
Citation: Ahmadi Abkenari, F.;

Milani Fard, A.; Khanchi, S. Hybrid

Machine Learning-Based Approaches

for Feature and Overfitting

Reduction to Model Intrusion

Patterns. J. Cybersecur. Priv. 2023, 3,

544–557. https://doi.org/10.3390/

jcp3030026

Academic Editors: Feng Wang and

Yongning Tang

Received: 7 July 2023

Revised: 10 August 2023

Accepted: 15 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity 
and Privacy

Article

Hybrid Machine Learning-Based Approaches for Feature and
Overfitting Reduction to Model Intrusion Patterns
Fatemeh Ahmadi Abkenari 1,2, Amin Milani Fard 1,* and Sara Khanchi 1,*

1 Department of Computer Science, New York Institute of Technology, Vancouver, BC V5M 4X3, Canada;
fahmadia@nyit.edu

2 College of Professional Studies, Northeastern University, Vancouver, BC V6B 1Z3, Canada
* Correspondence: amilanif@nyit.edu (A.M.F.); skhanchi@nyit.edu (S.K.)

Abstract: An intrusion detection system (IDS), whether as a device or software-based agent, plays
a significant role in networks and systems security by continuously monitoring traffic behaviour
to detect malicious activities. The literature includes IDSs that leverage models trained to detect
known attack behaviours. However, such models suffer from low accuracy or high overfitting.
This work aims to enhance the performance of the IDS by making a model based on the observed
traffic via applying different single and ensemble classifiers and lowering the classifier’s overfitting
on a reduced set of features. We implement various feature reduction techniques, including Linear
Regression, LASSO, Random Forest, Boruta, and autoencoders on the CSE-CIC-IDS2018 dataset to
provide a training set for classifiers, including Decision Tree, Naïve Bayes, neural networks, Random
Forest, and XGBoost. Our experiments show that the Decision Tree classifier on autoencoders-based
reduced sets of features yields the lowest overfitting among other combinations.

Keywords: autoencoders; deep learning; feature reduction; intrusion detection systems; machine
learning; security

1. Introduction

Intrusion detection systems (IDSs) represent proactive defence mechanisms that lever-
age advanced data analytics to identify malicious activity, suspicious behaviour, abnormal
patterns, policy violations, and security breaches within a network domain or a host system.
The escalating adoption of diverse network devices has increased systems’ vulnerabil-
ity, making them more susceptible to exploitation by hackers to compromise the CIA
triad [1] in terms of targeting the Confidentiality, Integrity, and Availability of the systems.
The two main categories of intrusion detection in an IDS are: (1) anomaly detection, which
involves detecting deviations from normal behaviour; and (2) misuse detection, which
involves detecting known malicious patterns.

The IDS, however, suffers from a number of deficiencies, including:

• Low accuracy, high false positive rate, or high amount of model’s overfitting [2–5].
• Inefficiency in dealing with big data, which is common in network attacks [2,6,7].
• Keeping a stable detection rate when different volumes of traffic and types of intrusion

are encountered [6].
• Incapability to detect unknown zero-day attacks [6].

In this work, we focus on enhancing the performance of the IDS by reducing overfitting
and increasing the accuracy of the classification models using hybrid machine learning-
based approaches. To assess the efficacy of our detection mechanism, we conducted a
controlled experiment on a real-world network traffic dataset. Our main research question
is whether hybrid machine learning-based approaches can enhance intrusion detection
accuracy by reducing network traffic features and the overfitting of the model.
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Some of the major benchmarking IDS datasets that are often utilized in research
are KDD’99 [8], NSL-KDD [9] (an improved version of the KDD99), CIC-IDS2017 [10],
and CSE-CIC-IDS2018 [11]. The KDD99 dataset has four types of intrusion categories:
DOS (Denial of Service attack), R2L (Remote to Local attack), U2R (User to Root attack),
and Probe. The CSE-CIC-IDS (The Communications Security Establishment (CSE) and
the Canadian Institute for Cybersecurity (CIC)) 2018 dataset [11] includes seven types of
attacks, including Brute-force, Botnet, DoS , DDoS, Heartbleed, Web attacks, and infiltration
of the network from inside. The sub-attack types for KDD99 and CSE-CIC-IDS2018 are
presented in Tables 1 and 2.

