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Abstract: Electrically driven adsorption, electroadsorption, is at the core of technologies for water
desalination, energy production, and energy storage using electrolytic capacitors. Modeling can
be crucial for understanding and optimizing these devices, and hence different approaches have
been taken to develop multiple models, which have been applied to explain capacitive deionization
(CDI) device performances for water desalination. Herein, we first discuss the underlying physics of
electroadsorption and explain the fundamental similarities between the suggested models. Three CDI
models, namely, the more widely used modified Donnan (mD) model, the Randles circuit model,
and the recently proposed dynamic Langmuir (DL) model, are compared in terms of modeling
approaches. Crucially, the common physical foundation of the models allows them to be improved
by incorporating elements and simulation tools from the other models. As a proof of concept,
the performance of the Randles circuit is significantly improved by incorporating a modeling element
from the mD model and an implementation tool from the DL model (charge-dependent capacitance
and system identification, respectively). These principles are accurately validated using data from
reports in the literature showing significant prospects in combining modeling elements and tools to
properly describe the results obtained in these experiments.

Keywords: capacitive deionization; desalination; dynamic Langmuir model; model development;
modified Donnan model; Langmuir isotherm; Randles circuit; system identification

1. Introduction

Because the global demand for potable water, energy, and energy storage is expanding [1],
it is imperative to develop current technologies and innovate new ones for wider accessibility.
Supercapacitors [2–4] (electrolytic capacitors) have received a lot of attention because of their high
capacity for storing energy by adsorbing ions into highly porous electrodes [2]. Because supercapacitors
are based on ion adsorption in porous electrodes, electrically driven adsorption (electroadsorption) is
at the core of electrolytic capacitor technologies.

When a highly porous material with a large surface area is immersed in a liquid containing high
concentration of ions, applying an external voltage (inducing an electric field between the solution
and material) accelerates the adsorption of ions on the electrode surface [5,6]. Models are built to
understand electroadsorption processes as well as ion transport through pores [7], thus generally
leading to the prediction of ion adsorption and thereby assisting in improving the performance of
electroadsorption devices.

In capacitive deionization (CDI) [8–11], the electroadsorption process (from saline water) takes
place in a cell comprising two electrodes separated by a spacer (Figure 1), and the ion adsorption
is utilized to remove ions from the water [7]. Modeling of CDI processes has evolved in different
directions [9,12–15], wherein models consider the same underlying physics but with widely varying
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approaches for its implementation. Limited crossover in formulation and implementation limits their
potential usefulness, meaning they could be profitably and integrally developed by incorporating
ideas and tools from the other modeling approaches.
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Figure 1. A schematic representation of capacitive deionization (CDI) cell typically comprising two
porous electrodes separated by a spacer. When a potential is applied across the electrodes, the ions in
the water flowing through such device adsorb on the electrodes.

Herein, we discuss the underlying model-independent physics governing electroadsorption.
Primarily, this is used as a starting point for comparing the approaches and tools used in three
different CDI models: the modified Donnan (mD) model [7–9,16–18], the Randles circuit [12], and the
dynamic Langmuir (DL) model [13,19,20]. Crucially, we add value by discussing how tools used in
the respective models could be implemented to enhance the other models. As a proof of concept,
a system identification method from the DL model is implemented to significantly improve simulation
performance of the Randles circuit.

2. Materials and Methods

2.1. Theory

This section discusses the fundamental physics involved in electroadsorption processes.
Mainly, the principles behind the Randles circuit, mD, and DL modeling approaches are discussed and
compared. Finally, we discuss the differences in how these models are implemented, including how
fitting parameters are extracted.

