χ(θ,ϕ)

2 (δµθ + i sin θδµϕ), (21)

where δµν is the Kronecker delta.
By use of the NP tetrad (21), one may compute various coefficients of the spin-

connection γ(c)(a)(b) = eν
(c)e(a)ν;µeµ

(b), where, as usual, the semicolon corresponds to the
covariant derivative over the metric gµν, and observe vanishing the coefficients (in the
notation of Ref. [74]) κ, σ, ν, λ. According to the Goldberg-Sachs theorem, trivialization of
κ, σ, ν, λ corresponds to the Petrov type D metrics [72–74].

Since the pioneering papers by Teukolsky [75,76], it was realized that, in the Petrov
type D spacetimes, equations for gravitational perturbations decouple for quantities

ψ0 = −Cαβγδlαmβlγmδ, ψ4 = −Cαβγδnαm̄βnγm̄δ, (22)

forming with the Weyl tensor Cαβγδ and the NP tetrad (21). As we will see, in short, these
quantities correspond to the odd (axial) gravitational perturbation of Ref. [70] and even
(polar) d-wave perturbation of Ref. [71].

Indeed, by use of the ansatz (we use indices ”+2” and ”−2” for odd and even d-wave
perturbations, respectively)(

ψ0
r4ψ4

)
= e−iωt

(
Ψ+2(r)Θ+2(θ, ϕ)
Ψ−2(r)Θ−2(θ, ϕ)

)
, (23)

one may separate the temporal, radial and angular parts of the gravitational perturbations
over the basic metric (15). Upon the separation of the angular part of the d-wave pertur-
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bations, we arrive at the following master equation for the fundamental angular variable
Θ(θ, ϕ):

∆θ,ϕΘ(θ, ϕ) + Ceχ(θ,ϕ)Θ(θ, ϕ) = 0, (24)

in which, for the sake of convenience in further comparing to the spherically symmetric
example, we set the separation constant to C = ν(ν + 1). Apparently, the spherical symme-
try of the background spacetime is recovered for the trivial metric potential χ(θ, ϕ) = 0
(χ(θ, ϕ) = const also gets, re-scaling the radial coordinate, the spherical symmetry back).
However, in general, the spherical symmetry is lost, that means ν does not fall into the set
of integers. The fundamental angular variable Θ(θ, ϕ), together with angular differential
operators

Ln = ∂θ −
i

sin θ
∂ϕ + n

(
cot θ +

1
2

(
∂θχ− i

sin θ
∂ϕχ

))
, (25)

form Θ±2(θ, ϕ) of (23):

Θ+2(θ, ϕ) = e−
1
2 χ(θ,ϕ)L†

−1e−
1
2 χ(θ,ϕ)L†

0 Θ(θ, ϕ),

Θ−2(θ, ϕ) = e−
1
2 χ(θ,ϕ)L−1e−

1
2 χ(θ,ϕ)L0 Θ(θ, ϕ). (26)

For the radial part of the perturbation equations of ψ0 and ψ4, the NP formalism is
equivalent (after transition to new radial functions Q±2(r); see Refs. [77,78] for details) to
the Regge-Wheeler-Zerilli equations[

∂2

∂r2∗
+ ω2 −Vs(r)

]
Qs = 0, r∗ ∈ (−∞,+∞), s = ±2. (27)

Here, r∗ is the so-called “tortoise” coordinate dr/dr∗ = f (r); V±2 are the effective
potentials, entering either the Regge-Wheeler [70]

V+2(r) = −
3 f (r)∂r f (r)

r
+ ν(ν + 1)

f (r)
r2 + 6κ2 f (r), (28)

or the Zerilli [71]

V−2(r) =
2 f (r)

r3
9M3 + 3c2Mr2 + c2(1 + c)r3 + 9M2(cr + 3κ2r3)

(3M + cr)2 , c =
ν(ν + 1)

2
− 1 (29)

equations. Altogether, the Regge-Wheeler-Zerilli Equation (27) look like a stationary
Schrödinger equation for the wave functions Q±2 and the effective potentials (28) and (29).
Note that, due to the lack of the spherical symmetry, we do not have the total angular
momentum (and its projection, as well) conservation, though we can expect a quantization
of the generalized angular momentum quantum numbers ν.

Let us also emphasize that the scalar and vector perturbations over the basic metric (15)
are described by a Schrödinger-like Equation (27), as well, with the effective potential (33),
in which one has to choose s = 0 and s = 1 for the scalar and vector modes, respectively.
The common separation ansatz for the scalar, vector, and tensor perturbations looks as
follows (cf. (23)): 

r−1Φ
rφ̃
ψ0

r4ψ4

 = e−iωt


Q0(r)Θ(θ, ϕ)
Q1(r)Θ1(θ, ϕ)
Ψ+2 Θ+2(θ, ϕ)
Ψ−2 Θ−2(θ, ϕ)

. (30)

The Θ(θ, ϕ) function of (30) obeys the master Equation (24); Θ±2(θ, ϕ) are those of
(26). Θ1(θ, ϕ) is also related to the fundamental angular variable Θ(θ, ϕ); in this case we
have

