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Abstract: We present a differentially private extension of the block coordinate descent algorithm by
means of objective perturbation. The algorithm iteratively performs linear regression in a federated
setting on vertically partitioned data. In addition to a privacy guarantee, we derive a utility guarantee;
a tolerance parameter indicates how much the differentially private regression may deviate from
the analysis without differential privacy. The algorithm’s performance is compared with that of the
standard block coordinate descent algorithm on both artificial test data and real-world data. We find
that the algorithm is fast and able to generate practical predictions with single-digit privacy budgets,
albeit with some accuracy loss.
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1. Introduction

There are many circumstances where organizations need to use each other’s data to
perform tasks, such as data analysis or prediction [1–3]. For example, different parties
may own different data sets that can be combined for improved predictive performance
or inference. When these data contain personal information, the required data exchange
can be problematic. In these situations, federated learning can be used to facilitate such
collaborations. It is a privacy-preserving technique that keeps the data local during the
analysis and ensures that no other party gains access to it. Within the research field
dedicated to federated learning, there is increasing attention towards solutions for vertically
partitioned data. One speaks of vertically partitioned data when different parties owning
different attributes on the same subjects.

An analysis that researchers often seek to perform on vertically partitioned data is
regression analysis. Recently, an approach has been presented for this scenario: Block
coordinate descent (BCD) [4]. BCD is a promising and fast way to perform federated
learning for generalized linear models. One of its strengths is that it avoids computationally
expensive cryptographic operations to secure the computations. Although no raw data
is shared during BCD, the information that is exchanged can still leak information, as
no privacy guarantees are in place. There are several examples of this in the context of
federated learning [5,6]. To limit the possibility of information leakage, we supplement
BCD with differential privacy (DP).

Differential privacy was introduced by [7] and is widely referred to as the state-of-the
art approach to privacy preservation. Essentially, it involves adding uncertainty to the data
analysis such that similar data sets will likely lead to similar results. Since its introduction,
differential privacy has observed some application, but not yet widespread adoption. One
of the reasons for this is that the DP parameters quantifying the privacy guarantees often
cannot be made as small as hoped while preserving utility. The result is a noisy learning
algorithm with reduced performance that theoretically could reveal information about data
in the data set with considerable certainty.
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The motivation for this project is twofold. The first is to extend BCD with privacy
guarantees to make it applicable in a wider range of use cases. The second motivation is to
improve the practicality of DP in realistic use cases. To do so, we make some optimistic
choices in our set-up. This means that less noise has to be added and a better performance
is obtained. This clearly reduces the amount of protection DP offers. However, we believe
that in this way we provide more meaningful privacy guarantees that correspond better to
the data analyst’s practice.

Related Work

Multiple approaches have been presented to add differential privacy to a linear regres-
sion problem in the centralized setting (i.e., with one party) [8–11]. For a federated setting,
there has been more focus on horizontally partitioned data [12,13]. For vertically parti-
tioned data, only a few solutions are known [14,15]. A problem similar to ours is treated
in [15], where it is approached using techniques from multi-party computation. Although
the algorithm performs well, it does not provide a utility guarantee or expectation.

Utility expectations of differentially private learning have been presented for other appli-
cations. Examples can be found in differentially private empirical risk minimization [8,16–18].
Since such utility bounds are typically asymptotic, large numbers of iterations are required
for such bounds to become reliable. For learning techniques with a small number of
iterations, such as ours, these are not practical.

The approaches above apply differential privacy over the entire universe of data sets.
The concept of locally sensitive differential privacy has been studied before [19–21], albeit
under various names.