Table 1. Attack categories and types in the KDD99 dataset [8].

Attack Category Sub-Attack Types

Probe Portsweep, IPsweep, Nmap, Satan

DoS Neptune, Smurf, Pod, Teardrop, Land

U2R BuferOverfow, LoadModule, Perl, Rootkit

R2L GuessPassword, FtpWrite, Imap, Phf, Multihop, Warezmaster, Warezclient

Table 2. Attack categories and types in the CSE-CIC-IDS2018 dataset [11].

Attack Category Sub-Attack Types

Brute-force Brute-force-Web, Brute-force XSS, FTP Brute-force, SSH Brute-force

Botnet Zeus, Ares

DoS DoS-Hulk, DoS-SlowHTTPTest, DoS-Slowloris, DoS-GoldenEye

DDoS DDoS-HOIC, DDoS-LOIC-UDP, DDoS-LOIC-HTTP

Web attacks SQL Injection, Command Injection, Unrestricted File Upload

Heartbleed Heartleech

Infiltration

Contributions: We perform three phases of data preprocessing, feature selection and re-
duction, and attack detection to find the best combination of machine learning approaches.
We select the CSE-CIC-IDS2018 dataset [11] for our experiment since it has more recent
attack patterns. All implementation and experiments are performed using R studio. We im-
plement various feature reduction approaches, including Boruta, Random Forest, LASSO,
and deep learning-based methods, and executed them on the CSE-CIC-IDS2018 dataset.
We investigate the issue of model overfitting by utilizing different single models and ensem-
ble classifiers such as LASSO, XGBoost, and dropout mechanisms in deep neural networks
to combat overfitting. We demonstrate the effectiveness of Decision Tree classifier with the
least amount of overfitting on the reduced sets constructed from autoencoders.

Outline: The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 describes materials and methods for conducting this research. Section 4
provides the results of our experiments. Section 5 discusses our findings. Finally, Section 6
draws conclusions and future works.

2. Related Work

Khan et al. [2] used the KDD99 dataset and employed a convolutional neural network
(CNN) technique to capture impactful features and propose a robust classification. CNN
is a feed-forward multi-layered neural network consisting of multiple pooling and fully
connected (dense) and convolution layers. Their CNN architecture for feature extraction
has three hidden layers, each using a convolutional layer and a pooling layer, and used a
softmax classifier.

Laghrissi et al. [7] employed three models of Long Short-Term Memory (LSTM),
which is a recursive neural network (RNN) that remembers some context and forgets the
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rest. The main applications of LSTM are grammar learning, speech recognition, time-
series prediction, and sentiment analysis. They used LSTM-PCA (Principal Component
Analysis), and LSTM-MI (Mutual Information) to reduce the dimension, feature selection,
and attack detection. They used the KDD99 dataset, and considered multi-class and
binary classification problems. Their results show that LSTM-PCA outperforms CNN [2],
LSTM-RNN, and pruning VELM [12]. The phases include data preprocessing, multi-class
classifications, PCA, and score calculation for MI to achieve the statistical dependencies
between two variables.

Shapoorifard and Shamsinejad [3] used the NSL-KDD dataset for their experiments
and incorporated K-Means clustering to improve the K-Nearest Neighborhood (KNN)
classifiers. They used five clusters equal to the number of attack types and applied KNN to
capture the distance of each data to cluster centers based on Euclidean distance. In their
approach, they consider both the nearest and the farthest distance (KFN) to form a distance-
based IDS. Their framework with K-Means, KNN, and KFN successfully reduced the false
alarm and increased the accuracy.

Chkirbene et al. [4] proposed a trust-based intrusion detection and classification system
(TIDCS) and an accelerated version of that using NSL-KDD and UNSW datasets. They as-
sumed the trustworthiness reduction in each network node after each attack detection
when the node is involved. As a result, a dynamic system cleaning is conducted. The results
indicated the ability of both systems to reduce the false alarm rate and improve accuracy.