Θ1 = e−
1
2 χ(θ,ϕ)L†

1 Θ(θ, ϕ), (31)
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with the angular differential operator L1 of (25). Therefore, the “axial” perturbations over
the quasi-spherical BH background are described by equations[

∂2

∂r2∗
+ ω2 −Vs(r)

]
Qs = 0, r∗ ∈ (−∞,+∞), s = 0, 1, 2, (32)

with the effective potentials [24–26,70,79–81]

Vs(r) =
(1− s2) f ∂r f

r
+ ν(ν + 1)

f
r2 + 3s(s− 1)κ2 f , s = 0, 1, 2. (33)

The polar d-wave perturbation is still described by the Zerilli Equation (27) with
s = −2 and with the effective potential (29). The shape of the effective potentials for flat
and AdS spacetimes in the spherically symmetric case are depicted in Figures 1 and 2.

Two comments on Figures 1 and 2 are in order. First, the shape of the effective
potentials in Minkowski space-time (both panels of Figure 1) keeps its form up to spatial
(radial in the case) infinity. It is not true for AdS spacetime, where the shape of the potentials
(in both panels of Figure 2) will change to ∼r2 profile at r � 1. It, in particular, means that
there are bound states in AdS spacetime that result in the discrete part of the spectrum of
admissible perturbations [38,64,81–83]. And second, the effective potentials of the Regge-
Wheeler-Zerilli Equation (28) and (29) are almost the same as in Minkowski, as well as in
AdS spacetimes (cf. right panels in Figures 1 and 2). This is the indication of isospectrality
of the Hamiltonians, entering Equation (27) [81,84–86].

V0Hl=0L V0Hl=1L V0Hl=2L

2 4 6 8

r

r+

0.2

0.4

0.6

0.8

1.0

V HrL

V+2Hl=2L V-2Hl=2L V+2Hl=3L
V-2Hl=3L V+2Hl=4L V-2Hl=4L

2 4 6 8

r

r+

0.5

1.0

1.5

2.0

2.5

V HrL

Figure 1. (Left panel) The shape of the effective potential of different modes (l = 0, 1, 2) of the scalar perturbation over
the spherically-symmetric Schwarzschild background. (Right panel) Comparison of the effective potentials V+2(r) (solid
lines) and V−2(r) (dashed lines) of the d-wave perturbations (l = 2, 3, 4) over the spherically-symmetric Schwarzschild
background. The (almost) coincidence of V±2 reflects the isospectrality of the corresponding Hamiltonians of (27). The value
of the horizon radial location is chosen to be r+ = 1.
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Figure 2. (Left panel) The shape of the effective potential of different modes (l = 0, 1, 2) of the scalar perturbation over the
spherically-symmetric Anti-de Sitter (AdS)-Schwarzschild background near the black hole (BH) horizon. (Right panel)
Comparison of the effective potentials V+2(r) (solid lines) and V−2(r) (dashed lines) of the d-wave perturbations (l = 2, 3, 4)
over the spherically-symmetric AdS-Schwarzschild background near the BH horizon. The value of the horizon radial
location is r+ = 0.1. The AdS cosmological constant is chosen to be κ2 = −Λ/3 = 0.1.

4. Generalized Angular Momentum Numbers: Generalities and Axial Symmetry Case

Let us turn back to the master equation for the fundamental angular variable (24). It
can be solved with series expansion of Θ(θ, ϕ) over the spherical harmonics Ylm:

Θ(θ, ϕ) =
∞

∑
l,m

clmYlm(θ, ϕ); l ∈ Z, m = −l, . . . , l. (34)

For a general function of angles, the expansion (34) contains infinite number of terms.
Therefore, once one plugs (34) in the master Equation (24), the solution to the master
equation turns into a generalized eigenvalue problem:

∞

∑
j,m

Akm′ , jmcjm = C
∞

∑
j,m

Bkm′ , jmcjm, C = ν(ν + 1), (35)

with infinite dimensional matrices

Akm′ ,jm = j(j + 1)δkjδm′m, Bkm′ ,jm =
∫

dΩ eχ(θ,ϕ) Y∗km′(θ, ϕ)Yjm(θ, ϕ). (36)

As usual, the measure of integration over the angle variables is determined by dΩ =
sin θdθdϕ.

One of the ways to resolve the generalized eigenvalue problem we are dealing with
is to use numerical computations. However, even in this case, we have to establish an
upper bound for j in (35) to reduce the task to the generalized eigenvalue problem of n× n
matrices A and B

A · c = C B · c, (37)

where

n =
jmax

∑
j=0

(2j + 1) = (1 + jmax)
2. (38)

The upper bound value jmax is chosen in such a way that the eigenvalues and the
corresponding eigenvectors do not visibly change upon jmax increasing.
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Another simplification can be reached with restoring a part of the spherical symmetry,
that is the axial symmetry. Viz., the metric potential χ, generally dependent on two
spherical angles, becomes a function of just one polar angle θ.