2.1.1. The Physics Behind the Models

In CDI devices, highly porous electrodes with high surface area are used for maximum adsorption
sites for the ions. Let us consider a piece of porous material thoroughly soaked with saltwater [21–23]
(Figure 2). Now, activated carbon cloth (ACC) is a popular choice of electrode material [23–25].
To clarify the porous structure, note that ACC, for instance, has been shown to comprise ~70% pores [7],
which can be classified according to size (diameter d) as micropores (d < 2 nm), mesopores (2 nm < d <

50 nm), or macropores (d > 50 nm) [26]. Thus, the ACC cloth can be seen as an amalgamation of fibers
with tiny holes (micro- and mesopores) and open spaces between them (macropores).
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Figure 2. A schematic illustration showing a zoomed-in view (two carbon fibers from the knitted 
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area. 
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Figure 2. A schematic illustration showing a zoomed-in view (two carbon fibers from the knitted
carbon cloth) of an electrode. The macropores in the electrode are the primary pathways for the water
flow. Most of the ion adsorption occurs in the micropores because they carry most of the electrode area.

Water naturally passes through the open space, making the macropores the primary pathways
for water flow, while the micropores intuitively hold most of the surface area because of their high
area-to-volume ratio, rendering them suitable as the primary location for salt adsorption [7]. Most of
the adsorption is thus thought to occur in pores smaller than 2 nm, and around half of the micropore
volume constitutes of pores smaller than 1 nm (see Figure S3 in Ref. [27]). Incidentally, the micropores
and hydrated sizes of atoms are quite comparable (hydrated diameter of sodium is 0.72 nm) [28],
suggesting that few atoms can fit neck-to-neck across the diameter of a single micropore (for a more
thorough discussion regarding ion and pore sizes, see [2]).

When a potential difference is abruptly induced between the pore material and the solution,
ions will rapidly begin to electroadsorb on the electrodes by migrating to the micropores because of
the induced electric field, cations adsorbing on the anodes, and vice versa. The exact performance
varies between electrodes; however, such porous electrodes hold around mads = 10 mg salt per gram
of electrode [25,29–31], while the effective specific surface area is around A = 1000 m2/g [22,32,33].
To put this in perspective, let us consider the fraction of the projected area of adsorbed ions to the total
electrode area, denoted by η (Equation (1)). In this equation, MNaCl is the NaCl molar weight, NA is
the Avogadro number, and rx is the hydrated radius of species x. To clarify, π

(
r2

Na+ + r2
Cl−

)
is thus the

projected area per atom, scaled to mole through NA, scaled to weight through MNaCl. This area per
weight is compared to the mass adsorption, scaled by the electrode weight per area A. Using hydrated
radii from [28], the hypothetical fractional coverage if all adsorbed ions are stacked neck-to-neck is
thus computed to 8%.

η = mads
NAπ
(
r2

Na+ + r2
Cl−

)
MNaClA

= 8% (1)

Ideally, electroadsorption is the only process occurring in the pores. However, Faradaic reactions
(carbon oxidation [34]) can lead to a transfer of charge from the electrode through the solution [16].
In addition, it has been generally found that micropores can carry a net charge, which is balanced
by ions from the solution even before an external potential is applied, altering the point of zero
charge (PZC) [8,35]. Some of these balancing ions present in the micropores (well-known Langmuir
adsorption) are expelled upon the application of electric field [7]. This means not all charges induced
on the electrodes will have corresponding counterions adsorbed from the solution [33,36–38].

2.1.2. From Physics to Model

It has been said that “all models are wrong but some are useful” [39]. Generally, a model is a
simplification representing some aspects of reality, and the value of a model is logically judged not
purely by how closely it matches reality but rather how well it completes the task for which it was
constructed. Thus, models can be constructed from different starting points in terms of modeling tools.
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Several models have been constructed considering an electric circuit with a capacitive
element [40–42] as the electrode together with the ions constitutes an electrolytic (double layer)
capacitor. Thus, a Randles circuit [12] accounts for storage through a capacitive element C, the time
scales of adsorption through a resistive element R1, and charge leakages through a second resistive
element R2 (Figure 3). This basic principle can also be specified further through a transmission line
model where more elements are added [43–45]. Interestingly, such a model might be able to calculate
charge storage over time [12], even though the physics at a pore-scale level is ignored and the impact
of changing parameters, such as the ion concentration, cannot be predicted.
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Figure 3. A simple circuit for describing the dynamics of a charging electrode. (a) During charging,
the capacitive element C relates to how much charge can be stored, the series resistance R1 governs the
rate of the current, and the resistance R2 determines the charge leakage. Vext is the applied voltage.
(b) When the voltage is removed, the capacitive element acts as a battery, and the stored charge is
released. The charge can be released either through the external circuit (R1) or as leakage current
through the resistive element (R2).

