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Abstract: We find the free-energy in the thermodynamic limit of a one-dimensional XY model
associated to a system of N qubits. The coupling among the σz

i is a long range two-body random
interaction. The randomness in the couplings is the typical interaction of the Hopfield model with
p patterns (p < N), where the patterns are p sequences of N independent identically distributed
random variables (i.i.d.r.v.), assuming values ±1 with probability 1/2. We show also that in the case
p ≤ αN, α 6= 0, the free-energy is asymptotically independent from the choice of the patterns,
i.e., it is self-averaging.
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1. Introduction

Neural networks have been developed in the past decades in many different directions. From the
application to neural signals [1–4], and other types of signals [5–8], or image retrieval [9]. The research
also has touched the topics of retrieval and storage of patterns. Many different theoretical aspects
have been developed. One of the most popular has been the use of statistical mechanics methods,
evaluation of the free-energy in the thermodynamic limit N → ∞, N being the number of spins of
the system, we mention the many different rigorous methods developed in these years. One approach
has been based on the rigorous cavity method with which the results obtained by the non rigorous
replica trick have been derived [10–15]. In the paper [16], the interpolation scheme of Guerra [17,18]
and the cavity method was applied for solving the Boltzmann machine. Other rigorous results have
been found by means of probabilistic arguments [19–21], in the papers [22–24], other rigorous results
have been derived using Gaussian processes, in [25] the storage capacity has been discussed and
in [26] the fluctuation of the free energy of the Hopfield model has been studied. The research
on quantum computers has found many algorithms, as for example the Grover’s algorithm [27],
or the quantum Fourier transform [28]. Many efforts have been done to connect the property of
associative memory with quantum algorithms. In some papers the similarity among quantum
evolution and Hopfield dynamic [29] is developed, in other papers the Hopfield network is written
as a quantum system where the classical spins are substituted by quantum spins. In [30], the similarity
between the associative memory and the Hopfield network is introduced. The idea is that the patterns
of the Hopfield network correspond to eigenfunctions and the threshold dynamic is the quantum
evolution of wave functions. In this way one can store into the system many different eigenstates and
retrieve them with the dynamics. Since the wave functions have a phase then quantum holography
is considered. This interpretation is also based on the fact that certain oscillations of the neural
synapsis in real neurobiological systems are consequence of quantum effects, but the relevance of this
phenomena in the neurobiological researches is marginal. Another example is the approach in [31],
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where the evolution of the neurons is due to quantum signals propagating by neighbors, the external
current of an integrate and fire (I&F) model being substituted by quantum signals. The neurons
are classical I&F objects but the signals are quantum. In [32], the Glover algorithm is proposed for
search and retrieval of the patterns, demonstrating the possibility of using quantum operations for
retrieving patterns, but there is no proposal and study of a quantum neural network which is the aim
of our paper.

The interest in the quantized Hopfield model is that it has an experimental implementation [33]
which has been made possible by nuclear magnetic resonance (NMR) technology [34]. The quantum
Hopfield model is a system of quantum spins with Hebbian random interaction defined by
the Hamiltonian HN

HN = −1
2

N

∑
i,j=1

Jijσ
z
i σz

j −
N

∑
i=1

hiσ
z
i − d

N

∑
i=1

σx
i , (1)

where

σz
i =

(
1 0
0 −1

)
, σx

i =

(
0 1
1 0

)
(2)

are the Pauli matrices associated to the components of the spins in the x and z direction, the system
is bidimensional.

{ξµ
i }i=1,...,N,µ=1,...p is a system of independent identically distributed random variables (i.i.d.r.v.),

ξ
µ
i = ±1 with probability 1/2. {ξµ

i }i=1,...,N,µ=1,...p are by definition the patterns or information,
coded by ±1 bits, to be stored in the system, p is the number of patterns, µ is the index of the pattern.
Each of this pattern is coded by the N bits {ξµ

i }i=1,...,N,. α = p/N represents the capacity of the system.
The Jij are the couplings among the spins and are the Hebbian interaction

Jij =
1
N

p

∑
µ=1

ξ
µ
i ξ

µ
j . (3)