Li et al. [6] proposed a framework that performs feature selection and grouping by
employing the Random Forest technique to build a training set and uses an autoencoder
for prediction. Autoencoders are deep neural structures that map the input to the same
size of output via encoder and decoder sections, and are used for dimension reduction.
Their feature grouping phase includes grouping the features according to their similarity
based on the Affinity Propagation clustering algorithm. The anomaly detection phase
includes several autoencoders equal to the number of feature subsets. Root-Mean-Squared
Error (RMSE) is used to distinguish the normal traffic from the abnormal ones. They used
CSE-CIC-IDS 2018 in their experiments and showed that their work is more efficient
than [13].

Basnet et al. [14] employed various deep learning frameworks such as Theano, Ten-
sorFlow, and fast.ai in detecting attacks based on CSE-CIC-IDS2018 dataset. They showed
that fast.ai running on GPU outperformed the other two frameworks with about 99% accu-
racy and low false positive and negative rates in both detecting and classifying different
intrusion types.

Catillo et al. [15] focused on the anomaly detection upon employing a deep Autoen-
coder on CIC-IDS2017 and CSE-CIC-IDS2018. They aimed to reduce the IDS false alarm
and proposed an anomaly detector without the use of GPU accelerators.

D’hooge et al. [16] conducted research to distinguish multiple attack classes using
CIC-IDS2017 and CSE-CIC-IDS2018. They utilized a pipeline, including twelve supervised
algorithms, and reported that DoS/SSL and botnet classes could be well classified using
multiple approaches. They concluded the performance of tree-based classifiers as the best,
such that single decision trees recognized DoS, DDoS, and botnet traffic. Decision tree-based
methods and, in particular, XGBoost are applicable to six of the seven attack classes.

Fihlo et al. [17] detect the DOS/DDOS attack and its variations, including TCP flood,
UDP flood, HTTP flood, and HTTP slow on CIC-IDS2017 and CSE-CIC-IDS2018 datasets
by employing Random Forest.

Karatas et al. [18] worked on the CSE-CIC-IDS2018 dataset and focused on the re-
duction in the imbalance nature of the attack classes. They implemented a synthetic data
generation model that generates data for minor classes. Their modelling approach in-
cludes KNN, Random Forest, Gradient Boosting, AdaBoost, Decision Tree, and Linear
Discriminant Analysis algorithms.

Kim et al. [19] worked on DOS category attacks on both datasets of KDD99 and CSE-
CIC-IDS2018 and developed an optimized CNN to detect the DOS attacks. They compared
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the performance of these classifiers with RNN and reported a better performance for CNN
over RNN.

Leevy and Khoshgoftaar [5] surveyed intrusion detection models based on CSE-
CIC-IDS2018 dataset until 2020. They studied different approaches such as CNN, deep
autoencoders, LSTM, AdaBoost, Random Forest, Decision Tree, and XGBoost. They re-
ported high accuracy in some experiments but mostly suffered from overfitting. They also
mentioned the lack of attention in addressing the class imbalance problem.

3. Materials and Methods

Our implementation and experiments were performed in R studio. We downloaded
the CSE-CIC-IDS2018 dataset from the Kaggle website [20] with 16,000,000 instances col-
lected over the course of ten days. The attacking infrastructure includes 50 machines,
and the victim’s organization has 5 departments, which include 420 machines and 30 servers.
This dataset is the result of a collaborative project between the Communications Security
Establishment (CSE) and The Canadian Institute for Cybersecurity (CIC) that use the notion
of profiles to generate cybersecurity dataset in a systematic manner.

The dataset has several attack profiles in different categories: Botnet, DoS/DDoS,
Brute force, Web attack, and Infiltration. There are 80 features in this dataset that are
extracted from network traffic using the CICFlowMeter tool. The most important columns
within this dataset are: Destination Port, Protocol, Flow Duration, Total Forward Packets,
Total Backward Packets, and Label. The Label is the dependent variable which indicates if
the flow is benign or attack; the category of attack is mentioned as a label in case of attack.

