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Abstract

Known attacks on the tropical implementation of Stickel protocol involve finding minimal
covers for a certain covering problem, and this leads to an exponential growth in the worst
case time required to recover the secret key as the used polynomial degree increases. The
computational inefficiency of this attack is also observed in practice, unless the number of
explored covers is limited, on the expense of the success rate of the attack. Consequently, it
can be argued that Alice and Bob can still repel these attacks on tropical Stickel protocol by
utilizing very high polynomial degrees, a feasible approach due to the efficiency of tropical
operations. The same is true for the implementation of Stickel protocol over some other
semirings with idempotent addition (such as the max–min or digital semiring). In this
paper, we propose alternative methods to attack the Stickel protocols that avoid solving the
covering problem. These methods involve framing the attacks as a mixed integer linear
programming (MILP) problem or applying certain heuristic global optimization techniques.
We also include a number of numerical experiments to analyze the success rate and the
time required to execute the suggested attacks in practice.

Keywords: public key cryptography; key exchange protocol; cryptographic attack; tropical
cryptography

JEL Classification: 94A60; 15A80

1. Introduction
A key exchange protocol is a process where two parties, commonly referred to as

Alice and Bob, collaboratively generate a shared secret key using public information and
messages exchanged over a public channel. The security of a protocol is determined by
its ability to prevent an attacker from easily recovering the shared secret key using these
public information and intercepted messages, typically by ensuring that the attacker must
solve a problem that is computationally hard to succeed in practice. NP-hard problems or
problems with exponential worst case complexity are natural candidates for these (although
NP-hardness or exponential worst case complexity are not enough to guarantee the security
of protocols). Such protocols often rely on various algebraic tools to achieve the desired
security properties.

Polynomials over the tropical (max-plus) semiring are one of the recent tools utilized
in key exchange protocols, appearing in the tropical implementation of the Stickel protocol
proposed by Grigoriev and Shpilrain [1]. This new implementation followed Shpilrain’s
successful attack [2] on the initial Stickel protocol [3] and has become one of the most
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popular key exchange protocols utilizing tropical operations. The rationale behind sug-
gesting a tropical implementation of the protocol was to avoid obvious attacks involving
linear algebra and matrix inverses, which were effective against the original protocol. The
Stickel protocol can be similarly implemented over any semiring, and its implementation
over max–min and max-T semirings (where the symbol T stands for arbitrary T-norm [4])
is analyzed in [5]. The survey in [6] argues for broadening semiring choices beyond the
tropical semiring and reviews the main hard problems in semiring-based cryptography.

Kotov and Ushakov [7] later suggested an attack on the tropical Stickel protocol by
transforming the underlying problem into finding a special solution to the protocol’s asso-
ciated system of equations of the form A⊗ x = b, the complete solution set to which can be
described using solution to a certain covering problem. The attacker still faces a significant
challenge: solving the problem to find a solution to the covering problem that satisfies cer-
tain conditions. To find such a cover, the attacker potentially needs to check all the minimal
covers and find a cover that actually produces the required special solution to A⊗ x = b.
Therefore, this approach is less effective when Alice and Bob use high-degree polynomials,
which can be efficiently managed by Alice and Bob with minimal computational resources
due to the efficient nature of tropical operations. An analogue of the Kotov–Ushakov attack
against the max–min and, more generally, max-T implementations of the Stickel protocol
can be similarly proposed [5]. However, it encounters a similar challenge of finding a
minimal solution with special properties, resulting in an exponential increase in the worst
case execution time.

The main idea of this paper is to introduce alternative attack strategies that avoid
solving the covering problem encountered in a conventional Kotov–Ushakov attack. Specif-
ically, we propose an attack where we instead find a solution x that minimizes the protocol’s
associated objective function ∑i((A⊗ x)i − bi)

2 using a heuristic optimization technique.
We will compare this with a different approach where some of the known attacks are
formulated as mixed integer linear programs, allowing the shared key to be recovered
using an MILP solver.

This paper is organized as follows: Section 2 covers preliminaries and basic definitions,
particularly those related to the matrix algebra over the tropical and max–min semirings,
as well as the targeted key exchange protocols based on these semirings. In Section 3, we
present our alternative attacks, provide numerical implementations demonstrating their
performance, and compare them with a typical Kotov–Ushakov attack. In Sections 4 and 5,
we discuss how these proposed attacks can also target a recent implementation of Stickel
protocol over a newly introduced semiring known as the “digital semiring” [8] and a
recently proposed tropical digital signature protocol [9], respectively. Section 6 is dedicated
to conclusions and discussion. Our code implementations have been made available on
GitHub: https://github.com/suliman1n/Attacking-Tropical-Stickel-Protocol-by-MILP-
and-Heuristic-Optimization-Techniques (accessed on 12 September 2025) and were devel-
oped using MATLAB R2023b.

2. Preliminaries
In this section, we are going to introduce the matrix algebra over the tropical and

max–min semirings, followed by the Stickel protocol over these semirings and two versions
of the Kotov–Ushakov attack. Note that we use the standard notation [m] = {1, . . . , m} and
[n] = {1, . . . , n} for most common index sets.

Definition 1 (Matrix Algebra over Semirings [10]). We define the tropical semiring as Rmax =

(R∪ {−∞},⊕,⊗), and the max–min semiring as Rmax,min = (R∪ {−∞} ∪ {∞},⊕,⊗), where
the arithmetical operations are defined by x⊕ y = max(x, y) and x⊗ y = x+ y for all x, y ∈ Rmax

https://github.com/suliman1n/Attacking-Tropical-Stickel-Protocol-by-MILP-and-Heuristic-Optimization-Techniques
https://github.com/suliman1n/Attacking-Tropical-Stickel-Protocol-by-MILP-and-Heuristic-Optimization-Techniques
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in the tropical case, and by x⊕ y = max(x, y) and x⊗ y = min(x, y) for all x, y ∈ Rmax,min for
the max-min case. When addressing both semirings at the same time or any semiring in general, we
will use the symbol RT (also reminiscent of max-T semirings, of which the max–min semiring and
the non-positive part of the tropical semiring are special cases).

The arithmetic operations over any semiring are naturally extended to include matrices and
vectors. In particular, the operation A⊗ α = α⊗ A, where α ∈ RT , A ∈ Rm×n

T and (A)ij = aij

for i ∈ [m] and j ∈ [n], is defined by

(A⊗ α)ij = (α⊗ A)ij = α⊗ aij ∀i ∈ [m] and ∀j ∈ [n].

The matrix addition A⊕ B of two matrices A ∈ Rm×n
T and B ∈ Rm×n

T , where (A)ij = aij

and (B)ij = bij for i ∈ [m] and j ∈ [n], is defined by

(A⊕ B)ij = aij ⊕ bij ∀i ∈ [m] and ∀j ∈ [n].

The matrix multiplication of two matrices is also similar to the “traditional” algebra. Namely, we
define A⊗ B for two matrices, where A ∈ Rm×p

T and B ∈ Rp×n
T , as follows:

(A⊗ B)ij =
p⊕

k=1

aik ⊗ bkj =
(
ai1 ⊗ b1j ⊕ ai2 ⊗ b2j ⊕ . . .⊕ aip ⊗ bpj

)
∀i ∈ [m] and ∀j ∈ [n].

The arithmetics of the max-plus and max-min semirings are summarized in Table 1
below.

Table 1. Summary of semiring operations.

Semiring Ground Set ⊕ ⊗ Zero Element Identity Element

Tropical R∪ {−∞} max(a, b) a + b −∞ 0
Max–min R∪ {−∞} ∪ {+∞} max(a, b) min(a, b) −∞ ∞

Note that, despite introducing this arithmetic, we will also quite often utilize the usual
arithmetical operations to introduce concepts and explain arguments, mostly since the
optimization methods that we are going to exploit are based on the usual arithmetic.

Definition 2 (Matrix Powers). For M ∈ Rn×n
T , the n-th power of M is denoted by M⊗n, and is

equal to
M⊗n = M⊗M⊗ . . .⊗M︸ ︷︷ ︸

n times

By definition, any square matrix to the power 0 is the identity.