Models starting from a pore-scale level often consider an electric double layer (EDL) being formed
near the electrode surface [46]. The EDL theory has developed over time. The early Helmholtz model
viewed ions as being able to form a monolayer on the electrode surface [47]. Gouy and Chapman
argued that diffusive forces should create a concentration gradient out from the electrode surface [48],
and Stern introduced the notion of a thicker layer, the Stern layer, close to the surface followed by a
less concentrated region, the diffuse layer [47]. Finally, in the modified Donnan model [7–9,16–18], it is
recognized that the micropores are so small that the diffuse layers overlap, meaning it is enough to
only consider a Stern layer [49] (Figure 4).
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Figure 4. A detailed view of the interface between a micropore and the surrounding macropore. In the
Donnan model, the water flows through the macropores, which are net uncharged. The ion adsorption
occurs mainly in the micropores (the cavity in the image) and is enhanced when voltage is applied.
Mathematically, the ions are considered to form a small Stern layer against the pore walls (circled green in
the image).

Mathematically (see full model including a derivation in [7]), it is thus argued that the difference
in potential between the pore matrix, φe, and the solution in the macropores, φ, can be split into two
components (Equation (2)). The potential drop from the pore matrix to the micropore center, ∆φm,
determines the charge in the micropore based on the Stern layer capacitance. In addition, the potential
drop from the micropore center to the macropore, ∆φD, determines the charge and salt concentration
in the micropore relative to the macropore. Finally, the driving force enhancing adsorption is the
potential distribution across macropores from different regions in the cell.

φe −φ = ∆φm + ∆φD (2)

In CDI devices, the mD theory can describe the performance under various structural conditions,
such as varying electrode sizes [50], spacer thicknesses [50], and electrolyte ion compositions [51,52] as
well as operational conditions, such as flow rates [53] and ion concentrations [49]. It has also been
further developed to describe not only the outlet ion concentrations but also the concentration variation
within the CDI cell in 1D [18] and 2D [7,27] models.

Rather than considering the circuit or EDL approaches, some other models have approached
electroadsorption of ions from an adsorption kinetics point of view. The voltage is the driving attractive
force and the rate at which ions can reach the electrode surface depending on the ion concentration in
the water. Moreover, the more ions already adsorbed in the tiny micropores, the more difficult it is for
new ions to reach the surface in such a way that they can get adsorbed (Figure 5).
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material, applied voltage, etc., there are only a fixed number of sites onto which the ions can be adsorbed.
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The Langmuir isotherm was created to describe monolayer adsorption of gases on a surface [54],
which has traditionally been adopted for liquids as well [55]. Equation (3) shows the rate at which the
fractional surface coverage θ increases with time. Here, c is the ion concentration in a liquid, and kads and
kdes are constants. Equation (4) shows the Langmuir isotherm, that is, the equilibrium fractional surface
coverage θe, depending on the constant KL and the equilibrium concentration ce. Crucially, the Langmuir
isotherm thus models the variation in adsorption based on the ion concentration.

dθ
dt

= kadsc(1− θ)–kdesθ (3)

θe =
KLce

1 + KLce
(4)

Because of the above similarities between traditional Langmuir adsorption and electroadsorption,
it is interesting to note that several studies have successfully implemented the Langmuir isotherm to
accurately describe variations in electroadsorption based on the ion concentration in the liquid [56–65].
Note also that the Langmuir model (monolayer adsorption) was shown to be more accurate than the
Freundlich model (multilayer adsorption) [57,58], which might be related to the limited size of the
micropores in which the ions adsorb.