In our experiments, samples are selected from 6 days of the dataset using a strat-
ified sampling technique. Stratified sampling is a sampling technique to ensure that a
representative sample is obtained from a population with diverse subgroups to reduce
the potential sampling bias. In our dataset, each subgroup is a collection of tuples with
one type of attack vector. As a result, according to Table 3, we have 8 subgroups. In our
sampling attempt, we kept the percentage of each subgroup to the total number of tuples.
For example, the attack vector of Infiltration has 1701 number of samples out of 49,545 (in
the training set), i.e., 0.034% the same as the percentage in the original dataset.

Table 3. Frequency of label values in training and test set using a stratified sampling from
CSE-CIC-IDS2018 dataset [11] that we used in our experiments.

Label Training Set Test Set

Benign 29,605 10,128

DDOS attack-HOIC 6501 2167

DOS attacks-Hulk 4401 1467

Bot 2434 900

FTP-BruteForce 1801 600

SSH-BruteForce 1801 600

Infilteration 1701 564

DOS attacks-SlowHTTPTest 1301 434

Total 49,545 16,860

The training and test sets are divided based on a 75–25% ratio, which resulted in
49,545 tuples as the training set and 16,860 tuples as the testing set. Table 3 illustrates the
number of samples in each set based on their Label according to their real distribution in
the original set. The data are normalized based on z-score metric. After preprocessing,
which involved the detection of infinity and NaN values, the data are fed into feature
selection/reduction models.
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3.1. Feature Reduction

Feature selection is a decisive part in machine learning pipeline: being too conservative
may introduce noise and being too aggressive may eliminate useful information. The fea-
ture reduction is necessary since the feature space is large, and reduced sets of the most
important features lead to a faster classification process. Moreover, according to the nature
of CSE-CIC-IDS2018 dataset, we have features indicating the minimum, maximum, mean,
and standard deviation of one concept, which has several occurrences in the dataset. Due to
the existing multicollinearity among features, feature reduction will be an appropriate step.

In this work, we consider six feature reduction techniques, including Linear Regres-
sion, LASSO, Random Forest with IncMSE, Random Forest with IncNodePurity, Boruta,
and autoencoders.

3.1.1. Linear Regression

The Linear Regression model takes the form y = β0 + β1X1 + β2x2 + . . . + βnXn + ε
where y is the (predicted) dependent variable, each xi is an independent, β0 is the y-
intercept, βi is the regression coefficient of the i-th independent variable, and ε is the model
error. Multiple Linear Regression calculates the regression coefficients that lead to the small-
est model error and then calculates the t-statistic and p-value for each regression coefficient.
The p-value for coefficients indicates whether these relationships are statistically significant.
If the p-value is greater than the significance level (0.05) for an independent variable, it will
be omitted and not considered in predicting the dependent variable. However, in order to
draw a valid conclusion through hypothesis testing (e.g., t-test or ANOVA), errors after
modelling should follow a normal distribution.

3.1.2. LASSO

Least Absolute Shrinkage and Selection Operator (LASSO) [21] is a feature reduction
technique that also helps with reducing overfitting and is effective when the dataset has
multicollinearity. LASSO is an enhancement to Linear Regression by adding penalties to
reduce overfitting. Lasso performs L1 regularization, also known as L1-norm, which adds
a penalty equal to the absolute value of the magnitude of coefficients to the loss function
(the difference between the real and the predicted values). Given a response vector y ∈ Rn,
and a matrix X ∈ Rn×p of predictor variables, the LASSO regression coefficients are defined
as: β̂ = argminβ0,...,βp ∑n

i=1(Yi−∑
p
j=1(Xijβ j))

2 +λ ∑
p
j=1 |β j|. The L1 regularization combats

overfitting by shrinking less important features’ coefficients to 0 and eliminating them from
the model. Hence, the LASSO procedure encourages models with fewer parameters.

3.1.3. Random Forest

Random Forest [22] is an ensemble method that can be used to select the most impor-
tant features. This approach suggests the most important variables based on two metrics:
an increased mean square error (IncMSE) and an increased node purity (IncNodePurity).
One way to calculate the importance of features in Random Forest techniques is using
the amount of decrease in node impurity weighted by the probability to reach that node.
The number of tuples divided by the whole number of tuples results in the value of node
probability. It is obvious that the higher the value, the more important the feature.