Definition 3 (Identity Matrix). The identity matrix I ∈ Rn×n
T is of the form (I)ij = δij where

δij =

0 for tropical case, or ∞ for max-min case if i = j

−∞ otherwise

Note that the identity matrix can be defined also for a general semiring: one sets the
diagonal entries equal to the semiring unity and the off-diagonal entries to the semiring
zero [10].

Subsequently, we define the matrix polynomials.



J. Cybersecur. Priv. 2025, 5, 82 4 of 27

Definition 4 (Matrix Polynomials). Matrix polynomial is a function of the form

A 7→ p(A) =
d⊕

k=0

ak ⊗ A⊗k.

where ak ∈ RT for k = 0, 1, . . . , d. Here, A ∈ Rn×n
T is a square matrix of any dimension n.

Any two matrix polynomials of the same matrix over any semiring commute just
like in the classical algebra [10], and this fact was utilized by Grigoriev and Shpilrain [1]
to construct a tropical implementation of the Stickel protocol (Protocol 1). Quite obvi-
ously, this protocol can be implemented over any semiring (and in particular, over the
max–min semiring).

Protocol 1 (Stickel Protocol over Semirings).

1. Alice and Bob agree on public matrices A, B, W ∈ Rn×n
T .

2. Alice chooses two random tropical polynomials, p1(x) and p2(x), and sends U = p1(A)⊗
W ⊗ p2(B) to Bob.

3. Bob chooses two random tropical polynomials, q1(x) and q2(x), and sends V = q1(A)⊗
W ⊗ q2(B) to Alice.

4. Alice computes her secret key using a public key V obtained from Bob, which is Ka =

p1(A)⊗V ⊗ p2(B).
5. Bob also computes his secret key using Alice’s public key U, which is Kb = q1(A)⊗U ⊗

q2(B).

The two parties end up with an identical key in both protocols due to the commuta-
tivity of polynomials of the same matrix. Formally, we have Ka = p1(A)⊗V ⊗ p2(B) =
p1(A)⊗ q1(A)⊗W ⊗ q2(B)⊗ p2(B) = q1(A)⊗ p1(A)⊗W ⊗ p2(B)⊗ q2(B) = q1(A)⊗
U ⊗ q2(B) = Kb.

An attack against Protocol 1 over the tropical semiring was published by Kotov and
Ushakov [7], and an analog of this attack against Protocol 1 over max–min semiring (and,
more generally, max-T semiring with continuous T-norm) was discussed in [5]. In the next
section, we will compare their performance with the optimization methods proposed in the
present paper. The presented attacks break Protocol 1 by solving the following problem

Problem 1. Given the public matrices U and W where U = p1(A) ⊗W ⊗ p2(B) for some
unknown p1(A) and p2(B), find p

′
1(A) and p

′
2(B) such that U = p

′
1(A)⊗W ⊗ p

′
2(B).

or the following problem for the attack presented in Section 3.3

Problem 2. Given the public matrices U and W where U = p1(A) ⊗W ⊗ p2(B) for some
unknown p1(A) and p2(B), find X and Y such that X commutes with A, Y commutes with B, and
X⊗W ⊗Y = U.

Solving these problems is sufficient but not necessary to compromise the protocol. For
example, the attack presented in [11] offers a more efficient approach against this particular
version of the protocol. This attack applies under the two conditions detailed in [12].
Consequently, variants of the Stickel protocol that employ broader classes of commuting
matrices (beyond polynomials of some public matrices) or alternative semirings, other
than the tropical semiring, may not be vulnerable to this attack. Currently, no such variant
of the tropical Stickel protocol is known to us. In such generalized settings, solving the
aforementioned problems may be the only viable approach for attacking the Stickel protocol,
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which is why we still consider them relevant. In [13], the authors proposed a non-Stickel-
type protocol based on a tropical multiple-exponentiation problem and showed that known
attacks do not directly apply to this construction.

We now turn to the specific goal of the upcoming attacks. The objectives of the attacks
is to find the polynomial coefficients xα, yβ for all α, β ∈ {0, . . . D}where D is the maximum
polynomial degree used in the protocols, and hence construct X =

⊕D
α=0(xα ⊗ A⊗α) and

Y =
⊕D

β=0
(
yβ ⊗ B⊗β

)
that satisfy X ⊗W ⊗ Y = U. Thus, the attacks aim to recover the

shared secret key, by turning X⊗W ⊗Y = U into the form of a system of linear equations
of the shape A⊗ x = b and search for a solution that satisfies a special structure among
all possible solutions. Thus, these attacks encounter the problem of finding all minimal
solutions of a linear system of the shape A⊗ x = b, which is easy to solve when Alice and
Bob use low-degree polynomials, as demonstrated numerically in [7,14,15] for the tropical
case, or in [5] for the max–min case. However, it becomes significantly more challenging for
higher-degree polynomials due to the exponential increase in the number of the minimal
solutions of the system. The full details of the Kotov–Ushakov attack are described below.

We are aiming to find two matrices X and Y, where they are expressed as

X =
D⊕

α=0

(
xα ⊗ A⊗α

)
Y =

D⊕
β=0

(
yβ ⊗ B⊗β

)
,

such that D is sufficiently large to exceed the maximal degree of any polynomial that Alice
and Bob might use. Then, we substitute these expressions into X⊗W ⊗Y = U to obtain

U =
D⊕

α=0

(
xα ⊗ A⊗α

)
⊗W ⊗

D⊕
β=0

(
yβ ⊗ B⊗β

)
.

Combining the summations, we obtain

U =
D⊕

α,β=0

(
xα ⊗ A⊗α

)
⊗W ⊗

(
yβ ⊗ B⊗β

)
.

Rearranging those using the distributivity law will give

D⊕
α,β=0

xα ⊗ yβ ⊗
(

A⊗α ⊗W ⊗ B⊗β
)
= U.

We then denote Rαβ = A⊗α ⊗W ⊗ B⊗β and therefore we can write

D⊕
α,β=0

xα ⊗ yβ ⊗
(

Rαβ
)

γδ
= Uγδ ∀γ, δ ∈ [n]× [n]. (1)

If we additionally denote zαβ = xα ⊗ yβ, we have

D⊕
α,β=0

zαβ ⊗
(

Rαβ
)

γδ
= Uγδ ∀γ, δ ∈ [n]× [n]. (2)

We have arrived at a system of linear equations of the shape A⊗ x = b with coefficients(
Rαβ

)
γδ

and unknowns zαβ.
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We now need to scan all solutions to this system, and obtain the solution that satisfies
zαβ = xα ⊗ yβ for some xα, yβ ∈ N ∀α, β ∈ {0, 1, . . . , D}. Thus, using the theory of
A⊗ x = b solvability, we need to find the greatest solution, as well as all minimal solutions.
For each minimal solution, we need to search for a vector (zαβ) in the interval between the
minimal solution and the greatest solution that solves zαβ = xα ⊗ yβ for some xα, yβ.

Note that, for the tropical case, a minimal solution can be found by finding a minimal
cover (i.e., the minimal number of variables that satisfy all the equations in the system),
and the other variables are set to −∞. The following algorithm captures this process.

For the max–min case, we similarly need to compute the greatest solution c (using
Lemma 3.2 in [16]) and all minimal solutions d(i)’s (using Section 3.3 in [17] or Chapter 3
in [18]), and search for the required solution. The following algorithm captures this process.

Note that system (4) can be transformed into a problem of mixed-integer linear pro-
gramming as shown in [5].

These attacks succeed under the condition that the attacker is using D that exceeds
the greatest polynomial degrees used by Alice and Bob, because, in this case, these attacks
produce X and Y that satisfy X⊗W⊗Y = U. The proof can be found in [5,15]. However, they
exhibit exponential growth in computational time relative to the used polynomial degree in
the protocol. Numerical experiments showing the time taken by these attacks to compromise
the tropical implementation of Protocol 1 can be found in [7,14,15], and for the max–min
implementation, see [5]. Table 2 summarizes a representative subset of these runtime results.