The Langmuir isotherm has mainly been implemented to describe the equilibrium state.
However, there are fundamental similarities between the Langmuir model and Lagergren
pseudo-first-order kinetics [65], as the Lagergren first-order model has been implemented to describe
reaction kinetics in terms of how the adsorption varies with time in CDI [57,63,66–68]. Equation (5)
(or, equivalently, Equation (6)) demonstrates how the adsorbed quantity Nt (unit mg/g) varies with
time, depending on the rate constant k1 and the equilibrium adsorption Ne [65]. Notably, this model
has been very accurate in modeling electroadsorption, with R2 regression values as high as 0.99 [67].

dNt

dt
= k1(Ne–Nt) (5)

ln(Ne
−Nt) = ln(Ne)–k1t (6)

However, while these formulations have been able to describe some aspects of electroadsorption,
including concentration dependence and performance over time, several key elements are not included,
such as co-ion expulsion.

2.1.3. Dynamic Langmuir Model

While traditional adsorption and electroadsorption processes are quite similar, there are several
key features of an electroadsorption system that are not included in the classic Langmuir model.
To address this, note that the fundamental mechanism of electroadsorption consists of the charged
species, σ (unit mM), being adsorbed on the electrode surface due to the application of an electrical
potential (Equation (7)) [13]. At equilibrium, the time derivative is zero and σe = zce in the solution
(z is the ion valency, subscript “e” denotes equilibrium quantity), and Equation (7) thus becomes
Equation (8) for the specific charge storage Σ. Here, S denotes the effective number of surface sites, ρ is
the electrode mass per cell volume, and A, B, A’, B’ are constants.

dσads
dt

= kadsσ(S− σads)–kdesσads (7)

Σ[C/g] =
F[sA/mol]
ρ[g/L]

σe[mol/L] =
F
ρ

Ace

1 + Bce
=

A′ce

1 + Bce
(8)

Not all charge storage contributes to net ion adsorption (there is unideal charge efficiency).
Thus, it has been shown experimentally that a pure Langmuir isotherm cannot accurately describe
variation in adsorption over a wide concentration range [9]. One major effect that contributes to this
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discrepancy is co-ion expulsion. If some of the capacity for storing charged species is used for pushing
away co-ions rather than adsorbing counterions, the net ion adsorption is reduced.

Co-ions can be present close to the electrode to neutralize native charge, that is, charged groups
that are situated on the electrode surface. In addition, the ions can be passively present close to the
electrode surface due to the ion concentration in the water. With β0 and β1 being constants, the effective
number of sites is thus reduced proportionately to the number of ions that are pushed out, including a
constant factor (β0) and one that is linear with the concentration (β1c0), resulting in Equation (9) for
the ion adsorption over time. At equilibrium, this can be simplified to Equation (10) for the specific ion
adsorption. Here, Mv is the salt molar weight, and A, B, D, A′′ , D′′ are constants.

dcads
dt

= kadsc(S−β0 −β1c0–cadsz)–kdescads (9)

Γ[mg/g] =
Mv[mg/mol]

ρ[g/L]
ce[mol/L] =

Mv

ρ

Ac0 −Dc2
0

1 + Bc0
=

A′′ c0 −D′′ c2
0

1 + Bc0
(10)

In classical Langmuir adsorption, the process is driven by an affinity for the molecules to reach
the adsorption sites. Because these sites ultimately determine the total adsorption, they will change
depending on experimental conditions and specifically the material used for adsorption of the ions.
In the DL model, the sites S are expected to change depending on the electrode material, electrode
surface modifications, cell structure, etc. Because the magnitude of the applied voltage determines
the total possible charge storage, the sites S will ultimately be dependent on the applied voltage,
that is, S denotes “voltage-induced” sites. Specifically, because the charge on a capacitor increases
proportionately with the applied voltage, so too does S. In Equations (8) and (10), this corresponds to
the constant A (and therefore also A′ and A′′ ) being proportional to the voltage.