In Random Forest, first, the feature importance for each tree is normalized in relation
to that tree: norm fi =

fi
∑j∈all f eatures f j

, where fi is the importance of feature i and norm fi is the

normalized importance of feature i. Then, the final importance of feature is averaged over
all the trees. The importance of feature i is calculated from all trees in the Random Forest

model as RF fi =
∑j∈alltrees fij

∑j∈all f eatures,k∈alltrees f jk
, where norm fij is the normalized feature importance

for i in tree j.
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3.1.4. Boruta

Boruta [23] is a feature reduction technique based on the Random Forest algorithm that
finds features which are strongly or weakly relevant to the response variable. Given a set of fea-
tures F = {F1, F2, . . . , Fn}, the algorithm first creates shadow features S = {S1, S2, . . . , Sn}
as copies of F. Next, it shuffles values within each column of shadow variables to elimi-
nate the correlation between the independent variables and the response variable. It then
creates a new set with both F and S and trains a Random Forest classifier on this extended
dataset that determines the importance of each feature such as based on MDI score (Mean
Decrease Impurity).

The idea is that a feature is useful only if it has a higher importance than the best
randomized (shadow) feature. The Z-score based on Random Forest is calculated for all
columns. The maximum Z-score of shadow features will be used as threshold and each
Z-score of original features that is greater than that threshold will determine that feature
as important and otherwise as unimportant. This procedure will be repeated until all
important and unimportant features are identified and no changes occur, or it reaches a
specified limit of Random Forest.

3.1.5. Autoencoders

Autoencoders (AEs) [24] are deep feed-forward neural networks that include two
sections of the encoder and decoder. They compress the input, i.e., reduce the number of
features, into a latent-space representation known as a bottleneck with the help of multiple
hidden layers. Then, the decoder section reverses the process to reconstruct the output
from this representation with the same number of features as the output. The output of an
autoencoder is its prediction for the input.

When given an input x ∈ Rn into an encoder section (the transformation defined
by Wh), the result is an intermediate hidden layer h = f (Whx + bh), where h ∈ Rd and
Wh ∈ Rd×n. This is injected into the decoder section (the transformation defined by Wx).
This produces the output x̂ = g(Wxh + bx), which is our model’s prediction/reconstruction
of the input, where x̂ ∈ Rn and Wx ∈ Rn×d. Autoencoders can reduce dimensionality with
their encoder section. Hence, we do not inject the result into the decoder section.

3.2. Classifications

In this section, three single-model classifiers and two ensemble classifiers are im-
plemented on 10 sets of reduced features (captured from Boruta, Random Forest based
on IncMSE, and Random Forest based on IncNodePurity, LASSO, and 6 captured from
autoencoders). We also applied KNN (K-Nearest Neighborhood) as a lazy classifier on the
first 4 reduced sets. The single-model classifiers are Decision Tree, Naïve Bayes, and neural
network, and the two ensemble methods are Random Forest and XGBoost. We deployed
4 neural network classifiers with two, three, four, and five hidden layers. It is worth men-
tioning that because of the non-discrimination nature of neural network classifiers on the
first four feature sets, it is not implemented on the reduced set captured from autoencoders.

The Root-Mean-Squared Error (RMSE) values of Decision Tree and Naïve Bayes on
the reduced set of features of train and test sets are calculated while the RMSE values of
running ensemble classifiers on these four sets are also recorded. The RMSE values of
Decision Tree and Naïve Bayes on the six reduced sets of features of train and test sets
obtained from autoencoders, as well as the RMSE values of running ensemble classifiers on
these sets, are also recorded.

4. Results
4.1. Feature Reduction

This section includes the result of implementing six feature reduction techniques.
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4.1.1. Linear Regression

In our dataset, all features are numerical except one feature, date, which is removed,
and the Linear Regression is constructed based on the full feature set. As depicted in
Figure 1, the fitness of Linear Regression is under question since the normal distribution of
Label as the dependent variable is not satisfied. Therefore, the suggested features for omis-
sion are not considered for omission. Also, Figure 1 shows some levels of multicollinearity
among features, homoscedasticity, and the existence of outliers.