Table 2. Comparison of runtimes for Algorithm 1 (tropical) and Algorithm 2 (max–min).

Polynomial Degree D Algorithm 1 Time (s) Algorithm 2 Time (s)

3 <0.01 0.04
5 <0.01 2.9
9 <0.01 12,204
30 223 N/A
50 2640 N/A

The most computationally intensive component of the attacks described above is
the enumeration of all minimal covers. This problem is fundamentally equivalent to the
hypergraph traversal hitting sets enumeration, a widely studied topic in various fields
such as combinatorics and optimization, To formalize this connection in the tropical case
(Algorithm 1), we firstly present some relevant definitions.

Definition 5 (Hypergraph). A hypergraph H = (V, E) consists of a vertex set V and a set of
hyperedges E , where each hyperedge E ∈ E is a subset of V.

Definition 6 (Hitting set (e.g., ref. [19])). A hitting set for a hypergraph H = (V, E) is a subset
K ⊆ V such that K ∩ E ̸= ∅ for every E ∈ E . A hitting set is minimal if no proper subset of K is a
hitting set.

The enumeration process of all minimal covers of [n]× [n] by the computed sets Sαβ

in Algorithm 1 is equivalent to the process of enumerating all minimal hitting sets of the
hypergraph H =

(
{0, . . . , D} × {0, . . . , D}, {G11, G12, . . . , Gnn}

)
where Gγδ = {(α, β) ∈

{0, . . . , D} × {0, . . . , D} :
⊕D

α,β=0 cαβ ⊗
(

Rαβ
)

γδ
= Uγδ}. This is because we know that a

minimal cover C ⊆ {0, . . . , D}×{0, . . . , D} in Algorithm 1 satisfies
⋃
(α,β)∈C Sαβ = [n]× [n].

This is equivalent to C intersecting every hyperedge Gγδ (i.e., C is a hitting set for H).
Minimality of C as a hitting set then follows since removing any (α, β) ∈ C would leave
some Gγδ unhit. Similarly, given H =

(
{0, . . . , D} × {0, . . . , D}, {G11, G12, . . . , Gnn}

)
, we

know that a minimal hitting set C ⊆ {0, . . . , D} × {0, . . . , D} intersects every Gγδ. By
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defining Sαβ = {(γ, δ) ∈ [n]× [n] : (α, β) ∈ Gγδ}, the union
⋃
(α,β)∈C Sαβ covers [n]× [n].

Minimality of C as a cover follows since no smaller subset of C can cover [n]× [n]. This
means there is a one-to-one correspondence between the enumerated minimal covers in
Algorithm 1 and the minimal hitting sets of H.

Algorithm 1 Tropical Kotov–Ushakov attack [7]
Input: Public matrices A, B, W, transmitted message U, maximum polynomial degree D
Output: Coefficients xα, yβ.

1: Compute
cαβ = min

γ,δ∈[n]

(
Uγδ − Rαβ

γδ

)
Sαβ = arg min

γ,δ∈[n]

(
Uγδ − Rαβ

γδ

)
.

2: Among all minimal covers of [n] × [n] by Sαβ, that is, all minimal subsets C ⊆
{0, . . . , D} × {0, . . . , D} such that⋃

(α,β)∈C
Sαβ = [n]× [n],

find a cover for which the system

xα + yβ = cαβ, if (α, β) ∈ C,

xα + yβ ⩽ cαβ, if otherwise.
(3)

is solvable.
3: return (xα, yβ).

Algorithm 2 Max–min Kotov–Ushakov attack [5]
Input: Public matrices A, B, W, transmitted message U, maximum polynomial degree D.
Output: Coefficients xα, yβ.

1: Compute the maximum solution c of system (2) as

cαβ = min
γ,δ∈[n]

(
Uγδ : Rαβ

γδ > Uγδ

)
∀α, β ∈ {0, . . . , D}

2: Compute all minimal solutions d(i) of system (2).
3: Find a minimal solution d(i) with components d(i)αβ for which the system

d(i)αβ ≤ xα ⊗ yβ ≤ cαβ ∀α, β ∈ {0, . . . , D} (4)

is solvable.
4: return (xα, yβ).

From this perspective, we know that a hypergraph can have exponentially many
minimal hitting sets, so a polynomial-time algorithm for the enumeration process in the
above attacks is not possible, but it can be achieved in incremental quasi-polynomial
time [19]. This also implies the exponential worst case complexity of the Kotov–Ushakov
attacks (Algorithms 1 and 2). Another closely related problem is finding the smallest hitting
set, which is known to be NP-hard [19], although the Kotov–Ushakov attacks are not aimed
precisely at this problem. Nevertheless, their exponential worst-case complexity presents
a major drawback. To address this, we next study the application of some well-known
optimization techniques.
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3. Attacks Using Optimization
In this section, we explore more efficient approaches to attacking the tropical and

max-min implementations of Protocol 1 that avoid the minimal covering problem and
the associated exponential complexity, which are evident in Algorithms 1 and 2. For all
experiments, we use a matrix dimension of 10, which is the default parameter suggested
in [1,7]. This choice allows us to compare the performance of the optimization methods
discussed in this paper with the performance of Algorithms 1 and 2. To read this section,
the basic knowledge of semiring algebra (see Definitions 1–4) as well as the knowledge of
above mentioned Problems and Protocol 1 will be required from the reader. See also Table 1
for a summary of tropical and max–min arithmetics.

3.1. Simulated Annealing

Both Algorithms 1 and 2 aim to find all minimal solutions that satisfy all equations in
system (2). In this approach, we aim to find a solution that minimizes the Euclidean distance
between the left hand side and the right hand side of the system. Formally, we solve the
following:

min
xα ,yβ

∑
(γ,δ)∈[n]×[n]

f 2
γδ

where
fγδ = max

α∈{0,1,...,D}
β∈{0,1,...,D}

(xα ⊗ yβ ⊗ Rαβ
γδ)−Uγδ (5)

This objective function is complex with numerous local minima. However, the simulated
annealing algorithm (see, e.g., ref. [20]), when initialized with a sufficiently high tem-
perature parameter, effectively navigates these local minima and converges to the global
minimum, where the objective function equals zero. The tropical and max–min objective
functions are defined, respectively, in (6) and (7).

We now formally outline how the tropical Stickel protocol (Protocol 1 with RT = Rmax)
is attacked using the simulated annealing method; see Algorithm 3.

To ensure the simulated annealing algorithm escapes local minima, the initial tem-
perature has to be sufficiently large to allow the acceptance of worse points. A practical
method for determining this initial temperature is to set it based on the sample variance
of multiple randomly evaluated points (e.g., ref. [21]). This captures the variability of the
objective function, reducing the risk of getting stuck in local minima.

The performance of simulated annealing is also highly sensitive to the initial point.
An optimal initial point can facilitate a quicker convergence to the global minimum. How-
ever, in our implementation, we started with a random point, as it seems the high initial
temperature helps to mitigate the potential drawback of this non-optimal initialization.

Furthermore, as Alice and Bob increase the range of entries for public matrices and
polynomial coefficients, the objective function becomes more complex. Kotov–Ushakov
attack (Algorithm 1) is not impacted by this, as it relies on solving a minimal covering
problem that is independent of the individual entries (i.e., finding minimal covers using
Sαβ’s, which are independent of the used entries). We will therefore also examine how
Algorithm 3 performs under such conditions. Figure 1 shows the time taken in seconds
to compromise Protocol 1 using Algorithm 3 for different degrees and entry ranges. All
numerical experiments were executed on Windows 11 64-bit, with an Intel(R) Core(TM)
i7-9750H CPU @ 2.60 GHz and 16.0 GB RAM.

This attack achieved a perfect success rate and is significantly faster than Algorithm 1,
averaging about 30 times the speed for a polynomial degree of 50 (refer to [14] for detailed
experimental results of Algorithm 1). Note that the attack still performs well for higher
entry ranges, but it is more likely that we encounter some samples that take significantly
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longer than average to converge. This is probably caused by the increased complexity of
the objective function and how optimal the probabilistic selection of the next neighboring
point in the simulated annealing algorithm is, as well as the number of iterations performed
until convergence.