These fundamental equations have been shown to accurately model the charge storage and ion
adsorption over varying concentrations and voltages. The full DL model, as derived elsewhere [13,19,20],
has also been able to predict performance for multi-ion systems [20] and adsorption over time [19].

2.1.4. Ion Transport

A desalination device based on the porous electrodes discussed in previous sections typically
comprises two electrodes separated by a spacer. Depending on the device, the water can flow either
between the electrodes or directly through them during operation. Either way, the flow rate is important
as it influences how quickly cleaned water is collected at the output and how quickly new ions are
brought to the electrodes. Thus, the desalination efficiency of the devices is affected by not only ion
adsorption but also the flow rate.

Principally, the change in concentration at a given time and location in the cell depends on the
adsorption at that location and the net influx of ions. Therefore, it can be described by the mass
transport equation, where ctot is the total ion content (sum of adsorbed and free ions) and j is the ion
flux (Equation (11)) [7]. In some studies, this has been implemented directly to create partial differential
equations (PDEs) describing the system [7].

However, such a formulation can be computationally heavy and difficult to compute.
Note, therefore, that the equivalent principle for a region of any size V that is “well-stirred” (the ion
concentration is uniform) is that the concentration changes at a rate determined by the adsorption rate
and the ion influx. The ion influx, in turn, is derived from the flow Q and the influent concentration
cin (Equations (12) and (13)) [27]. Thus, the mass transport calculation can be simplified by treating
the entire cell as one volume (influent concentration cin = c0, the cell inlet ion concentration) [19].
Alternatively, the cell volume could be divided into some number of subcells i = [1, . . . , n] along the
flow axis, where the influent concentration to subcell i is ci−1, and the concentration flowing out of the
cell is cn [27].

dctot

dt
+∇ · j = 0 (11)
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Vc(t + dt) = Vc(t)–V(cads(t + dt) − cads(t)) + (Q(cin − c)dt) (12)

dc
dt

= −
dcads

dt
+

Q
V
(cin − c) (13)

2.1.5. Implementing a Model

All the presented models contain fitting parameters that can only be deduced by comparing the
model formulation to experimental data. Doing so will reveal whether the model can describe the
data, that is, if there is any set of parameter values for which the model matches the experimental data.
Ideally, the model should then be able to predict the performance under new conditions using the
already extracted parameter values.

Traditionally, experimental measurements are done to extract specific parameters. In the circuit
model shown in Figure 3, for instance, the current and voltage over time are determined. When the
voltage is just applied, the voltage across the capacitor is zero, so the entire external voltage works
towards pushing current through R1, meaning R1 = Vext/Iinitial. Here, Vext is the externally applied
voltage to the cell (see Figure 3), and Iinitial is the current through R1 shortly after the voltage
is applied. Similarly, no current goes through the capacitor at equilibrium, so from Ohms law,
Vext = Ie(R1 + R2)→ R2 = (Vext/Ie)–R1. Normally in a capacitor, C = Vext/q, where q is the total
charge built up in the capacitor (integral of current). Because of charge leakages, the voltage here should
be the voltage across the capacitor. At equilibrium, that voltage is VC = R2Iext. However, the charge q
cannot be deduced without knowing how much of the passed current has leaked instead of passing
through the capacitor. Because generally R2 � R1 (there is a high resistance against charge leakages),
an approximate value of q can be recorded by measuring how much charge is released (externally
through R1) upon removal of the electrical potential.