Thus it is a model of associative memory introduced by Hopfield [29] but the spins are quantum
objects instead of the classical Hopfield model. The quantum spins are placed in a regular lattice
in the case of the q bits or of a magnetic device, or distributed randomly in the case of the NMR. In order
to get a magnetization an applied magnetic field hi (Tesla or gauss units) is parallel to the z direction
and a transverse magnetic field d is parallel to the x direction. In this paper we study the asymptotic
properties of the free-energy associated to HN in the limit N → ∞:

fN(β) = − 1
βN

log Tr e−βHN , ZN = Tr e−βHN , (4)

β has the meaning of the inverse of the temperature and is a parameter, ZN is the partition function.
In [33], an analogous model is implemented on a NMR quantum computer. The Quantum

Adiabatic Computation (QAC) [35] is used for building the two q bit state. The retrieval states are
obtained with some input Hamiltonian. The retrieval states were constructed with Quantum Annealing
[36] and they were the minima of the Hamiltonian. This is the first example of implementation of
a neural network of the Hopfield type with quantum spins. This proposal differs from the one
cited above [30–32,37], but we think that the system built in [33] is more adequate to the function
of retrieval and storage typical of the neural networks. More recently, a quantum algorithm has
been proposed for the pattern retrieval of the Hopfield neural network [38]. Another problem is
that the retrieval and storage in classical neural networks is connected with the self-averaging of
the free-energy [39] and of the overlap parameters, i.e., the network should have the same performance
of storing and retrieving independently on the kind of information under consideration. Using a
more formal language one can state that there should be storage and retrieval for almost all patterns.
The equality between the free energy and its average is not a simple question and it can be proven,
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with non trivial argument, only in the thermodynamic limit N → ∞ in the classical case. We give
here the proof of this important property in the quantum Hopfield model also in the thermodynamic
limit. The necessity of large values of N arises from the application of probability estimates and from
the extension of the law of large numbers which is largely applied for studying this limiting properties.
We are aware of the fact that large N limit is far beyond the actual possibilities of the experiments
but nevertheless we think that it is important to establish all the useful concepts and theoretical
results. The recent research has been concentrated on the implementation of quantum annealing on
devices and on improving the algorithms. In [40], a nonlinear annealing path is implemented resulting
in a 50% improvement in the qubit performance. This result demonstrates a low-level quantum control
scheme which enhances the success probability of a quantum annealer. In [41], temporal planning
has been tested on various state-of-the art hardware architectures from leading quantum computing
companies. The results suggest that temporal planning can be an effective approach for more complex
computing algorithms and architectures. In [42], the power of quantum signal processing (QSP)
has been explored. It is an algorithm which exactly implements matrix polynomials on quantum
computers. Asymptotic analysis of quantum algorithms based on QSP has shown that asymptotically
optimal results can in principle be obtained for a range of tasks such as Hamiltonian simulations and
the quantum linear problem. Given two n-dimensional vectors u ≡ (u1, · · · , un)and w ≡ (w1, · · · , wn),
with wi, ui taking values 0, 1, disjointness consists in deciding whether ui = wi = 1 for some index
i. In [43], it is studied the problem of computing this function in a distributed computing scenario
in which the inputs u and w are given to the processors at the two extremities of a path of the length l.
In [44,45], the Quantum Approximate Optimization Algorithm (QAOA) was proposed as a heuristic
method for solving combinatorial optimization problems on near-term quantum computers and
may be among the first algorithms to perform useful computations in the post-supremacy, noisy,
intermediate scale era of quantum computing. The aim of QAOA is not very different from the aim of
this paper but with the great difference that we are studying the asymptotic properties for N → ∞
while the optimization problem in [44] is for N finite, we have an Hamiltonian with random quadratic
interaction in the spins with the random Hopfield structure and they study a problem with a simpler
random Hamiltonian. Their aim is to calculate the quantum average

FN(~γ,~η) =< ψN(~γ,~η)|HC|ψN >, (5)

where ~γ ≡ (γ1, . . . , γN) and ~η ≡ (η1, . . . , ηN) are two given N dimensional costant vectors.
The Hamiltonian HC is defined by