Algorithm 3 Attacking tropical Stickel protocol using simulated annealing
Input: Public matrices A, B, W, transmitted message U, maximum polynomial degree D
Output: Matrices X, Y.

1: Compute Tαβ = A⊗α ⊗W ⊗ B⊗β −U for all 0 ≤ α, β ≤ D.
2: Define objective

F(x, y) = ∑
γ,δ

(
max

α,β

(
xα + yβ + Tγδ

αβ

))2
. (6)

3: Initialize temperature T and choose a random starting point (xc, yc).
4: repeat
5: Set trial counter k← k + 1 (initialize k← 0 before the loop).
6: Update the temperature: Tk ← T × 0.95 k.
7: Select a new candidate point (xtest, ytest) from the neighbourhood of (xc, yc).
8: Compute ∆← F(xtest, ytest)− F(xc, yc).

9: if exp
(
− ∆

Tk

)
> Random[0, 1) then

10: Accept the candidate: (xc, yc)← (xtest, ytest).
11: until F(xc, yc) = 0
12: Let (x̄, ȳ) = (xc, yc).
13: Construct

X =
D⊕

α=0
(x̄α ⊗ A⊗α) and Y =

D⊕
β=0

(ȳβ ⊗ B⊗β).

14: return (X, Y).

Figure 1. Attacking the tropical version of Protocol 1 using Algorithm 3.

For the max–min implementation of Protocol 1, the simulated annealing algorithm
often struggles to reach the zero of the objective function, frequently getting stuck in local
minima. Therefore, we have to utilizes the lowest local minimum obtained to attempt to
recover the secret key; see Step 4 in Algorithm 4.
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Algorithm 4 Attacking max–min Stickel protocol using simulated annealing
Input: Public matrices A, B, W, transmitted message U, maximum polynomial degree D
Output: Matrices X, Y.

1: Compute Rαβ = A⊗α ⊗W ⊗ B⊗β for all 0 ≤ α, β ≤ D.
2: Define objective

F(x, y) = ∑
γ,δ

(
max

α,β
(xα + yβ + Rγδ

αβ −Uγδ)
)2

. (7)

3: Initialize temperature T and choose a random starting point (xc, yc).
4: repeat
5: Set trial counter k← k + 1 (initialize k← 0 before the loop).
6: Update the temperature: Tk ← T × 0.95 k.
7: Select a new candidate point (xtest, ytest) from the neighbourhood of (xc, yc).
8: Compute ∆← F(xtest, ytest)− F(xc, yc).

9: if exp
(
− ∆

Tk

)
> Random[0, 1) then

10: Accept the candidate: (xc, yc)← (xtest, ytest).
11: until F(xc, yc) does not change after N loops
12: Let (x̄, ȳ) = (xc, yc).
13: Construct

X =
D⊕

α=0
(x̄α ⊗ A⊗α) and Y =

D⊕
β=0

(ȳβ ⊗ B⊗β).

14: return (X, Y).

In the experiments, we set N = 300. Although this attack does not achieve a perfect
success rate, it frequently recovers the majority of the entries of the secret key. The average
number of recovered entries and the average execution time are respectively illustrated in
Figures 2 and 3. The flowchart of the attacks based on the simulated annealing is shown in
Figure 4.

Figure 2. Attacking the max–min version of Protocol 1 using Algorithm 4: Recover entries.
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Figure 3. Attacking the max–min version of Protocol 1 using Algorithm 4: Time taken.

Note that this attack is significantly faster than Algorithm 2 (for detailed experimental
results of Algorithm 2, refer to [5]). However, as shown experimentally, it does not guaran-
tee the successful recovery of the entire secret key. Furthermore, the algorithm maintains
consistent performance with higher entry ranges, largely due to the appropriate adjustment
of the initial temperature.

Figure 4. Flowchart of Algorithms 3 and 4.

3.2. Kotov-Ushakov Attack Using MILP Solver

We now propose an attack that recovers the secret key by solving a mixed integer linear
program (MILP), following an observation by [22]. Specifically, we start by transforming
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system (1) in the Kotov–Ushakov attack into a linear system by converting the disjunctive
constraints into linear constraints by using Boolean variables and a big parameter. This
approach allows us to avoid dealing with system (2) and the associated challenge of
enumerating all minimal solutions. Then we solve this system of inequalities using the
Gurobi solver [23] (but we could use any other available MILP solver instead) employing
the default parameters of this solver. The tropical and max-–min encodings of system (1)
are presented in (8)–(10), respectively. See Algorithms 5 and 6 for a detailed description.

Algorithm 5 Kotov–Ushakov MILP attack on tropical Stickel protocol
Input: Public matrices A, B, W, transmitted message U, maximum polynomial degree D
Output: Matrices X, Y.

1: Compute Tαβ = A⊗α ⊗W ⊗ B⊗β −U for all 0 ≤ α, β ≤ D.
2: Find x, y and z that satisfy the following system where M is a big enough number, α

and β range from 0 to D, and γ and δ range from 1 to n:

xα + yβ + Tαβ
γδ ≤ 0 ∀α, β, γ, δ,

xα + yβ + Tαβ
γδ + (1− zαβγδ)M ≥ 0 ∀α, β, γ, δ,

zαβγδ ∈ {0, 1} ∀α, β, γ, δ,

∑
(α,β)

zαβγδ = 1 ∀γ, δ.

(8)

3: Using these x and y construct

X =
D⊕

α=0
(xα ⊗ A⊗α) and Y =

D⊕
β=0

(yβ ⊗ B⊗β).

4: return (X, Y).

The parameter M acts as a tunable variable whose value can be adjusted to ensure the
correct and efficient solution of the MILP. In practice, we used a value of M that exceeded
1000 multiplied by the biggest possible entry of A, B, and W. Note that the number of
variables in system (8) increases both with the matrix dimension and the polynomial degree
used in the protocol. Specifically, the number of variables would be 2(D + 1) + n2(D + 1)2.
Also, the number of equations in this system is 2n2(D + 1)2 + n2. Figure 5 illustrates the
time taken by Algorithm 5 when applied to the tropical Stickel protocol.

The attack on the max-min version of Protocol 1 can be similarly described: see
Algorithm 6.

Note that the number of variables in this system similarly increases with both the
matrix dimension and the polynomial degree used in the protocol. Specifically, the number
of variables is 2(D + 1) + n2(D + 1)2 + 3n2(D + 1)2. Also, the number of equations in this
system is 7n2(D + 1)2 + n2. The time taken by Algorithm 6 when applied to the max–min
Stickel protocol is illustrated in Figure 6.

We observe that the computational time required for this approach is worse than that
of the tropical case (Figure 5).

Therefore, both Algorithms 5 and 6 require significantly more time even for lower
polynomial degrees compared to the tropical and max–min Kotov–Ushakov attacks
(Algorithms 1 and 2). This is likely due to the high number of variables involved in the
linear system. Consequently, these attacks do not provide any significant advantage over
the previously described Kotov–Ushakov attacks.
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Figure 5. Attacking tropical version of Protocol 1 using Algorithm 5.

Algorithm 6 Kotov–Ushakov MILP attack on max–min Stickel protocol
Input: Public matrices A, B, W, transmitted message U, maximum polynomial degree D
Output: Matrices X, Y.

1: Compute Rαβ = A⊗α ⊗W ⊗ B⊗β for all 0 ≤ α, β ≤ D.
2: Find x, y and z that satisfy the following system where M is a big enough number, α

and β range from 0 to D, and γ and δ range from 1 to n:

xα − (1− z(1)αβγδ)M ≤ Uγδ

yβ − (1− z(2)αβγδ)M ≤ Uγδ

Rαβ
γδ − (1− z(3)αβγδ)M ≤ Uγδ

z(i)αβγδ ∈ {0, 1} and
3

∑
i=1

z(i)αβγδ = 1

(9)

xα + (1− zαβγδ)M ≥ Uγδ

yβ + (1− zαβγδ)M ≥ Uγδ

Rαβ
γδ + (1− zαβγδ)M ≥ Uγδ

zαβγδ ∈ {0, 1} and ∑
(α,β)

zαβγδ = 1

(10)

3: Solve the MILP, and construct

X =
D⊕

α=0
(xα ⊗ A⊗α) and Y =

D⊕
β=0

(yβ ⊗ B⊗β).