Another example of fitting can be seen in a full 2D modeling study of a flow-between CDI cell
using the mD model [7]. The total passed current and the total salt adsorption at equilibrium were
measured. These were used to extract parameters for the capacitance of the device and the baseline
(nonelectrostatic) force attracting the ions to the micropores. Then, different values of the fractional
volume of micropores, pm, in the electrode material were manually inserted until the simulation
matched the experimental data for the effluent ion concentration over time.

Based on the above examples, at least three issues can arise in the classic view on parameter
fitting. Firstly, the extracted values may not be accurate because of the utilization of a limited set of
data. Secondly, it may not be possible to make a measurement such that the parameter value can be
automatically calculated because there is a complex relationship between parameter values and what
can be measured. Thirdly, as will be shown in the result section, extracting values for each parameter
separately can result in small errors that accumulate over several cycles of operation.

A more effective way of extracting parameter values would be to implement a system identification
method. If a problem can be formulated in a system identification form, programs such as MATLAB can
be used because they contain toolboxes to automatically find parameter values for linear and nonlinear
systems [68]. These toolboxes match the experimental data over time to the model formulation to
automatically extract the best parameter values. This method brings forward several advantages.
Firstly, all data, from the beginning when the voltage is applied until saturation is reached, can be used
for the fitting, which means that mode reliable values can be found. Secondly, the parameter values
are automatically extracted. Thirdly, all parameters are extracted at the same time and multiple cycles
can be considered, meaning that the stability of the simulated model can be confirmed over multiple
cycles of operation.

In setting up a model using the mentioned toolboxes [68], a set of internal states x are defined that
can correspond to different properties (such as adsorption and charge storage) and/or different points

in space. It is required that the time derivative
.
x of each state can be expressed in terms of the current

state x and the input u (e.g., voltage, influent ion concentration) at a given time. In addition, it should
be possible to express the measured output data y (e.g., the ion concentration of the effluent water)



Physics 2020, 2 317

in terms of the current state x and the input u. Thus, the simulated values of y will be related to the
experimental data to find the best parameter values.

As an example, the internal states x for the circuit model would be the charge passing through R1,
R2, and C, while the output state would be the current through R1. Thus, the parameter values are
directly and automatically extracted based on the voltage and current over time. Because these toolboxes
require computation at a discrete number of points, they are not directly compatible with some of the
more detailed models available, including the 2D PDE-based mD model [7]. However, the toolboxes
are not entirely new in describing CDI processes as they have previously been implemented with the
DL model [19].

2.2. Data for Model Validation

To validate claims from the theory section and to illustrate some aspects of the modeling and
implementation of models, experimental data were extracted from published reports in the literature.
The data extraction was carried out using the WebPlotDigitizer software [69].

For the Randles circuit model, the report was chosen based on displaying passed charge over time
for an operation where the voltage was applied for a long time so the leakages were accumulated so as
to be clearly distinguished in a graph.

3. Results

3.1. DL Model and the Randles Circuit

Here, we illustrate some differences between classical parameter extraction and the system
identification used in the DL model in the context of CDI modeling. Because the Randles circuit model
contains few components, it is chosen to transparently begin to highlight these differences.

Bouhadana et al. studied the charge leakages in CDI and measured how much charge was
supplied to their CDI cell over time [70]. Thus, in Figure 6, the charge can be seen as increasing when
the voltage is applied (adsorption phase “Ads.”), decreasing when the voltage is removed (desorption
phase “Des.”), and the leakages constitute the differences between the supplied and released charged
ions over a full cycle of applying and removing the voltage.
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Figure 6. The total accumulated current passed through a CDI device over multiple cycles of adsorption
at 0.9 V and desorption with no applied voltage. Data from [70]. Note that the difference between the
adsorbed and released charge constitutes the leakage. (a) The circuit model was implemented using
classic parameter extraction as derived in the theory section. (b) The circuit model was implemented
using a nlgreyest system identification method in MATLAB for parameter extraction (program code
in Supplementary S1).