In this case, Equation (13) simplifies to

1
sin θ

d
dθ

(
sin θ

dχ(θ)

dθ

)
+ 2
(

eχ(θ) − 1
)
= 0, (39)

so one can establish that (see Appendix A)

eχ(x) =
(2ab)2

(
1−x
1+x

)a

(1− x2)
(

b2 +
(

1−x
1+x

)a)2 , x = cos θ, (40)

where the constants a = 1 + α and b = 1 + β are restricted to be real and positive. (The
case of trivial deformation parameters α and β corresponds to the spherical symmetry of
the background metric.) Additional restriction on the deformation parameters is required
by finiteness of the metric potential eχ(θ) in the endpoints of the θ fundamental domain
θ ∈ [0, π]. According to this requirement, α has to be non-negative.

Axial symmetry makes possible to further separate the angular variables

Θ→ Θm(θ, ϕ) = eimϕSm(θ), Θm(θ, ϕ) = Θm(θ, ϕ + 2π)→ m ∈ Z, (41)

so that the master Equation (24) is reduced to the enlargement of general Legendre equation:

d
dx

[
(1− x2)

dSm(x)
dx

]
+

[
ν(ν + 1)eχ(x) − m2

1− x2

]
Sm(x) = 0, x = cos θ. (42)

Consequently, the matrices (36) are reduced to

Am
ij = j(j + 1)

2(j + m)!
(2j + 1)(j−m)!

δij, Bm
ij =

∫ 1

−1
dx eχ(x)Pim(x)Pjm(x), (43)

and the generalized eigenvalue problem (35) turns into

∞

∑
j=|m|

Am
ij cj = C

∞

∑
j=|m|

Bm
ij cj. (44)

Solving for Equation (44), we arrive at the following conclusions: the eigenvalues ν’s
are labeled with two indices—l ≥ 0 and m = {−l, . . . , l}—with the trivialization condition
νlm → l ∈ Z once χ→ 0; numerics also give νl0 = l and νl,−m = νlm. Computations of the
separation constant Clm = νlm(νlm + 1) for different values of the admissible deformation
degrees α and β show the independence of the results from the value of β. See Table 1 as
an example. Therefore, νlm do not depend on β and are solely functions of the parameter α.
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Table 1. Values of Clm = νlm(νlm + 1) with l = 1, m = 1 for different deformation degrees α and β

obtained by solving for Equation (44) with different cut-off values of jmax.

α β jmax = 42 jmax = 72

α = 0.001 β = 0.001 1.99873 1.99700
α = 0.001 β = 0.01 1.99873 1.99700
α = 0.001 β = 0.1 1.99873 1.99700
α = 0.001 β = 1.0 1.99873 1.99700

α = 0.01 β = 0.001 1.97164 1.97039
α = 0.01 β = 0.01 1.97164 1.97039
α = 0.01 β = 0.1 1.97164 1.97039
α = 0.01 β = 1.0 1.97164 1.97039

α = 0.1 β = 0.001 1.73554 1.73553
α = 0.1 β = 0.01 1.73554 1.73553
α = 0.1 β = 0.1 1.73554 1.73553
α = 0.1 β = 1 1.73554 1.73553

α = 1.0 β = 0.001 0.74999 0.74999
α = 1.0 β = 0.01 0.74999 0.74999
α = 1.0 β = 0.1 0.74999 0.74999
α = 1.0 β = 1 0.74999 0.74999

Next, fixing b = 1 and a = 1+ α, we observe from numerics that first eigenvalues with
l, m = 1, 2 as functions of a positive parameter α obey the inequality νlm ≤ l (see Figure 3).
This trend gets preserved for other combinations of (l, m) in νlm, as well. (Cf. Table 2.)

Figure 3. Eigenvalues νlm for l = 1, 2 and m ≤ l.

Finally, comparing different values of νlm for different values of the deformation
degree α, we observe that (see Table 2)

νlm = νl−1,m + 1. (45)

Therefore, we conclude that the angular momentum is quantized, but not in integers.
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Table 2. Values of νlm (l = 0, . . . , 5, m = 0, . . . , 4) for different values of the deformation parameter α.

α = 0.001 α = 0.01 α = 0.1 α = 1 α = 2 α = 3

ν00 0 0 0 0 0 0
ν10 1 1 1 1 1 1
ν20 2 2 2 2 2 2
ν30 3 3 3 3 3 3
ν40 4 4 4 4 4 4
ν50 5 5 5 5 5 5

ν11 0.999 0.990 0.909 0.5 0.333 0.25
ν21 1.999 1.990 1.909 1.5 1.333 1.25
ν31 2.999 2.990 2.909 2.5 2.333 2.25
ν41 3.999 3.990 3.909 3.5 3.333 3.25
ν51 4.999 4.990 4.909 4.5 4.333 4.25

ν22 1.9980 1.9802 1.8181 1 0.666 0.5
ν32 2.9980 2.9802 2.818 2 1.666 1.5
ν42 3.9980 3.9802 3.818 3 2.666 2.5
ν52 4.9980 4.9802 4.818 4 3.666 3.5