HC = ∑
ij

wij(1− σz
i σz

j )/2,

and

|ψN(~γ,~η) >= e−iηN HB e−iγN HC · · · e−iη1 HB e−iγ1 HC |+ >

where γi and ηi, i = 1, . . . N, are evolution times, |ψN(~γ,~η) > is the quantum state. The wij are chosen
with uniform probability in the interval (0, 1) and |+ > is the quantum state of N spins. HB = ∑j σx

j .
In this paper, we use a more complex Hamiltonian and study the asymptotic property of

the free-energy fN . We show also the self averaging property with respect to the ξ
µ
j of fN . It is clear

that asymptotically the state which minimizes HN gives the largest contribution to fN . The model with
Hamiltonian Equation (1) and free-energy Equation (4) has been extensively studied also in a series
of papers [46–48] and the spin-glass system in [49]. In particular, the question of self-averaging of
the free energy with respect to the random interaction has been investigated numerically in [49] for
the Quantum Spin-Glass System; it is sometime called ergodicity but we prefer to use self-averaging,
since ergodicity hides the probability problematic. In the papers [46–48], the saddle-point equations
for the order parameters are derived using the replica-trick. The quantum free-energy is transformed
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using the Suzuki transformation based on the Trotter’s formula; the system obtained in this way
is a classical spin system on two slices with Hopfield random interaction. Thus it is possible to
introduce the computation of the replica system. The saddle point technique is used for deriving
the equations for the set of order parameters which are the classical overlap parameter, the spin
glass parameter and the sum of the overlaps over the patterns which do not condense, with the
addition of two new parameters which are the spin glass parameter for spins on the two Trotter
slices and another one is measure of quantum fluctuations. The values of these order parameters
are solutions of the saddle point equations obtained averaging with respect to the Gibbs measure
and with respect to the patterns. In [37], a quantum neural network with spins described by Pauli
matrices has been introduced and the dynamics is the quantum montecarlo dynamics; the system is
reduced with Suzuki–Trotter decomposition to a classical system with M slices, M→ ∞. The capacity
α = p

N is a main parameter as in our case. It is clear that the self-averaging property in Equation (6)
of the free-energy and of the order parameters is fundamental. We establish in a rigorous way this
property for the free-energy. Moreover, the replica solution is not mathematically founded, the limit
integer n going to zero makes non sense. Our results open the way to derive the saddle point-equations
without using the replica-trick as we did in [50].

The plan of this work is the following: in the next section we explain the results and in the other
section we show their proofs.

2. Results

In this work we treat the question of the self averaging of the free-energy of a one-dimensional
system of q bits. with Hebbian interaction and i.i.d.r.v. of values±1 with equal probability. We compute
also the free-energy and find a phase transition and the index for the critical temperature. The system
is described by the Hamiltonian (1) and spins (2) of the type considered in [33], so it is the XY
model in the one-dimensional case with Hebbian long range interaction, and with the perturbation of
the QAC term.

This Hamiltonian has been considered also in other papers like for example [46–48], and is
the usual Hamiltonian for performing quantum measurements. The term multiplying σx

i is the one
used in QAC for constructing the interesting quantum states, its presence is fundamental for
the phenomenology of the system. If d = 0, this system is the usual Hopfield network which has
been solved already in [51] with the non rigorous replica trick and in [50] using the rigorous cavity
method.For d < 1 and d→ 1− we find a critical point for hi = 0 and β→ ∞ different from the usual
Ising transitions [52].

We can establish the main results of this paper in the following two theorems.

Theorem 1. Consider the Hopfield model in Equation (1) with hi independent of {ξµ
j }j 6=i and such that

E{h2
i } ≤ C. Then for any bounded α ≥ 0 and β ≥ 0, if p→ ∞, N → ∞, and p/N → α, then the free energy

fN(β, H) is self averaging in the limit N → ∞

E
{
| fN(β)− E{ fN(β)}|2

}
≤ C/N. (6)

Here and below we denote by E{.} the averaging with respect to all random parameters of the problem.

Remark 1. We proof the self-averaging of the free energy, i.e., the fact that the free-energy is asymptotically equal
to its average with respect to the patterns. The problem of the difference of the limiting value of the free-energy
and its average has been solved in the classical Hopfield model in [50]. The same problem was considered in [49]
for the quantum spin glass. It was studied by means of numerical simulations.