4: return (X, Y).
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Figure 6. Attacking max–min version of Protocol 1 using Algorithm 6.

3.3. Shpilrain Attack Using MILP Solver

We now propose an alternative method to formulate the MILP to attack the tropical
and max-min implementations of Protocol 1. Specifically, we introduce the tropical and
max-min versions of the Shpilrain attack [2], where our objective is to find X and Y such that

X⊗ A = T

A⊗ X = T

Y⊗ B = R

B⊗Y = R

X⊗W ⊗Y = U

(11)

where matrices T and R are composed of newly introduced auxiliary variables tij, rij for
(i, j) ∈ [n]× [n]. Then, the MILP can similarly be formulated by converting the disjunctive
constraints into linear constraints with Boolean variables. In particular, for the first equation
of (11), with aij being the entries of A, we have

max
k∈[n]

(xik ⊗ akj) = tij ∀(i, j) ∈ [n]× [n],

which can be represented as the following set of inequalities

xik ⊗ akj ≤ tij ∀i, j, k ∈ [n],

and with M being a sufficiently large number

xik ⊗ akj + (1− zkij)M ≥ tij ∀i, j, k ∈ [n],

∑
k

zkij = 1, zkij ∈ {0, 1} ∀i, j, k ∈ [n].
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The rest of inequalities can similarly be formulated using the other equations in (11),
and then we solve the system using MILP solver. The tropical and max–min versions of the
attack are described below in Algorithms 7 and 8. We observe that the number of variables
in the system increases only with the matrix dimension, but not the polynomial degree used
in the protocol. Specifically, for the tropical case, the number of variables in this system is
4n2 + 4n3 + n4, and the number of equations is 5n2 + 8n3 + 2n4. For the max–min case, the
number of variables is 4n2 + 12n3 + 4n4, and the number of equations is 5n2 + 20n3 + 7n4.
The tropical and max–min encodings of system (11) are displayed in (12)–(16) and (17)–(21),
respectively.

Algorithm 7 MILP Shpilrain attack on tropical Stickel protocol
Input: Public matrices A, B, W, transmitted message U
Output: Matrices X, Y.

1: Represent (11) (over the tropical semiring) by the following system:

xik + akj ≤ tij ∀i, j, k ∈ [n],

xik + akj + (1− z1kij)M ≥ tij ∀i, j, k ∈ [n],

z1kij ∈ {0, 1}, ∀i, j, k ∈ [n],

∑
k

z1kij = 1 ∀i, j ∈ [n],

(12)

aik + xkj ≤ tij ∀i, j, k ∈ [n],

aik + xkj + (1− z2kij)M ≥ tij ∀i, j, k ∈ [n],

z2kij ∈ {0, 1}, ∀i, j, k ∈ [n],

∑
k

z2kij = 1 ∀i, j ∈ [n],

(13)

yik + bkj ≤ rij ∀i, j, k ∈ [n],

yik + bkj + (1− z3kij)M ≥ rij ∀i, j, k ∈ [n],

z3kij ∈ {0, 1} ∀i, j, k ∈ [n],

∑
k

z3kij = 1 ∀i, j ∈ [n],

(14)

bik + ykj ≤ rij ∀i, j, k ∈ [n],

bik + ykj + (1− z4kij)M ≥ rij ∀i, j, k ∈ [n],

z4kij ∈ {0, 1}, i, j, k ∈ [n]

∑
k

z4kij = 1 ∀i, j ∈ [n],

(15)

xik + wkl + yl j ≤ uij ∀i, j, k, l ∈ [n],

xik + wkl + yl j + (1− z5klij)M ≥ uij ∀i, j, k, l ∈ [n],

z5klij ∈ {0, 1},

∑
k,l

z5klij = 1 ∀i, j ∈ [n],

(16)

where aij, bij, wij are, respectively, the entries of the public matrices A, B, W, and xij, yij
are the variables of the system.

2: Solve the MILP, and construct X = (xij) and Y = (yij).
3: return (X, Y).
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Algorithm 8 MILP Shpilrain attack on max–min Stickel protocol
Input: Public matrices A, B, W, transmitted message U
Output: Matrices X, Y.

1: Represent (11) (over the max–min semiring) by the following system

xik − (1− z(1)1kij )M ≤ tij ∀i, j, k ∈ [n],

akj − (1− z(2)1kij )M ≤ tij ∀i, j, k ∈ [n],

z(1)1kij + z(2)1kij = 1 ∀i, j, k ∈ [n],

xik + (1− z(3)1kij )M ≥ tij ∀i, j, k ∈ [n],

akj + (1− z(3)1kij )M ≥ tij ∀i, j, k ∈ [n],

z(1)1kij , z(2)1kij , z(3)1kij ∈ {0, 1} ∀i, j, k ∈ [n]

∑
k

z(3)1kij = 1 ∀i, j ∈ [n],

(17)

aik − (1− z(1)2kij )M ≤ tij ∀i, j, k ∈ [n],

xkj − (1− z(2)2kij )M ≤ tij ∀i, j, k ∈ [n],

z(1)2kij + z(2)2kij = 1 ∀i, j, k ∈ [n],

aik + (1− z(3)2kij )M ≥ tij ∀i, j, k ∈ [n],

xkj + (1− z(3)2kij )M ≥ tij ∀i, j, k ∈ [n],

z(1)2kij , z(2)2kij , z(3)2kij ∈ {0, 1} ∀i, j, k ∈ [n]

∑
k

z(3)2kij = 1 ∀i, j ∈ [n],

(18)

yik − (1− z(1)3kij )M ≤ rij ∀i, j, k ∈ [n],

bkj − (1− z(2)3kij )M ≤ rij ∀i, j, k ∈ [n],

z(1)3kij + z(2)3kij = 1 ∀i, j, k ∈ [n],

yik + (1− z(3)3kij )M ≥ rij ∀i, j, k ∈ [n],

bkj + (1− z(3)3kij )M ≥ rij ∀i, j, k ∈ [n],

z(1)3kij , z(2)3kij , z(3)3kij ∈ {0, 1} ∀i, j, k ∈ [n]

∑
k

z(3)3kij = 1 ∀i, j ∈ [n],

(19)

bik − (1− z(1)4kij )M ≤ rij ∀i, j, k ∈ [n],

ykj − (1− z(2)4kij )M ≤ rij ∀i, j, k ∈ [n],

z(1)4kij + z(2)4kij = 1 ∀i, j, k ∈ [n],

bik + (1− z(3)4kij )M ≥ rij ∀i, j, k ∈ [n],

ykj + (1− z(3)4kij )M ≥ rij ∀i, j, k ∈ [n],

z(1)4kij , z(2)4kij , z(3)4kij ∈ {0, 1} ∀i, j, k ∈ [n]

∑
k

z(3)4kij = 1 ∀i, j ∈ [n],

(20)

xik − (1− z(1)5klij )M ≤ uij ∀i, j, k, l ∈ [n],

wkl − (1− z(2)5klij )M ≤ uij ∀i, j, k, l ∈ [n],

ylj − (1− z(3)5klij )M ≤ uij ∀i, j, k, l ∈ [n],

z(1)5klij + z(2)5klij + z(3)5klij = 1 ∀i, j, k, l ∈ [n],

xik + (1− z(4)5klij )M ≥ uij ∀i, j, k, l ∈ [n],

wkl + (1− z(4)5klij )M ≥ uij ∀i, j, k, l ∈ [n],

ylj + (1− z(4)5klij )M ≥ uij ∀i, j, k, l ∈ [n],

z(1)5klij , z(2)5klij , z(3)5klij , z(4)5klij ∈ {0, 1},

∑
k,l

z(4)5klij = 1 ∀i, j ∈ [n],

(21)

where aij , bij , wij are, respectively, the entries of the public matrices A, B, W, and xij , yij are the variables of the system.