ν33 2.9970 2.9702 2.727 1.5 1.0 0.75
ν43 3.9970 3.9702 3.727 2.5 2.0 1.75
ν53 4.9970 4.9702 4.727 3.5 3.0 2.75

ν44 3.9960 3.9604 3.6363 2 1.333 1.0
ν54 4.9960 4.9604 4.6363 3 2.333 2.0

We end up this section with an analysis of Table 2, which results in the following
analytical expression for νlm(α):

νlm(α) = l − α

1 + α
m. (46)

The obtained expression is in the fine agreement with the previously numerically
computed functional dependences of νlm on α (Figure 3). Let us also notice the coincidence
in νlm = νl+k,m+s values for integers (k, s), determined by k(1 + α) = αs and restricted by
l + k ≥ m + s. For instance, ν00 = ν33, ν20 = ν43 = ν66, ν21 = ν44, ν31 = ν54 = ν77, and
so on.

5. The Grey-Body Factor: Schwarzschild vs. Distorted Schwarzschild

Now, let us turn to the radial part of the d-wave perturbations described by
Equation (27). Solving for these equations analytically is hampered due to a complicated
form of the effective potentials. Typically, one has to find solutions either numerically
(as it was done in Ref. [43]), or to follow the procedure of finding solutions in different
coordinate domains—the near, mid and far zones (see, e.g., Ref. [38], for a review)—with
subsequent constructing the united solution in different approximations (as, for instance,
in Refs. [23,25–29]). In the context of the scattering problem, solutions to Equation (27)
are used in computing different cross-sections, one of important ingredients of which is
the so-called grey-body factor (GBF). To compute this characteristic, one has to solve a
Schrödinger-like Equation (27) with the specified boundary conditions (see, for example,
Ref. [38]), which especially determine the transmission coefficient of an ingoing wave
through the barrier of effective potentials (28) or (29). Then, the grey-body factor is
γ(ω) = |T(ω)|2, where T(ω) stands for the transmission coefficient. The complete
transmission means the complete absorption of incoming waves by a BH.

To figure out hallmarks of scattering/absorption in the background of quasi-
spherical/distorted BHs, we will compare the spherically symmetric case (here, we follow
the approach of Ref. [43]) with that of deformed but axially symmetric. Looking at Figure 4
with the results of numerics for the spherically symmetric (Schwarzschild) background
(which reproduce in part data in Figures 2 and 8 of Ref. [43]), one may notice that:
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• the scalar s-wave (left panel) has the complete transmission at the lowest admissible
value of frequency ω;

• increasing l in the scalar mode perturbations (p- and d-modes on the left panel)
requires higher values of ω to reach the complete transmission;

• basic axial gravitational perturbations (d-waves) (right panel) reach the complete
transmission at lower, w.r.t. l = 2 mode of axial electro-magnetic (EM) and scalar
perturbations, frequency.

Figure 4. (Left panel) The grey-body factors γ(ω) of different modes (l = 0, 1, 2) of the scalar perturbation over the
Schwarzschild background. (Right panel) Comparison of γ(ω) of the basic axial d-wave perturbation (l = 2) to the
corresponding mode (with l = 2) grey-body factors (GBFs) of the scalar and axial electro-magnetic (EM) perturbations over
the Schwarzschild background.

For the distorted BH background (15) with the metric potential (40), the deformation
parameters of which are chosen to be b = 1 and a = 1 + α = 1 + 0.2, putting the data for
the same type of waves on plots, we encounter important differences in compare to the
previously considered cases (see Figure 5). We observe that:

• for each value of l (recall, l ∈ Z is a non-negative degree of the corresponding spherical
harmonics in the series expansion (34)), there are l + 1 different values of the grey-body
factor γ(ω);

• γ(ω) gets increased with increasing the deformation degree α;
• for a fixed l, the GBFs with the maximal projection value m = l reach the complete

transmission at the lowest values of ω.
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Figure 5. (Left panel) Splitting the grey-body factors γ(ω) for different modes (l = 0, 1, 2) of the scalar perturbation in the
distorted BH background. (Right panel) Comparison of the GBFs of the basic axial d-wave perturbation (l = 2) to that of
the scalar and axial electro-magnetic (EM) perturbations over the distorted BH background. The deformation parameter α is
equal to 0.2.

6. Quasinormal Modes of a Quasi-Spherical Axisymmetric Black Hole

As we have noted above, the scattering problem for an axially-symmetric neutral
BH is completely determined by a single parameter—the deformation degree α—which is
required to be non-negative without any additional limitations. However, new restrictions
on α could appear from the demand on stability of the BH spacetime background against
small perturbations. That is fully determined by the quasinormal modes (QNMs).

Recall that the quasinormal modes (see, e.g., Refs. [77–81,83,86–95]) correspond
to solutions to Equations (27) and (32), which satisfy the specific boundary conditions
(cf. [77,79,80]):
ingoing waves at the horizon

Qs(x) ' e−iωr∗ , r∗ → −∞ (r → r+), (47)

and outgoing waves at the spatial infinity

Qs(x) ' eiωr∗ , r∗, r → +∞ flat space,

Qs(x)→ 0, r∗, r → +∞ AdS space .
(48)

For fixed values of spin s and (projection of) angular momentum (l, m), there are
infinite number of QNMs, which are labeled by the overtone number n; the least damped
(fundamental) QNMs correspond to n = 0.