Remark 2. One can easily see from the proof of Theorem 1 that Bernoulli {ξµ
i } can be replaced by i.i.d.r.v. {ξµ

i }
with any distribution satisfying the conditions E{ξµ

i } = 0, E{|ξµ
i |

2} = 1, and E{|ξµ
i |

4+ε} ≤ C, where ε is
any positive number. Moreover, the operators σz

i , σx
i of Equation (2) can be replaced by any bounded operators.
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Theorem 2. Consider the Hopfield model in Equation (1) with hi = hξ1
i . Then the mean free energy E{ fN(β)}

satisfies the inequality
|E{ fN(β)} −min

m
f0(m, h)| ≤ Cα1/3, α := p/N, (7)

where

f0(m, h) = − 1
β

log(2 cosh(β(m + h)2 + d2)1/2)) +
m2

2
(8)

is the free energy of the Curie–Weiss model (the Hopfield model with only one pattern). Here, m is
the magnetization, and h is the constant defined above.

Remark 3. Thus Equation (7) shows that for α → 0 the free-energy coincides with that of the Curie–Weiss
model, i.e., the classical Hopfield model with only one pattern and this holds for any choice of the input
patterns {ξµ

i }.

Remark 4. Since the free energy is continuous function with respect to h, it follows from Theorem 2 that
the statement of the theorem is valid also for h = 0.

Remark 5. From the proof of Theorem 2 it will be seen that here also Bernoulli {ξµ
i } can be replaced by i.i.d.

{ξµ
i } with any distribution satisfying the same condition as in Remark 2. In this case the expression for f0(m, h)

takes the form

f0(m, h) = − 1
β

E{log(2 cosh(β(ξ1
1(m + h)2 + d2)1/2))}+ m2

2
. (9)

Moreover, the matrices σz
i , σx

i of Equation (2) can be replaced by spin matrices of any dimension. In this
case the expression for f0(m, h) will be different from Equation (9).

The limiting value of the free energy and of the overlap parameters has been obtained in this case
for p� N, i.e., in the limit N → ∞ and p/N → 0, so the capacity of the network, defined as usual as
α = p

N , goes to zero in the thermodynamic limit in this case.

3. Proofs

Proofs of Theorems 1 and 2 are based on the method proposed in [53]. We start from the following
general proposition:

Proposition 1. Let H, H1 be any hermitian 2N × 2N matrices, H(t) := H + tH1

fN(β, t) = − 1
βN

log Tr e−βH(t), ZN(t) = Tr e−βH(t)

and {ek}2N

k=1 are eigen vectors of H(t), such that

H(t)ek = Ekek, H1
jk := (

◦
H1ek, ej),

◦
H1 := H1 − 〈H1〉H(t).

Then

− ∂2

∂t2 fN(β, t) =
1

ZN

2N

∑
k,j=1
|H1

jk|
2 e−βEj − e−βEk

Ek − Ej
≥ 0, (10)

and the Bogolyubov inequality [53] holds

1
N
〈H1〉H(1) ≤ fN(β, 1)− fN(β, 0) ≤ 1

N
〈H1〉H(0), (11)

where
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〈H1〉H(1) =
Tr e−βH(1)H1

ZN(1)

and

〈H1〉H(0) =
Tr e−βH(0)H1

ZN(0)
.

Proof of Proposition 1. According to the Duhamel formula [54] we have

− ∂2

∂t2 fN(β, t) =
β

NZN

∫ 1

0
Tr
( ◦

H1e−βH(t)τ
◦

H1e−βH(t)(1−τ)
)

dτ

=
β

NZN

2N

∑
k,j=1
|H1

jk|
2
∫ 1

0
e−βEkτ−βEj(1−τ)dτ =

1
ZN

2N

∑
k,j=1
|H1

jk|
2 e−βEj − e−βEk

Ek − Ej
.

To prove Equation (11) we observe that

− ∂2

∂t2 f (β, t) ≥ 0 ⇒ ∂

∂t
fN(β, 1) ≤ ∂

∂t
fN(β, t) ≤ ∂

∂t
fN(β, 0).

Integrating the last inequality with respect to t from 0 to 1, we obtain Equation (11).