Using the classic parameter extraction method as described in the theory section, the Randles
circuit model can be implemented for this data set. Figure 6a indicates that there is quite a reasonable
fit between the model and experiment for the extracted values. However, the errors that are present
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tend to accumulate over multiple cycles of operation, meaning the data for the experiment and results
from the model for charge accumulation diverge over time.

If the same underlying model is implemented with the nlgreyest system identification method
in MATLAB, a perfect fit between the model and experiment is obtained. Crucially, this fit endures
over many cycles of operation (Figure 6b). The code for automatically implementing this method has
been supplied in the Supplementary Materials.

An interesting point will emerge when looking specifically at how random experimental error
transfers to the model fit. Figure 7 shows an experiment for the same device as in Figure 6 but with an
applied voltage of 1.1 V. Using the classic parameter extraction method, there is a significantly worse
model fit even in the first cycle of operation compared to Figure 6a. Crucially, this quickly accumulates
between cycles and automatically makes the transferred charge described by the model diverge from
what is obtained from experimental data.
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Figure 7. The total accumulated current passed through a CDI device over multiple cycles of adsorption
at 1.1 V and desorption with no applied voltage. Data from [70]. Note that the difference between the
adsorbed and released charge constitutes the leakage. (a) The circuit model was implemented using
classic parameter extraction as derived in the theory section. (b) The circuit model was implemented
using a nlgreyest system identification method in MATLAB for parameter extraction.

When the system identification method is implemented, there is still an error in the first cycle of
operation, suggesting that the model formulation could not accurately describe what happened at the
beginning of the operation. However, the cumulative charge as described by the model converges
with the experimental data over time, making the errors smaller. This suggests that the system
identification method can reach accurate results even if there are random variations at the beginning of
the experiment data.

This finding is especially relevant to CDI because it typically takes time before a CDI device
reaches a stable operation, meaning the quality of the experimental data can be poor for the first
few adsorption/desorption cycles before stability is reached. With a system identification method,
the sensitivity to such variations is low.

The crucial point to note is that the difference between the fitting methods shown above means
the fitting method fundamentally impacts the model performance even when the underlying model
structure is the same. Ultimately, this means it could be valuable to investigate how to make models
compatible with advanced parameter extraction methods.

3.2. mD Model and the Randles Circuit

Now, there are also prospects from incorporating elements from the mD model into the Randles
circuit. As an example of this, it can be noted that the charge accumulation on electrolytic capacitors is
not directly proportional to the applied voltage. This means that the capacitance varies depending on
the charge state of the device. Empirically, it has been noted that the capacitance increases with the
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square of the charge q as in Equation (14), where C0 is the baseline capacitance and α is a correction
factor [7].

Ctot = C0 + αq2 (14)

Bouhadana et al. studied, in the same report, the charge state of the device for four voltages.
Using the classical parameter extraction method as described in the theory section, the experimental
capacitances can be deduced as shown in Figure 8a. From this graph, the trend that the capacitance
increases with the voltage can be clearly seen. Thus, the model without the correction factor provides
an averaged approximation of the capacitance, while the model with the added correction factor
(Equation (14)) yields an excellent fit over the entire voltage range. Thus, the Randles model with the
correction factor is also able to more accurately describe the charge in the device as a function of the
applied voltage (Figure 8b).
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A key point to note here is that the empirical charge-dependent capacitance increase is naturally
applicable to more model formulations than the mD model, which means that models could generally
obtain performance gains by directly incorporating elements from other models.

3.3. DL and mD Models

Starting from the underlying physics, the DL and mD models have taken different approaches for
implementing a model that can describe and predict electroadsorption in porous electrodes. Still, both
can predict charge storage and ion adsorption under varying operating conditions. Below, some of the
fundamental differences between the models are discussed.