Generally, the QNMs are complex and their imaginary part can be positive or negative.
It is easy to verify [79,80] that positivity in the imaginary part of any QNM results in
the instability of the background geometry. Indeed, following Refs. [79,80], we will find
solutions to the Schrödinger-like equation[

∂2

∂r2∗
+ ω2 −Vs(r)

]
Qs = 0, r∗ ∈ (−∞,+∞), (49)

with the “wave-function”
Qs(r) = e−iωr∗φs(r), (50)
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and figure out restrictions on the admissible complex frequencies. To maintain the bound-
ary conditions (47), (48), the “amplitude” φs(r) should satisfy

φs(r) ' const, r → r+, (51)

and

φs(r)→ e2iωr∗ , r∗, r → +∞ flat space,

φs(r)→ 0, r∗, r → +∞ AdS space .
(52)

Plugging the ansatz (50) into Equation (49), for inherently complex valued φs(r),
we get

f
d2φs

dr2 +

(
d f
dr
− 2iω

)
dφs

dr
− Vs

f
φs = 0, f = 1− 2M

r
+ κ2r2. (53)

Now, one multiplies both sides of (53) by φ∗s (r) and integrates over [r+, ∞):∫ ∞

r+
dr
(

φ∗s
d( f ∂rφs)

dr
− 2iωφ∗s

dφs

dr
− Vs

f
|φs|2

)
= 0 . (54)

Further integration by parts on account of the boundary conditions (51), (52) and the
asymptotic behaviour of the red-shift factor f (r) at the integration end points results in the
following expression for the first term of the integrand in (54):

∫ ∞

r+
dr

d(φ∗s f ∂rφs)

dr
= φ∗s f

dφs

dr

∣∣∣∣r=∞

r=r+
=

{
2iω flat
0 AdS

. (55)

Hence,

∫ ∞

r+
dr

(
f
∣∣∣∣dφs

dr

∣∣∣∣2 + 2iωφ∗s
dφs

dr
+

Vs

f
|φs|2

)
=

{
2iω flat
0 AdS

, (56)

and, for the imaginary part of (56), we obtain

∫ ∞

r+
dr
(

ωφ∗s
dφs

dr
+ ω∗φs

dφ∗s
dr

)
=

{
ω + ω∗ flat
0 AdS

. (57)

Using the integration by parts for the left-hand-side (l.h.s.) of (57) once again results in

∫ ∞

r+
dr
(

ωφ∗s
dφs

dr
+ ω∗φs

dφ∗s
dr

)
= (ω−ω∗)

∫ ∞

r+
φ∗s

dφs

dr
dr + ω∗|φs(r)|2

∣∣∣∣r=∞

r=r+
, (58)

so that ∫ ∞

r+
φ∗s

dφs

dr
dr =

{
ω+ω∗ |φs(r+)|2

ω−ω∗ flat
ω∗ |φs(r+)|2

ω−ω∗ AdS
. (59)

Lastly, substituting (59) into the l.h.s. of (56) leads to [79,80]

∫ ∞

r+
dr

(
f
∣∣∣∣dφs

dr

∣∣∣∣2 + Vs

f
|φs|2

)
=

{
− |ω|

2|φs(r+)|2+(Re ω)2+(Im ω)2

Im ω flat

− |ω|
2|φs(r+)|2
Im ω AdS

. (60)

Therefore, for a non-negative in the domain [r+, ∞) potential Vs(r) (cf. Figures 1 and 2
with effective potentials in spherically-symmetric spacetimes), the l.h.s. of (60) is non-
negative. The same is required for the right-hand-side of this expression that means
negativity of the denominator: Im ω < 0. Once the imaginary part of frequencies becomes
positive, it corresponds to an unphysical solution because fields begin exponentially growth
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at spatial infinity and near the horizon. Put differently, this situation occurs when the
effective potential Vs(r) turns out to be negative within the physical domain [r+, ∞).

Below, we will explore a possibility to find negative branches of the effective poten-
tials for small perturbations over the quasi-spherical neutral BH background with axial
symmetry in Minkowski and AdS spacetimes.

6.1. Flat Spacetime

In Minkowski spacetime with f (r) = 1− r+/r, the effective potential (see (33) for
κ2 = 0)

Vs =
f (r)
r2

(
(1− s2)

r+
r

+ ν(ν + 1)
)

(61)

could be negative only for odd (axial) gravitational perturbations with s = +2 (clearly,
the polar tensor perturbations with the Zerilli potential (29) do not satisfy this condition);
it happens for

ν(ν + 1) <
3r+

r
, r ∈ [r+, ∞). (62)

For ν’s satisfying (62), V+2(r) is negative within the interval r ∈ [r+, r0) with r0 =
3r+

ν(ν+1) . Then, from r0 > r+, we get the following condition on the separation constant:
ν(ν + 1) < 3, or ν < 1.303. Eigenvalues ν2m smaller than the critical value νcr = 1.303 produce
the negative effective potential. Recall that, in the spherically symmetric case, ν→ l ≥ 2, so
that the separation constant lowest value is l(l + 1) = 6. Hence, the effective potential Vs(r)
for s = 0, 1,±2 is always positive. According to (59) that gives Im ω < 0 and the standard,
Schwarzschild background is stable against small perturbations [70,71,77].