2: Solve the MILP, and construct X = (xij ) and Y = (yij ).

3: return (X, Y).
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Note that a distinct advantage of these attacks is that they are independent of the poly-
nomial degree used in the protocol. Therefore, Alice and Bob cannot improve the protocol’s
resistance against these attacks by increasing the polynomial degree, a way that is very effec-
tive against Kotov–Ushakov attack and its max–min analog (Algorithms 1 and 2). In other
words, the limitations for MILP Shpilrain attacks fully depend on the MILP techniques
being used, but it is inevitable that the memory usage blows up as the matrix dimensions
increase, due to the high number of equations and hence variables involved in the linear
program. Figure 7 shows the time taken by Algorithm 7 for different polynomial degrees.

Figure 7. Attacking tropical version of Protocol 1 using Algorithm 7.

As illustrated in Figure 7, this attack is much faster than Algorithm 1 and maintains
consistent computational efficiency across varying polynomial degrees. It is worth noting
that for larger matrix dimensions, such as n = 10 or higher, the Gurobi solver may encounter
challenges in directly solving the system in some trials. Fine-tuning of the solver parameters
is required to solve the system in such cases. The time taken by Algorithm 8 for different
polynomial degrees is shown in Figure 8. Note that due to the higher number of equations
and variables in the max–min case compared with the tropical case, the memory required
for encoding the linear program for a dimension higher than 8 would exceed the available
memory threshold.

We now summarize the performance of the suggested attacks in Table 3. Here, note
that our conclusion on the computational efficiency is based on the numerical experiments
(see Figures 1, 3 and 5–8). The required assumptions and some other notes are summarized
in Table 4.

Table 3. Comparative performance of the algorithms.

Algorithm Semiring Computational Efficiency Memory Use Empirical Success

1 Kotov–Ushakov (Algorithm 1) Tropical Inefficient Low 100%
2 Kotov–Ushakov (Algorithm 2) Max–min Inefficient Low 100%

3 Simulated Annealing (Algorithm 3) Tropical Efficient (most cases) Low 100%
4 Simulated Annealing (Algorithm 4) Max–min Efficient (most cases) Low <100%

5 MILP Kotov–Ushakov (Algorithm 5) Tropical Inefficient Low 100%
6 MILP Kotov–Ushakov (Algorithm 6) Max–min Inefficient Low 100%

7 MILP Shpilrain (Algorithm 7) Tropical Efficient High 100%
8 MILP Shpilrain (Algorithm 8) Max–min Efficient High 100%
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Table 4. Constraints, assumption, and notes.

Algorithm Constraints, Assumptions, and Notes

Kotov–Ushakov
(Algorithms 1 and 2)

• Public matrices A, B, W and transmitted U are assumed known.
• Require D to be larger than the actual maximum degree of polynomials used by

Alice and Bob.

Simulated Annealing
(Algorithms 3 and 4)

• Public matrices A, B, W and transmitted U are assumed known.
• Require D to be larger than the actual maximum degree of polynomials used by

Alice and Bob.
• Sufficiently large initial temperature parameter.
• Larger range of entries and coefficients increases the observed execution time.
• Stopping criteria: the objective function reaches 0 (tropical); the objective function

does not change after a specified number of loops (max–min).

MILP Kotov–Ushakov
(Algorithms 5 and 6)

• Public matrices A, B, W and transmitted U are assumed known.
• Require D larger than the actual maximum degree of polynomials used by Alice

and Bob.
• Large value of the parameter M must be chosen as it affects correctness and numer-

ical stability.
• Use a MILP solver.

MILP Shpilrain
(Algorithms 7 and 8)

• Public matrices A, B, W and transmitted U are assumed known.
• Large value of the parameter M must be chosen as it affects correctness and numer-

ical stability.
• Independent of the actual maximum degree of polynomials used by Alice and Bob.
• Use a MILP solver.
• Require substantial memory.

Figure 8. Attacking max–min version of Protocol 1 using Algorithm 8.

4. Attacking Stickel’s Protocol over Digital Semiring
A recent implementation of Stickel protocol (Protocol 1) was introduced by [8], which

employs a newly defined semiring referred to by the authors as the “digital semiring”. The
authors claim that this new implementation of Stickel protocol resists the known attacks
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such as the Kotov–Ushakov attack. Let us discuss how the methods outlined in this paper
as well as those in [5] can be applied in this new situation.

The digital semiring of [8], which we here denote by N(∨,∧), is defined over the set
of natural numbers N with adjoined +∞, and is based on an unconventional order relation
defined by

a ⪯ b⇔

(a) ≤ (b), if (a) ̸= (b),

a ≤ b, if (a) = (b),
(22)

where (a) denotes the sum of digits of a ∈ N. It is understood that the sum of digits of +∞
is +∞, so this is the greatest element of the semiring. Based on this order relation, we then
define the new addition a⊕ b as the greatest element (also denoted as a ∨ b) among a, b
with respect to this order relation, and a⊗ b as the smallest element (also denoted as a ∧ b)
among a, b with respect to this order relation.

For the practical purposes of software implementation, Alice and Bob are always
limited by a big enough number M, and therefore they would actually be using a semiring
of the form NM(∨,∧) similarly defined using (22) over the natural numbers not exceeding
M. However, it then can be shown that this semiring NM(∨,∧) is isomorphic to the
semiring NM(max, min), which is the set of natural numbers not exceeding M for which
the operations are defined by a ⊕ b = max(a, b) and a ⊗ b = min(a, b). Indeed, the
isomorphism is given by the mapping f : NM(∨,∧) 7→ NM(max, min), for which

f (a) =

0, if a = 0,

∑
(a)−1
i=1 |[i]≤M|+ |[(a)]≤a|, otherwise.

(23)

where [i]≤a, for natural a, i such that 0 ≤ i, a ≤ M, denotes the set of natural numbers
whose sum of digits is equal to i and which do not exceed a, and |[i]≤a| denotes the number
of elements in this set.

Consequently, the attacks on the max–min semiring implementation of Stickel protocol
discussed in this paper are equally applicable to the digital semiring implementation, due
to the known limitations of Alice and Bob and the isomorphism given by (23). This also
includes the guaranteed attack described in [5] (the max–min version of Kotov–Ushakov
attack). Thus, the attacker only needs to take one additional step to exploit this isomorphism.
A possible approach for such exploitation is to group the elements of the digital semiring
by their digit sums, arranging the groups and the numbers within each group in ascending
order. Each element in the digital semiring is then mapped to a corresponding element
in the max–min semiring with the natural order from smallest to largest. The resulting
algorithm has complexity at most O(M log10 M) since we have to go through each number
and compute the sum of its digits (which has complexity not exceeding O(log10 M)).

Figure 9 illustrates the computational time needed to execute it for different maximum
values M.

As shown in Figure 9, the computational time required for this isomorphism mapping
is relatively minor, but it obviously increases as Alice and Bob agree on higher ranges.
However, it can be argued that they cannot extend these ranges indefinitely due to the risk
of potential numerical instability. Thus, while attacking the Stickel protocol over the digital
semiring involves this additional computational overhead, it is a one-time setup and does
not affect the computational time during individual attack sessions since it should only
be pre-computed once. Therefore, to keep the paper more concise, we have not included
numerical experiments for attacking the Stickel protocol over the digital semiring, as these
would be identical to the experiments on attacking the Stickel protocol over the max–min
semiring described in the previous section and in [5]. We also note that a different attack
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on the Stickel protocol over digital semiring has been recently published in [24], which
develops a branch and bound approach and exploits the structure of the circulant matrices
involved in the protocol.

Figure 9. Digital semiring pre-computation.

5. Forging the Tropical Signatures
A digital signature protocol based on the hardness of tropical polynomial factorization

was proposed in [9]. Several heuristics to attack this protocol have been proposed in [25,26].
These heuristics primarily focus on generating a valid forged signature from a previously
legitimate signature. To counter these attacks, along with other trivial forgeries, a revised
version of the protocol has also been introduced. In this section, we present new attacks
that directly target the public key, which also apply to the revised version, as the public key
is unchanged. In what follows, we present the protocol and how it can be attacked. To read
this section, the basic knowledge of semiring algebra (see Definitions 1–4) will be required
from the reader, but only the tropical semiring Rmax will be used (see Table 1 for a concise
summary).