Proof of Theorem 1. Denote E≤k the averaging with respect to {ξµ
i }1≤i≤k,1≤µ≤p. Then, according to

the standard martingale method (see [55]), we have

Var{ fN(β)} =
n

∑
k=1

E{|E≤k−1{ fN(β)}E≤k{ fN(β)}|2}. (12)

Denote Ek the averaging with respect to {ξµ
k }1≤µ≤p and H(k) := H

∣∣∣
ξ

µ
k =0,µ=1,...,p

. Then,

using the Schwarz inequality [56], we get that

|E≤k−1{ fN(β, H)} − E≤k{ fN(β, H)}|2 = |E≤k−1{ fN(β, H)− Ek{ fN(β, H)}|2

≤ E≤k−1{| fN(β, H)− Ek{ fN(β, H)}|2} ≤ E≤k−1{| fN(β, H)− fN(β, H(k))|2}.

Hence

Var{ fN(β, H)} ≤
n

∑
k=1

E{| fN(β, H)− fN(β, H(k))|2}. (13)

By the Bogolyubov inequality [57]

〈∆hkσz
k 〉H +

1
N

〈 N

∑
j=1

Jkjσ
z
k σz

j

〉
H
≤ fN(β, H)− fN(β, H(k))

≤ 〈∆hkσz
k 〉H(k) +

1
N

〈 N

∑
j=1

Jkjσ
z
k σz

j

〉
H(k)

,

where ∆hk = hk − hk

∣∣∣
ξ

µ
k =0,µ=1,...,p

. Hence
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E{| fN(β, H)− fN(β, H(k))|2} ≤E
{〈 1

N

N

∑
j=1

Jkjσ
z
k σz

j

〉2

H(k)

}
(14)

+ E
{〈 1

N

N

∑
j=1

Jkjσ
z
k σz

j

〉2

H

}
+ 4E{h2

k}.

Since H(k) does not depend on {ξµ
k }1≤µ≤p, averaging with respect to {ξµ

k }1≤µ≤p and using that

E{Jik Jjk} = N−1 Jij,

we get

N

∑
k=1

E
{〈 1

N

N

∑
j=1

Jkjσ
z
k σz

j

〉2

H(k)

}
=

N

∑
k=1

E
{ 1

N2

N

∑
i,j=1

Jij〈σz
k σz

i 〉H(k)〈σz
k σz

j 〉H(k)

}
≤ E{||J||}

N
,

where ||J|| is the norm of the random matrix Jij.
For the second term in the right-hand-side (r.h.s.) of Equation (14) after summation with respect

to k we get

N

∑
k=1

E
{ 1

N2

N

∑
i,j=1

Jki Jkj〈σz
k σz

i 〉H〈σz
k σz

j 〉H
}
≤

N

∑
k=1

E
{ 1

N2

N

∑
i,j=1

Jki Jkj〈(σz
k )

2σz
i σz

j 〉H
}

= E
{ 1

N2

N

∑
i,j,k=1

(J2)ij〈σz
i σz

j 〉H
}
≤ E{||J2||}

N
.

Since it is well known that (see, e.g., [39])

E{||J2||} ≤ C, (15)

the last two bounds combined with Equations (13) and (14) prove Theorem 1.

Proof of Theorem 2. To prove Theorem 2 let us introduce some additional Gaussian field to
the Hamiltonian H

H(γ) = H +
√

N
p

∑
µ=1

γµmµ, (16)

where

mµ :=
1
N

N

∑
i=1

ξ
µ
i σz

i , (17)

are so-called overlaps parameters and {γµ}p
µ=1 are independent of {ξµ

j } and of each other Gaussian
random variables with zero mean and variance 1. Using the Bogolyubov inequality in Equation (11)
and then the Schwarz inequality and Equation (15), we get

0 ≤ E{ fN(β, H(γ))} − E{ fN(β, H)}

≤ 1√
N

E
{ p

∑
µ=1

γµ〈mµ〉H(γ)

}
≤ α1/2

N E1/2
{ p

∑
µ=1
〈mµ〉2H(γ)

}
=

α1/2
N
N

E1/2
{ N

∑
i,j=1

Jij〈σz
i 〉H(γ)〈σz

i 〉H(γ)

}
≤ Cα1/2

N . (18)



Physics 2020, 2 191

Consider also the “approximate” Hamiltonian of the form

Ha(γ, c) =H(γ) +
N
2

p

∑
µ=1

(mµ − cµ)2

=− N
p

∑
µ=1

mµcµ −
N

∑
i=1

hiσ
z
i −

N

∑
i=1

dσx
i +

N
2

p

∑
µ=1

(cµ)2 +
√

N
p

∑
µ=1

γµmµ. (19)