In contrast, small perturbations over a quasi-spherical axially-symmetric BH back-
ground are characterized by three different values of νlm with l = 2, viz., ν20, ν21, ν22. Their
dependences on the deformation degree α are depicted in Figure 3 in accordance to the
relation (46). One can notice that there are values of α for which ν22 and ν21 become smaller
of the critical value νcr = 1.303; hence, we can expect the appearance of QNMs with a
positive imaginary part.

To find the QNMs, we follow the semianalytical Padé approximation [88,94,95], im-
proving the standard Wentzel-Kramers-Brillouin (WKB) technique, and the numerical
Leaver method [90] based on the continued fraction. As we have discussed, we are mainly
interested in values of the QNMs frequencies corresponding to tensor perturbations with
eigenvalues ν20, ν21, ν22. The eigenvalue ν20 coincides with that of the spherically symmet-
ric case; therefore, all possible QNMs (fundamental and overtones) related to this case will
have the negative imaginary part. The other QNMs for eigenvalues ν21, ν22 (of frequency
ω21 and ω22, respectively) are functions of the deformation degree α. The corresponding
frequencies (actually, their real and imaginary parts) are shown in Figure 6. We find that, for
α > 1, the imaginary part of ω22 becomes greater than zero (see Figure 7). The critical value
of the deformation parameter α = 1 corresponds to ν22 = 1 (cf. (46)), so that the domain
of negativity of V+2(r) is determined by [r+, 3

2 r+). Increasing α, this domain increases;
Im ω22 will increase, too. For some values of α > 1, the imaginary parts of other tensor
QNMs also become positive. To sum up, above the critical value of the deformation degree
α = 1, the spacetime geometry of a distorted/quasi-spherical BH becomes unstable against
small tensor perturbations.
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Figure 6. (Left panel) The real part of the lowest odd gravitational perturbations ω2m(α) over a quasi-spherical axially-
symmetric neutral BH background in flat spacetime. (Right panel) The imaginary part of ω2m(α) under the same conditions.

Figure 7. The imaginary part of ω22(α) in more detail.

6.2. AdS Spacetime

Now, turn to AdS spacetime. Here, we have f (r) = 1 + r2κ2 − r+
r (1 + κ2r2

+), and the
effective potential of odd perturbations

Vs =
f (r)
r2

(
(1− s2)

(
2κ2r + (1 + κ2r2

+)
r+
r

)
+ ν(ν + 1) + 3s(s− 1)κ2r2

)
(63)

could still be negative just for s = +2 (the effective potential for even tensor perturbations (29)
is positive for any νlm ≥ 2). The condition of V+2(r) negativity is

ν(ν + 1) < (1 + κ2r2
+)

3r+
r

, (64)

and V+2(r) < 0 within r ∈ [r+, r0), where r0 =
3r+(1+κ2r2

+)
ν(ν+1) (r0 > r+). Therefore, for eigen-

values ν, we get
ν(ν + 1) < 3(1 + κ2r2

+). (65)

Apparently, the result strongly depends on the specific value of κ2r2
+ (r+ is the radius

of the event horizon), so now ν depends on the size of a BH. In general, the value of νcr in
AdS becomes higher than that of Minkowski spacetime; hence, the QNMs with a positive
imaginary part may appear for smaller values of α.



Physics 2021, 3 34

To compute the tensor QNMs, here, we will follow the approach of Ref. [79]. In
addition, we will take into account the following features of the fundamental (i.e., least
damped) QNMs of a Schwarzschild-AdS BH background, marked in Ref. [81]:

• for large (with r+κ ' 100) and intermediate (with r+κ ' 1) BHs the fundamental
quasinormal modes are purely imaginary and scale as ω/κ ' (r+κ)−1;

• for small BHs the fundamental frequencies get non-trivial real and imaginary parts;
the latter behaves as Im ω ' −r+. In the limit r+ → 0, the QNMs turn into normal
modes of AdS spacetime, determined by ωAdS

l = 2n + l + 2.

In the background of a quasi-spherical axisymmetric neutral BH, we have three
different tensor QNMs—of frequencies ω20, ω21 and ω22—one of which, ω20, coincides
with that of the standard spherically-symmetric AdS-Schwarzschild BH. The other two,
ω21 and ω22, become functions of the deformation degree α. It turns out that, similar
to the spherically-symmetric case, frequencies of the fundamental QNMs for large and
intermediate BHs come to be purely imaginary. Their functional dependences on α are
plotted in Figure 8. Looking at the left panel of Figure 8, one may notice that, for a chosen
deformation degree α, the least damped QNM corresponds to m = 2 that gives the smallest
value of ν. Values of the deformation degree α = 0.2 and α = 0.5 still give the negative
imaginary part of the QNM frequencies. However, increasing the value of α may trigger
flipping the sign of Im ω. Indeed, in the right panel of Figure 8, one finds dependences
of Im ω21 and Im ω22 for a large BH (with κr+ = 10.0) on the parameter α. Starting from
α > 1, Im ω22 turns out to be positive. It corresponds to ν22 < 1. In contrast, Im ω21
remains negative, even for those α for which V+2(r) < 0.