Protocol 2 (The tropical digital signatures [9]).
Private Key: Two tropical polynomials X, Y, with integer coefficients from [0, r] and the sum

of their degrees is 2d.
Public Key: r and d, and the multiplication of the two secret polynomials M = X⊗Y.
Signing:

1. Compute the hash of the message, and use it to form the tropical polynomial H using a known
deterministic procedure.

2. Select random private polynomials U, V such that deg(U) = deg(Y) and deg(V) =

deg(X), with coefficients in [0, r], and let N = U ⊗V.
3. The signature is the tuple (H, H ⊗ X⊗U, H ⊗Y⊗V, N).

Verification:

1. Compute H as in the first step of signing, and verify it.
2. Verify that deg(H ⊗ X⊗U) = deg(H ⊗Y⊗V) = 3d and deg(N) = 2d.
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3. Verify that neither H ⊗ X⊗U nor H ⊗Y⊗V is a tropical constant multiple of H ⊗M or
H ⊗ N.

4. Verify that coefficients of H ⊗ X ⊗U and H ⊗ Y⊗V are within [0, 3r] and those of N are
within [0, 2r].

5. Compute W = (H ⊗ X ⊗ U) ⊗ (H ⊗ Y ⊗ V), and accept the signature if and only if
W = H ⊗ H ⊗M⊗ N.

The security of this protocol relies on the hardness of tropical polynomial factorization,
which was shown to be NP-hard [27]. This problem can be formulated as follows:

Problem 3 (Tropical Polynomial Factorization). Given a tropical polynomial M = X⊗Y, find
X and Y.

At first glance, it might seem straightforward to factor M using the tropical fundamen-
tal theorem of algebra [28], which states that any tropical polynomial can be easily factored
into exactly linear polynomials. Let us explore this theorem formally.

Theorem 1 (Tropical fundamental theorem of algebra [28]). Any tropical polynomial of
degree n

M(t) =
n⊕

i=0

(mi ⊗ t⊗i)

can be efficiently factored into linear factors. Specifically, there exists a constant c and roots
r1, r2, . . . , rn such that

M(t) = c⊗
(

n⊗
i=1

(t⊕ ri)

)
,

The roots ri are the points where the piecewise-linear function M(t) changes slope. This
factorization provides a canonical form of M(t) as a function.

Note that the factorization from this theorem is a functional factorization, meaning
M(t) holds for all t as a function. However, it does not necessarily preserve the original
coefficient sequence (m0, m1, . . . , mn) of M. That is, the string of coefficients obtained from
this factorization is a canonical (most reduced) form of the tropical polynomial. However,
this canonical form, while equivalent to the original polynomial as a function, does not
necessarily preserve the initial polynomial’s sequence of coefficients.

In contrast, a sequence-based factorization requires finding X and Y such that their
polynomial multiplication matches the original coefficients of M, where the coefficients mk

of M are as follows:

mk =
⊕

(i,j):i+j=k

(xi ⊗ yj) = max
i+j=l

(xi + yj), k = 0, 1, . . . , n.

Therefore, the security of Problem 3 relies on factoring M as a sequence (i.e., string of
numbers), a problem shown to be NP-hard. Factoring M as a function does not generally
preserve the original sequence, which most likely causes the original sequence recovery to
fail. That is, a function-based factorization yield factors that satisfy the same maximum op-
erations but do not necessarily reconstruct the original sequence of coefficients. In contrast,
a sequence-based factorization requires that multiplying the factors exactly reproduces the
original coefficients of M. As such, it is required for the attacks on Problem 3 to target a
“sequence-based” factoring of M, where the multiplication of the factors exactly recovers
the original coefficients of M.
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Note that there are possibly many factorizations of M, meaning the original factors
X and Y are not generally unique. Therefore, for the attacker’s purpose of producing
a valid forged signature in Protocol 2, it is sufficient to find any factors that pass the
verification process. This non-uniqueness in factorization can be exploited as a basis for
some heuristic attacks. Thus, in the proposed attacks that follow, the attacker’s objective
is to find X′ and Y′ such that X′ ⊗ Y′ = M, with the additional constraints that their
degrees sum to 2d and their coefficients are from [0, r], so they can pass the verification
process. Successfully finding X′ and Y′ enables the attacker to impersonate the signer
and hence produce a valid signature to any arbitrary message. Specifically, with H being
the polynomial formed from an arbitrary hashed message, and choosing U and V with
deg(U) = deg(Y′) and deg(V) = deg(X′), with coefficients in [0, r], the forged signature
(H, H⊗X′⊗U, H⊗Y′⊗V, N = U⊗V) is verified correctly, as all of the above verification
steps clearly hold, and it is highly unlikely that the second and third polynomials of this
tuple will be shifted versions of the public polynomials H ⊗M or H ⊗ N, respectively. We
now propose two attacks utilizing this approach.

• Kotov–Ushakov-based attack

Note that M essentially represents a convolution of the two sequences X and Y, with
max-plus operations. This allows the problem to be formulated as a one-sided linear system
using matrices, by treating each product of the secret coefficients as a variable. However,
the length of the original sequences is unknown. Consequently, the attack must iterate over
possible lengths for X′ until a suitable solution to the one-sided linear system is found.

Formally, we know that each coefficient mk of M = X⊗Y can be represented as

mk =
⊕

(i,j):i+j=k

xi ⊗ yj,

where mk, xi, and yj denote the coefficients of the polynomials M, X, and Y, respectively.
Then, with xi and yj being the unknowns, this system can be equivalently written as the
linear system A⊗ z = b, where A is a binary matrix that indicates which variables are
present in the k-th equation, z is the vector of unknowns with each element zij = xi ⊗ yj,
and b is the vector containing the known coefficients of M. The following example shows
an illustration of this representation.

Example 1 (One-sided linear system representation of polynomial multiplication). For a
polynomial M of degree 4, and polynomials X and Y each of degree 2, the polynomial multiplication
M = X⊗Y can be represented as the following linear system:


0 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ 0 −∞ 0 −∞ −∞ −∞ −∞ −∞
−∞ −∞ 0 −∞ 0 −∞ 0 −∞ −∞
−∞ −∞ −∞ −∞ −∞ 0 −∞ 0 −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 0

⊗



x0 ⊗ y0

x0 ⊗ y1

x0 ⊗ y2

x1 ⊗ y0

x1 ⊗ y1

x1 ⊗ y2

x2 ⊗ y0

x2 ⊗ y1

x2 ⊗ y2


=


m0

m1

m2

m3

m4



Thus, the attacker’s goal is to find a solution to this linear system. That is, a solution
rij that satisfies rij = xi ⊗ yj for all i ∈ {0, 1, . . . , dx} and j ∈ {0, 1, . . . , dy}, for some xi

and yj. Additional constraints must be imposed on xi and yj to ensure that the forged
signature is verified correctly. These constraints are xi, yj ∈ [0, r] and dx + dy = 2d, where
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r and d are public parameters of the protocol. Note that this system is not guaranteed to
have a solution unless dx equals the original degree of the polynomial X, but this degree is
secret. Consequently, the attacker must test multiple values of dx until a solution is found.
However, it is possible that a solution can be found even when dx differs from the original
degree of X due to the possible non-unique factorization of M. The attack is formally
described below.

Figure 10 presents the performance of this attack when t = 3, showing the success rate
and computational time over 10 trails for multiple values of d. Note that, for all numerical
experiments, the degree of X in the protocol instance is chosen as specified by the authors,
i.e., randomly selected from the interval

[ 3
4 d, 5

4 d
]
. The degree of Y is then determined

accordingly, as the sum of the degrees of X and Y must equal 2d.

Figure 10. Success rate and computational time of Algorithm 9.

Algorithm 9 Kotov–Ushakov-based attack on Protocol 2
Input: Public key polynomial M, signature parameters t, r, degree bound 2d.
Output: Recovered factors X′, Y′.