Presently, the widely used mD model includes some elements that are not present in the newly
proposed DL model, mainly related to the detailed spatial resolution of what happens inside the cell
during the desalination processes. For instance, 2D [7] and 1D [18] coupled adsorption and transport
models for flow-between and flow-through cell structures have been formulated. Such models could
indicate, for instance, if there is a concentration shock during the desalination process, that is, the salt is
rapidly removed locally in the cell [7]. This would mean that the cell works below maximum capacity
because there is no more salt to adsorb until new ions can move by diffusion or advection to those
adsorption sites. In addition, the mD model is more accurate than the DL model for describing highly
nonlinear behavior. When looking at the impact of increasing the voltage, for instance, the mD model
provides a more detailed description of the performance at very low voltages [13,49].

In addition, presently, the DL model shows advantages in being straightforward to apply.
Because it is not constructed around solving coupled partial differential equations, different properties
can be modeled independently of each other. For instance, internal states, such as ion adsorption
and charge storage, as well as operational conditions, such as voltage and ion concentration, can be
modeled with separate “isotherms” [13]. While the isotherms describe only equilibrium properties,
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the ability to independently model different properties holds also for the performance variation with
time during the adsorption process [19]. Crucially, this structure makes the model well adapted for
both system identification and control.

3.4. Outlook

Based on the present state of the models for electroadsorption, there is potential for further
developing them in different directions based on considering both the model structure and
parameter-fitting aspects.

To date, no system identification method has been implemented with the mD model.
Successfully implementing this would naturally begin to increase the accuracy of the model further
while automating the parameter extraction process because system identification methods remove
the need to manually calculate or test different parameter values. However, for this to be possible
for 2D systems, a system identification method would be required that can solve algebraic PDEs.
Optionally, the mD model would have to be manually discretized and relaxed in such a way that the
existing toolboxes can complete the parameter extraction.

Presently, the basic DL model does not account for electrode redox reactions inside the cell, which
limits its accurately workable voltages to the non-Faradaic regime. In contrast, Figure 6 has shown
that calculating leakages is at the core of the Randles circuit. This means successfully incorporating
circuit-based leakages into the DL model could allow it to incorporate redox reaction as well.

In addition, to date, the DL model has not been implemented with spatial resolution inside the
cell. Doing so might further increase the accuracy of the model, including the impact of varying the
flow rate. In principle, computationally dividing a flow-between cell along the flow axis (Equation (13)
for multiple compartments) could be directly implemented with the existing modeling framework.
Further research might also make the model more detailed, for instance, to predict the difference in
performances when using different electrode structures or membranes. Still, full 2D modeling would
be more difficult to implement with the premade MATLAB system identification toolbox in this case
because the transport equations for diffusion and advection would have to be discretized to make it
possible to compute a solution.

4. Conclusions

This work has focused on expanding the understanding of how different modeling approaches
can be used to predict the performance of ion electroadsorption processes in porous electrodes for
capacitive deionization systems. Because there are widely different approaches to electroadsorption
modeling, the underlying physics was first discussed to illuminate the common starting point for all
models, namely, that ions get adsorbed into tiny micropores because of a driving voltage.

Then, three different modeling approaches were compared in terms of fundamental modeling
principles. The Randles circuit implements a circuit representation, the mD model considers
how charged species are distributed in electric double layers, and the DL model considers
adsorption–desorption kinetics onto voltage-induced sites on the electrode.

Lastly, the quality of the parameter extraction process is found to have a strong impact on modeling
accuracy even if the underlying model is the same. Thus, it is concluded that the widely used mD model
might be significantly enhanced if a system identification method could be implemented for parameter
extraction. However, for 1D or 2D coupled transport and adsorption inside a capacitive deionization
device, this would require a system identification method that could handle spatially continuous
algebraic PDEs, which is not possible using standard MATLAB toolboxes, or it would require that
the model is manually discretized. The DL model is inherently well suited for implementation with
system identification methods, and future research could focus on making the structure of the DL
model more detailed to enable it to be integrated into 1D and 2D computations.
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