Figure 8. (Left panel) Imaginary parts of ω2m as functions of r+κ. (Right panel) Imaginary parts of
Quasinormal modes (QNMs) of frequencies ω2m (m = 1, 2) as functions of the deformation degree α.

In addition, in the left panel of Figure 8, we can find that pure imaginary QNMs of
large and intermediate BHs depend on r+κ quite similarly. This observation allows us to
conclude that, for any fixed value of α, one can find the spherically symmetric counterpart
(of large and intermediate quasi-spherical BHs) with a larger value of the horizon loca-
tion r+, which possesses the same fundamental QNMs. The exception is the ω22 mode,
the imaginary part of which becomes positive for α > 1, so such a correspondence does
not take place.

Examining the QNMs of small AdS-Schwarzschild BHs, we find they behave much
like the standard spherically-symmetric case. One observes that Im ω ' −r+ within
the range r+κ ∈ [0.3; 0, 8] (right panel of Figure 9). Once r+ → 0, the real parts of the
fundamental QNMs are determined by the expression for normal fundamental modes of
empty AdS spacetime, ωAdS = l + 2, in which l is replaced with ν (left panel of Figure 9).

Therefore, as in the case of flat spacetime, we have established the critical value of
the deformation degree α = 1, below which the background geometry of distorted/quasi-
spherical BHs is stable against small tensor perturbations, but above which the background
geometry of large quasi-spherical BHs becomes unstable.
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Figure 9. Functional dependences on r+κ of real (left panel) and imaginary (right panel) parts of
the fundamental QNMs of frequencies ω2m (m = 1, 2). (Small BHs; the deformation degree is fixed to
be α = 0.2.) AdS-S stands for Anti-de Sitter-Schwarzschild; AdS-S LM is the shorthand notation of
Anti-de Sitter-Schwarzschild with the Liouville Mode (distorted BH).

7. Summary and Open Questions

Let us make a brief sum up of our achievements and findings. We have discussed the
scattering problem for small perturbations—scalar, vector, and tensor—on quasi-spherical
BHs in Minkowski and AdS spacetimes. Studying the problem, in general, has resulted in
the following observations:

• There is a deep connection between distorted and quasi-spherical static BHs. To be pre-
cise, we have established the generalization of the Weyl-Erez-Rosen solution to the flat-
space Einstein vacuum equations that is reduced to the quasi-spherical Schwarzschild
BH solution, the metric potential of which obeys the Liouville equation.

• The obtained BH spacetime is of type D in the Petrov classification. It makes it possible,
despite the spherical symmetry breaking, to separate the variables in dynamical
equations of small perturbations and to arrive at the generalized Regge-Wheeler-
Zerilli equations, as well as to the generalization of the spherical harmonics equation.

• The outcomes of the spherical symmetry breaking are: non-integer eigenvalues in the
generalized spectral problem, coming from the angular part of dynamical equations
of small perturbations; their multi-dimensional character for each scattering mode,
when the dimension of the appropriate set of eigenvalues is determined by the degree
of the corresponding spherical harmonics; and last, the functional dependence of the
generalized eigenvalues on the deformation degree parameters.

Restoring a part of the spherical symmetry—the axial symmetry of the spacetime
background—relevant for a bunch of astrophysical problems has led us to the follow-
ing findings:

• The angular dependence of corresponding quantities is further reduced to the de-
pendence on the single polar angle; the spherical Liouville equation for the metric
potential turns into the enlargement of general Legendre equation, which can be
explicitly solved.

• It turns out that the eigenvalues of the generalized spectral problem depend solely on
one parameter of the deformation degree after all. And this functional dependence
has been recovered in analytical form. In addition, it has been observed that the
generalized eigenvalues are quantized in non-integers.

• For every scattering mode corresponding to the appropriate degree of spherical
harmonics l, there are l + 1 different values of the grey-body factors, properties of
which are determined by the deformation degree. For instance, we have observed
that the grey-body factors increase with increasing the value of the deformation.

• Studying the issue of stability of BH backgrounds, we have found that the value of
the deformation degree equal to one is the critical value for the stability of the axially
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symmetric quasi-spherical Schwarzschild BH in Minkowski and AdS spacetimes
against the specific small tensor perturbations.

• We also find that, for large and intermediate AdS-Schwarzschild quasi-spherical BHs,
the fundamental tensor QNMs of any fixed admissible value of the deformation
degree are the same as that of a spherically-symmetric BH with a larger value of the
event horizon along the radial direction.

Therefore, we have observed significant differences in scattering characteristics of
gravitational waves caused by losing the spherical symmetry of the background spacetime
of their propagation. It would be interesting to find signs of the established effects in the
data of real astrophysical observations, at least for slowly rotating systems.