Note that similarly to Equation (18) we have uniformly in c ∈ Rp

∣∣∣E{ fN(β, Ha(γ, c))} − E{ fN(β, Ha(0, c))}
∣∣∣ ≤ α1/2

N C. (20)

By the Bogolyubov inequality in Equation (11) for any c ∈ Rp

0 ≤ fN(β, Ha(γ, c))− fN(β, H(γ)) ≤ 1
2

p

∑
µ=1
〈(mµ − cµ)2〉H(γ). (21)

Hence

0 ≤ min
c∈Rp

fN(β, Ha(γ, c))− fN(β, H(γ)) ≤ 1
2

p

∑
µ=1
〈( ◦m

µ
)2〉H(γ). (22)

Here and below we denote
◦
m

µ
:= mµ − 〈mµ〉H(γ). (23)

Let {ek}2N

k=1 be the basis in which H(γ) is diagonal and

H(γ)ek = Ekek, Mµ
jk = (

◦
m

µ
ek, ej).

It is easy to see that

p

∑
µ=1
〈(mµ − 〈mµ〉)2〉H =

1
ZN

p

∑
µ=1

2N

∑
k,j=1
|Mµ

jk|
2 1

2
(e−βEj + e−βEk ).

Using the inequality

cosh x ≤ sinh x
x

+ | sinh x|,

we can write

p

∑
µ=1
〈(mµ − 〈mµ〉)2〉H =

1
ZN

p

∑
µ=1

2N

∑
k,j=1
|Mµ

jk|
2 1

2
(e−βEj + e−βEk )

≤ 1
ZN

p

∑
µ=1

2N

∑
k,j=1
|Mµ

jk|
2
( e−βEj − e−βEk

Ek − Ej
+

1
2
|e−βEj − e−βEk |

)
= −

p

∑
µ=1

∂2

∂γ2
µ

fN(β, H(γ)) + Σ,

where we have used that according to Equation (10)

1
ZN

2N

∑
k,j=1
|Mµ

jk|
2 e−βEj − e−βEk

Ek − Ej
= − ∂2

∂γ2
µ

fN(β, H(γ)).
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To estimate Σ, we use the Holder inequality [58], which yields

Σ : =
1

2ZN

p

∑
µ=1

2N

∑
k,j=1
|Mµ

jk|
2|e−βEj − e−βEk |

≤ 1
2ZN

p

∑
µ=1

2N

∑
k,j=1
|Mµ

jk|
2 |e−βEj − e−βEk |
|Ek − Ej|

|Ek − Ej|

≤
( 1

2ZN

p

∑
µ=1

2N

∑
k,j=1
|Mµ

jk|
2 |e−βEj − e−βEk |
|Ek − Ej|

)2/3

×
( 1

2ZN

p

∑
µ=1

2N

∑
k,j=1
|Mµ

jk|
2(e−βEj + e−βEk )|Ek − Ej|2

)1/3

=
(
−

p

∑
µ=1

∂2

∂γ2
µ

fN(β, H(γ))
)2/3

Σ1/3
1 .

It is easy to see that

Σ1 : =
1

2ZN

p

∑
µ=1

2N

∑
k,j=1
|Mµ

jk|
2(e−βEj + e−βEk )|Ek − Ej|2 = −

p

∑
µ=1
〈[mµ, H]2〉H

=
p

∑
µ=1

〈( 1
N

N

∑
j=1

ξ
µ
j [σ

z
j , dσx

j ]
)2〉

H
=

4d2

N

N

∑
i,j=1

Jij〈σ
y
i σ

y
j 〉 ≤ 4d2||J||.

On the other hand, averaging with respect to the Gaussian variables γµ, we obtain a bound similar
to Equation (18)

E
{
−

p

∑
µ=1

∂2

∂γ2
µ

fN(β, H(γ)
}
= E

{
−

p

∑
µ=1

γµ
∂

∂γµ
fN(β, H(γ)

}
= −E

{ 1√
N

p

∑
µ=1

γµ〈mµ〉H
}
≤ E1/2

{ 1
N

p

∑
µ=1

γ2
µ

}
E1/2

{ 1
N

N

∑
i,j=1

Jij〈σz
i 〉〈σz

j 〉
}
≤ Cα1/2

n .