Figure 1. Characteristics of data and the diagnosis of the Linear Regression model, showing some
levels of multicollinearity among features, homoscedasticity, and the existence of outliers.

4.1.2. LASSO

Figure 2 shows the result of running LASSO on this dataset. According to this ap-
proach, 33 variables remain, and the rest should be omitted. We will use this reduced set
later for the classification step.

4.1.3. Random Forest

The Random Forest algorithm is implemented with 500 trees and 30 tries (variables).
As illustrated in Figure 3, the resulting variable sets are not the same when calculated
based on the two mentioned metrics. Thus, both results will be fed separately into the
classifiers later.
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Figure 2. Result of implementing LASSO. The left dashed line corresponding to the λ min that
is the value for which the model has the lowest cross-validation mean squared error (red point).
The numbers on top are the number of non-zero regression coefficients, i.e., the number of included
features. With increasing λ we have fewer variables in the model as the penalty for inclusion of
features is weighted more heavily.

4.1.4. Boruta

Figures 4 and 5 illustrate the result of implementing the Boruta approach on the final
train set. In Figure 4, the X axis shows each feature, and the Y axis depicts the value of
each feature’s importance based on the Boruta technique. According to this technique,
eleven features are suggested to be omitted (depicted as Rejected in Figure 5). The result of
running different classifiers on the reduced set suggested by Boruta will be discussed later.

4.1.5. Autoencoders

We set the latent size or bottleneck to 30 and build six autoencoders. AE3 to AE6
follow the same structure as AE2, with different rates in their dropout layers. The loss
function for this experiment is set to Categorical_Crossentropy, the optimizer to Adam,
the number of epochs to 50, the batch size to 64, the activation function to Relu for all
layers except the last layer, the activation function to Sigmoid for the last layer, and the
layers include dense, dropout, and Leaky Relu activation layers. The configuration for each
autoencoder and dropout rate is shown in Table 4. We set the dropout rate to 0.25, 0.1, 0.5,
and 0.75 for AE3, AE4, AE5, and AE6, respectively.
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Figure 3. Result of implementing Random Forest algorithm to achieve the importance of variables.

Figure 4. Result of the Boruta feature reduction technique. The X axis shows each feature, and the Y
axis depicts the value of each feature’s importance based on the Boruta technique. Shadow variables
are in blue, variables confirmed as unimportant in red, and important in green.
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Figure 5. Result of applying Boruta feature reduction technique in R studio. Rejected features are
highlighted to be distinguished from confirmed ones.

Table 4. Configuration for each autoencoder.

Autoencoder Structure

AE1 5 Layers, No Dropout

AE2 10 Layers, No Dropout

AE3 AE2 Structure, Dropout rate = 0.25

AE4 AE2 Structure, Dropout rate = 0.1

AE5 AE2 Structure, Dropout rate = 0.5

AE6 AE2 Structure, Dropout rate = 0.75

4.2. Classifications

Figures 6–9 summarize the difference between the RMSE values on running the
classifiers on the train and test sets. As illustrated in Figure 9, the least difference of RMSE
indicates the least amount of overfitting. The least RMSE value as the difference between
running the classifiers on the train and the test sets is achieved from running Decision Tree
on the reduced feature set captured from AE2, AE3, AE5, and AE6.

Also, we employed the KNN classifier on the first four reduced sets as depicted in
Table 5. The accuracy rate is very high for K equal to 11 for the first three reduced sets and
K equal to 12 for the reduced set captured using the LASSO approach. The odd values of K
for the first three sets are selected since the total number of samples was even numbered,
but since LASSO deleted a few numbers of samples, and the total number of the remaining
samples was odd for the last set, the even numbers of K are practised. However, since KNN
is a lazy classifier, no signature-based model could be fetched. As a result, running other
non-lazy classifiers could be a more promising solution.
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Figure 6. The difference of RMSE between train and test sets for single-model classifiers on four
reduced sets.

Figure 7. The difference of RMSE between train and test sets for ensemble classifiers on four
reduced sets.