Finally, we will touch upon the following point. It is well known the tidal defor-
mation of compact objects in double neutron star systems is described by the famous
I-Love-Q relation; see Refs. [96,97] for reviews. It seems to be important to figure out
any possible relation between the effective metric used in Refs. [96,97] and that of the
distorted Kerr. Another direction of further studies is related to recovering the metric of
a quasi-spherical rotating BH and studying the scattering processes in a more realistic
setup. Our preliminary investigations showed the fail of the Newman-Janis algorithm [98]
(also see Refs. [99–103] and Refs. therein) upon constructing the rotating extension of a
quasi-spherical static metric, mostly used in the paper. Perhaps, the observed here connec-
tion between distorted and quasi-spherical BHs will make possible to complete this task
in another way. We hope to continue studies on this and other related topics and report
results in forthcoming publications.
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Appendix A. Spherically-Symmetric and Axially-Symmetric Solutions to the
Liouville Equation

First, let us briefly discuss the way to solve the spherical Liouville Equation (13) in
terms of unconstrained functions. See Appendix B of Ref. [64] for more details.
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To this end, it is convenient to turn to the stereographic projection plane coordinates

z = eiϕ tan
θ

2
, z̄ = e−iϕ tan

θ

2
. (A1)

Then, the angular part of S2 line element, ds2 = dθ2 + sin2 θdϕ2, becomes the Fubini-
Study metric of CP1 complex projective space:

ds2 =
4

(1 + zz̄)2 dz dz̄, (A2)

and the angular part of the Laplacian (14) is simplified up to

∆θ,ϕ =
1
4
(1 + zz̄)2∂z∂z̄. (A3)

Consequently, the spherical Liouville Equation (13) for χ(θ, ϕ) takes the form of

1
4
(1 + zz̄)2∂z∂z̄χ(z, z̄) + 2eχ(z,z̄) − 2 = 0 (A4)

and can be solved in terms of arbitrary complex analytical function F(z) [63,64]:

χ(z, z̄) = −2 ln[F(z)F̄(z̄) + 1] + ln
[

dF(z)
dz

dF̄(z̄)
dz̄

]
+ ln(1 + zz̄)2. (A5)

Second, let us survey the way of getting expression (40) in the case of axial symmetry
of a quasi-spherical BH. Turning to the isothermal coordinates (x, y) in z, viz. z = x + iy,
for (A4), we obtain

1
4
(1 + x2 + y2)2

(
∂2χ

∂x2 +
∂2χ

∂y2

)
+ 2eχ(x,y) − 2 = 0 . (A6)

The Fubini-Study metric (A3) comes to

ds2 = eχ0(x,y)(dx2 + dy2), (A7)

with
eχ0(x,y) ≡ 4

(1 + x2 + y2)2 , (A8)

or

χ0(x, y) = 2 ln
[

2
1 + x2 + y2

]
. (A9)

Next, we define a function Φ(x, y) as

χ(x, y) = Φ(x, y)− χ0(x, y) = Φ(x, y)− 2 ln
[

2
1 + x2 + y2

]
. (A10)

Substituting (A10) into (A6) leads to the following equation for Φ(x, y):

1
4

(
1 + x2 + y2

)2[
∂2Φ
∂x2 +

∂2Φ
∂y2 + 2eΦ(x,y)

]
= 0 ;

∂2Φ
∂x2 +

∂2Φ
∂y2 + 2eΦ(x,y) = 0. (A11)

Now, the axially-symmetric case corresponds to demanding Φ(x, y) to solely depend
on the radial coordinate ρ, related to (x, y) via ρ2 = x2 + y2. Hence, Φ(x, y) → Φ(ρ),
and Φ(ρ) obeys

d2Φ(ρ)

dρ2 +
1
ρ

dΦ(ρ)

dρ
+ 2eΦ(ρ) = 0. (A12)
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With Φ = ln f (ρ), Equation (A12) transforms into

f
d2 f (ρ)

dρ2 −
(

d f (ρ)
dρ

)2

+
f
ρ

d f (ρ)
ρ

+ 2 f 3(ρ) = 0, (A13)

the solution to which is

f (ρ) =
2 + C1

2ρ2 cosh2
(√

2+C1(C2−ln ρ)√
2

) . (A14)

Turning to Equation (A10) back, for χ(ρ), we have

χ(ρ) = ln

 (2 + C1)(1 + ρ2)2

8ρ2 cosh2
(√

2+C1(C2−ln ρ)√
2

)
. (A15)

Finally, with inserting new constants a =
√

1 + C1
2 , b = eaC2 and replacing ρ with its

functional dependence on θ, ρ = tan θ
2 (cf. (A1)), we arrive at

eχ(θ) =
( a

b

)2
tan2a−2 θ

2

(
1 + tan2 θ

2

(1 + b−2 tan2a θ
2 )

)2

. (A16)

On account of the trigonometric identity tan2 θ/2 = (1 − x)/(1 + x), x = cos θ,
the obtained solution (A16) to the Liouville equation in polar coordinates turns into
expression (40).
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