1: for dx = 1 to t do
2: Set dy = 2d− dx.
3: Construct binary matrix A and vector b for the linear system as in Example 1.
4: Compute the greatest solution cij = mini(bi − Aij) and the sets Sij = arg mini(bi −

Aij) for all i ∈ {0, . . . , dx} and j ∈ {0, . . . , dy}.
5: Among all minimal covers of {0, 1, . . . , 2d} by Sij, that is, all minimal subsets C ⊆
{0, 1, . . . , 2d} such that ⋃

(i,j)∈C
Sij = {0, 1, . . . , 2d},

find a cover for which the system

xi + yj = cij, if (i, j) ∈ C,

xi + yj ⩽ cij, otherwise,

xi, yj ∈ [0, r].

is solvable.
6: If a solution is found, break the loop. If no solution is found, proceed to the next dx

until a solution is found.
7: Construct the polynomials X′ and Y′ using the derived xi and yj, respectively.
8: return (X′, Y′).
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While the attack achieves a considerable success rate, its efficiency is limited, even
for short polynomial lengths, due to the large number of enumerated minimal covers.
Therefore, it is impractical for the recommended protocol parameters (d = 150).

• Mixed-integer linear programming (MILP) attack

The attacker similarly aims to find X′ and Y′ that recovers the original M. In this
attack, similar to the approach used in the attacks discussed in Sections 3.2 and 3.3, the
attacker transforms the disjunctive constraints in the formula for each mk into a set of linear
constraints by introducing Boolean variables zkij. This reformulation allows the problem to
be solved as a mixed-integer linear program.

More precisely, since each coefficient mk of M satisfies

mk = max
(i,j):i+j=k

(xi + yj),

it can be equivalently expressed through the following subsystem of inequalities:

xi + yj ≤ mk, ∀i, j,

xi + yj + (1− zkij)T ≥ mk, ∀i, j,

∑
i,j

zkij = 1, zkij ∈ {0, 1}, ∀i, j.

Here, T is a sufficiently large constant. This approach can be used to propose the
following attack.

Figure 11 shows the performance of this attack with t = 3, where it achieves a success
rate comparable to the previous attack but with significantly greater efficiency, even for the
recommended protocol parameters (d = 150).

In practical terms, this success rate means that the attacker can successfully factor the
public key in approximately half of all randomly generated instances. Consequently, if
the protocol were deployed, the attacker could potentially impersonate half of the users
and sign messages using their signatures. Recall that this success rate is explained by the
existence of alternative factors X′ and Y′ different from the original pair, which still satisfy
the verification process and can be efficiently found via the MILP formulation.

Figure 11. Success rate and computational time of Algorithm 10.
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Algorithm 10 MILP-based attack on Protocol 2
Input: Public key coefficients mk, signature parameters t, r, degree bound 2d, big constant
T.
Output: Recovered factors X′, Y′.

1: for dx = 1 to t do
2: Set dy = 2d− dx.
3: Solve the following system for all k ∈ {0, 1, . . . , 2d}, and for all i ∈ {0, 1, . . . , dx}

and j ∈ {0, 1, . . . , dy} such that i + j = k using a MILP solver.
xi + yj ≤ mk,

xi + yj + (1− zkij)T ≥ mk,

∑
(i,j):i+j=k

zkij = 1, zkij ∈ {0, 1}.

4: Construct the polynomials X′ and Y′ using the derived xi and yj, respectively.
5: return (X′, Y′).

6. Conclusions
In this paper, we proposed three new attacks against the tropical and max–min im-

plementations of Stickel protocol. Our aim was to avoid the problem of minimal covers
enumeration and the associated worst case exponential complexity encountered in the
Kotov–Ushakov attacks. While we previously proposed an attack against these proto-
cols [5,14] that avoided enumerating all minimal solutions by carefully selecting a single
minimal solution, this method, although very successful for the tropical case, occasionally
fails. Consequently, it is plausible that Alice and Bob could design the protocol’s public
matrices to resist this attack, and this method still shows increasing complexity with the
polynomial degree used, though not exponentially. Thus, the goal of the techniques imple-
mented in Algorithms 3–8 was to achieve a success rate above 95% with the lowest possible
execution time and reduced dependence on the polynomial degree, which is commonly the
variable parameter controlled by Alice and Bob.

The first proposed attack (Algorithms 3 and 4) aims to find a solution x that minimizes
an objective function of the shape ∑i((A⊗ x)i− bi)

2 instead of finding all minimal solutions
of a system A⊗ x = b as in the typical Kotov–Ushakov attack. This attack employs the
simulated annealing algorithm, a global optimization technique, to find such solution. It
achieved a perfect success rate 100% against the tropical Stickel protocol and a high success
rate (above 90%) against the max–min Stickel protocol, both with very fast execution times.
Additionally, the execution time showed only a minor increase as the polynomial degree
increased. However, unlike the Kotov–Ushakov attack, this approach is sensitive to the size
of public matrix entries and polynomial coefficients used in the protocol. While it remains
usually effective even for large values, we are more likely to encounter some trials that take
significantly longer than average to solve. Also, we cannot definitely say that simulated
annealing outperforms other attacks in the max–min case since it is not achieving a perfect
success rate in our experiments (or rather, we have to “sacrifice” the success rate in order
for the attack to be complete within a reasonable timeframe).

The second proposed attack (Algorithms 5 and 6) aims to solve the system A⊗ x = b
by transforming it into a mixed-integer linear system and then solving it using MILP solver.
Unfortunately, this attack demonstrated slower execution times compared to the typical
Kotov–Ushakov attack, and it remains heavily dependent on the polynomial degree used
in the targeted protocols. Consequently, similar to the typical Kotov–Ushakov attack, Alice
and Bob can resist this attack by increasing the polynomial degree.
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The third proposed attack (Algorithms 7 and 8), which we call Shpilrain’s attack, aims
to solve equations (11) by formulating them as a mixed-integer linear program. Interestingly,
this attack is completely independent from the used polynomial degree in the protocol,
which makes it effective even if Alice and Bob use very high polynomial degrees. The
attack has also demonstrated remarkably fast execution times, taking roughly 21 s for the
tropical case with dimension 10 and polynomial degree 50. A significant limitation of
this attack is its high memory requirement due to the need of encoding a large number
of equations, namely on the order of n4. Consequently, Alice and Bob could potentially
defend against it by employing large matrix dimensions. However, it is worth noting
that the typical Kotov–Ushakov attack would likely encounter similar challenges in such
scenarios, specifically those related to the high number of minimal covers.

Let us also observe that Shpilrain’s attack also applies to the modifications of Stickel
protocol based on Jones matrices and Linde-de la Puente matrices suggested in [15]. Namely,
the protocol based on Jones matrices is only replacing the tropical polynomials of A and B
with tropical quasi-polynomials of the same matrices, so we can still find X and Y directly
from (11) (and its MILP reformulation). As for the Linde-de la Puente matrices, equations
X ⊗ A = A ⊗ X and Y ⊗ B = B ⊗ Y have to be replaced with linear inequalities and
equations that define Linde-de la Puente matrices. We are not including the numerical
results here but the situation is similar to what is reported in Figure 7.

Finally, it is notable that the findings presented in this paper likely indicate that the
max-min and hence also “digital” implementations of the Stickel protocol overall tend to be
more resistant to the attacks described in this paper and [5] than the tropical implementation.
This conclusion arises because two of the three proposed attacks in this paper, alongside
the single cover heuristic [14], demonstrate much greater effectiveness against the tropical
case. Furthermore, the typical Kotov–Ushakov attack is more efficient against the tropical
Stickel protocol compared to its analogue against the max–min Stickel protocol. Better
implementation of Shpilrain’s attack and alternative ideas which would allow for solving
Problems 1 and 2 with higher dimensional matrices are still to be considered. Also, the
reasons behind the relatively good performance of simulated annealing in the tropical case
and “satisfactory” performance in the max–min case are not clear to us and can be a topic
of further research, as well as the conditions under which the simulated annealing based
attacks are guaranteed to solve a problem within a reasonable timeframe.
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