The above inequalities combined with Equations (22), (18) and (20) yield

−Cα1/2
n ≤ E{min

c∈Rp
fN(β, Ha(0, c))} − E{ fN(β, H)} ≤ Cα1/3

N .

In view of this bound it suffices to findE{minc∈Rp f (Ha(0, c))}. By using the convexity of
the function − log 2 cosh β

√
x in x for x > 0, we get for Ci = ξ1

i h + ∑µ ξ
µ
i cµ
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f (Ha(0, c)) =− 1
βN

N

∑
i=1

log 2 cosh β(C2
i + d2)1/2 +

1
2

p

∑
µ=1

(cµ)2

≥− 1
β

log 2 cosh β
( 1

N

N

∑
i=1

C2
i + d2

)1/2
+

1
2

p

∑
µ=1

(cµ)2

=− 1
β

log 2 cosh β
(
(c1 + h)2 +

p

∑
µ=2

(cµ)2 + d2

+
(

A(c + hē1), (c + hē1)
))1/2

+
1
2

p

∑
µ=1

(cµ)2

≥− 1
β

log 2 cosh β
(
(c1 + h)2 +

p

∑
µ=2

(cµ)2 + d2
)1/2

+
1
2

p

∑
µ=1

(cµ)2 (24)

− ||A||
2

(h2 + (c, c)).

Here ē1 = (1, 0, . . . , 0) ∈ Rp, and the matrix A is defined as

Aµν =
1
N
(1− δµν)(ξ

µ, ξν). (25)

It is known (see e.g., [39]) that
E{||A||2} ≤ CαN . (26)

Moreover, it is easy to see that if c is a minimum point, we have that

cµ = 〈mµ〉Ha ⇒
p

∑
µ=2

(cµ)2 =
1
N ∑ Jij〈σz

i 〉Ha〈σz
j 〉Ha ≤ ||J||.

Hence Equations (24) and (15) imply

E{min
c∈Rp

f (Ha(0, c))}

≥ min
c∈Rp

{
− 1

β
log(2 cosh(β

(
(c1 + h)2)))) +

p

∑
µ=2

(cµ)2)) + d2
)1/2

+
1
2

p

∑
µ=1

(cµ)2
}
− C
√

αN

≥ min
r≥0,0≤ϕ≤2π

{
− 1

β
log(2 cosh(β

(
(r sin ϕ + h)2) + r2 cos2 ϕ + d2

)
))1/2 +

r2

2

}
− C
√

αN

≥ min
m≥0

{
− 1

β
log(2 cosh(β(

(
(m + h)2 + d2))

)1/2
+

m2

2

}
− C
√

αN . (27)

Let us now discuss briefly the equation for the point in which the r.h.s. of Equation (8) attains its
minimum. It is easy to see that it has the form

m =
(m + h) tanh(β(

(
(m + h)2 + d2))

)1/2(
(m + h)2 + d2

)1/2 . (28)

For h = 0 it takes the form

m =
m tanh β

(
m2 + d2)1/2(

m2 + d2
)1/2 . (29)
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It is evident that it always has a solution m = 0. To find another solution we should study
the equation (

m2 + d2)1/2
= tanh β

(
m2 + d2)1/2. (30)

This equation for d > 1 has no solutions because the r.h.s. is less than 1 and the left-hand side
(l.h.s.) is larger than 1. For β < 1 the equation also has no solutions, since it is well known that
the equation tanh βv = v has no solutions except v = 0 for β < 1.

For d < 1 there is a critical point β(d) such that for β > β(d) Equation (29) has the unique solution
m = 0 and β > β(d) there is also non zero solution of for Equation (29). This critical value β(d) is
a solution of the equation

d = tanh(βd). (31)

It is easy to see that β(0) = 1 and β(d) → ∞ as d → 1 (d < 1). One can see also that β′(d) ≥ 0
since it follows from Equation (31)

β′(d) = d−1 cosh2(βd)
(

1− β

cosh2 βd

)
and the r.h.s. here is positive, since

β

cosh2(βd)
is the derivative of the r.h.s. of Equation (31) with

respect to d, and at the solution point of Equation (31) this derivative is less than 1. Moreover, since
tanh(βd) ∼ 1− e−2βd for βd→ ∞, we have from Equation (31) that

e2βd ∼ (1− d)−1 ⇒ β(d) ∼ 1
2

log(1− d)−1, d→ 1.
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