Figure 8. The difference of RMSE between train and test sets for single-model classifiers on six
reduced sets captured from autoencoders.
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Figure 9. The difference of RMSE between train and test sets for ensemble classifiers on six reduced
sets captured from autoencoders.

Table 5. Accuracy of KNN on the first four reduced sets.

K Boruta RF-IncMSE RF-IncNode K LASSO

1 90.89 90.80 90.79 2 90.95

3 92.76 92.71 92.73 4 92.85

5 93.51 93.53 93.43 6 93.48

7 94.02 94.02 93.94 8 93.85

9 94.16 94.19 94.19 10 94.05

11 94.54 94.57 94.52 12 94.16

13 94.40 94.44 94.37 14 94.05

15 94.13 94.16 94.08 16 93.89

17 94.05 94.05 94.0 18 93.62

19 93.89 93.90 93.91 20 93.52

5. Discussion

In this research, a subset of CSE-CIC-2018 dataset is used, and six feature reduction
approaches have been investigated, including Linear Regression, Boruta, Random Forest
with IncMSE, Random Forest with IncNodePurity, LASSO, and Autoencoders. The four sets
captured from Boruta, LASSO, and two from Random Forest approaches were captured
with the other six reduced sets fetched from autoencoders. Then, they were fed into
three single-model classifiers as Decision Tree, Naïve Bayes, and neural networks, and
two ensemble methods as Random Forest and XGBoost.

To determine the level of overfitting, we calculated the Root-Mean-Squared Error
(RMSE) value between the train and test datasets for each model. We observed that the De-
cision Tree model demonstrated the lowest RMSE value when trained on the reduced
feature set derived from autoencoders 2 (AE2), AE3, AE5, and AE6. This finding indicated
that the structure of AE2 was particularly well-suited, showing comparable effectiveness to
having dropout rates of 0.25%, 0.5%, and 0.75% on this architecture, respectively. Conse-
quently, AE6 with a 75% dropout rate proved to be the least resource-intensive structure
capable of producing signatures for all attack vectors while exhibiting the least amount
of overfitting.

We evaluated our findings by implementing various classification approaches, such as
XGBoost [16], Random Forest [17], and deep autoencoder as used in [15], among others.
As depicted in Figures 6–9, the Decision Tree model achieved the best results when applied
to the reduced feature sets obtained from AE2, AE3, AE5, and AE6.
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With regard to the efficiency of different approaches in our experiments, only Random
Forest took a long time and the rest were somehow similar to each other. It is also worth
mentioning that we removed the result of Principal Component Analysis (PCA) to change the
feature space after implementing the autoencoders, as autoencoders already encompass PCA
in a nonlinear fashion. Therefore, there is no need to have both PCA and autoencoders.

6. Conclusions and Future Work

In this research, we investigated feature and model overfitting reduction for network
intrusion detection. We conducted our experiments on a subset of CSE-CIC-2018 dataset
and analyzed feature reduction approaches, including Linear Regression, Boruta, Ran-
dom Forest with IncMSE, Random Forest with IncNodePurity, LASSO, and autoencoders.
We then fed the feature-reduced datasets into classifiers, including Decision Tree, Naïve
Bayes, neural network, Random Forest, and XGBoost. Our experiments show that the
Decision Tree classifier on autoencoders-based reduced sets of features yields the lowest
overfitting among all the combinations.

For future work, we plan to leverage deep learning-based classifiers such as LSTM
(Long Short-Term Memory) or convolutional neural networks (CNNs) to further enhance
detection performance. Additionally, we aim to refine the autoencoder’s structure for
feature construction, aiming to achieve a higher detection rate while minimizing over-
fitting. Furthermore, we aspire to evaluate the impact of our proposed approaches on
the detection rate of different classes of attack vectors separately. By understanding the
strengths and weaknesses of our techniques on specific attack types, we can tailor our
solution to be more robust and effective across various threat scenarios. Another aspect of
our future research involves adapting our solution to handle class imbalance effectively.
Real-world datasets exhibit imbalanced class distributions, where certain attack types
might be significantly under-represented compared to others. Devising methods to handle
class imbalance will be pivotal in ensuring the reliability and fairness of our model in
practical deployment scenarios.
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