Our Contributions

We introduce DP-BCD, a slightly reformulated version of the block coordinate descent al-
gorithm [4] that has been made differentially private (DP) using objective perturbation [8,22–24].
It iteratively performs linear regression on vertically partitioned data. To make this im-
plementation as practical as possible, we use local sensitivity parameters in a particularly
small universe of possible data sets, instead of using global upper bounds on some large set
of unseen data sets. Furthermore, we introduce a new parameter γ that gives the maximally
alowable performance decay per iteration. Before the analysis, the parties agree on a loss
scaling, fixing the amount of performance they are willing to sacrifice for more privacy.
As a consequence of this, theoretical performance guarantees can be derived. To evaluate
its performance, we compare our algorithm with the standard BCD algorithm without
differential privacy on synthetic test data, the forest fires data set [25] and the garments
industry data [26].

Outline

In Section 2, we formulate the federated setting and introduce the fundamental results
from regression analysis and differential privacy that we need for our construction. The
construction of the DP-BCD algorithm with the main result, Theorem 1, can be found in
Section 3.1. In Section 3.2, we compare the performance of DP-BCD with standard BCD
and linear regression in the centralized setting. In Section 4, we discuss its performance
and some improvements of the algorithm, and we conclude with Section 5.

2. Materials and Methods

This section elaborates on the federated context that motivates and scopes our research.
Thereafter, we present the BCD algorithm for training a simple linear regression model and
highlight the potential privacy issues. Finally, as a stepping stone for improving the BCD
algorithm, we formally introduce differential privacy.

2.1. Federated Context

Federated learning with k parties involves local data sets {X(j)|1 ≤ j ≤ k} that jointly
form a federated data set (X(1), . . . , X(k)). These data sets are used to jointly train a model,
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which in this case consists of the joint weights (βa, βb). The essence of federated learning is
that the local data set of any party is only accessed by the party itself, ensuring that no other
party processes it. So federated learning can be chosen to provide more data confidentiality.
However, information about the local data set may still be deduced from the outcomes of
the local computation.

Our setup assumes that the data sets and the list of participants is fixed for the
entire runtime of the algorithm. Nonetheless, modifications that allow the addition of
new subjects or objects to the data sets are conceivable. It may also be possible to add
a participant during the protocol. This participant will simply have missed the first few
iterations and have not contributed anything there. Participants cannot stop during the
protocol without publishing their result so far. Such extensions are out of scope for this
work. It should be clear that the results here all assume a fixed list of participants and
data sets.

In the rest of the article, we will work in the two-party setup. The algorithms and
results can be generalized to the k-party setting in a straightforward manner. The utility
results do depend on the number of parties. We assume that two entities, named Alice
and Bob, intend to perform an analysis on their joint tabular data. These entities could be
researchers, analysts or some organizations. The data is vertically partitioned, meaning
that Alice and Bob have complementary data on the same subjects. More specifically, the
data Xa of Alice and the data Xb of Bob, with respective dimensions N ×ma and N ×mb,
both contain N observations that are ordered in the same way. Alice knows the first ma
parameters of each observation and Bob knows the other mb = m−ma observations. In
this setting, the methods for linear regression in the centralized setting [8] provide good
differentially private linear regression algorithms.

2.2. Linear Regression

We consider simple linear regression, which is the problem of finding β∗, such that

L(β∗) = min
β
L(β), (1)

where the loss L on the the data set X with labels y is given by

L(β) := ‖Xβ− y‖2
2. (2)

The optimal solution to this problem is found by deriving with respect to β and determining
its root, yielding

β∗ = (XTX)−1XTy. (3)

2.3. Block Coordinate Descent

The starting point is the block coordinate descent (BCD) algorithm introduced by [4].
It can be used to train a generalized linear model in a federated setting. In the standard
approach, all parties know the label y. The first party tries to create a linear model to
predict as much from y as possible from its own data. It hands its prediction to the next
player, who tries to improve the prediction as much as possible. This continues until the
stopping criterion is met.

A simple modification of the original algorithm communicates the missing parts rather
than their own predictions. This has the advantages that only a single party needs to know
the true label. This is a common situation in many joint learning problems. For this reason
the single label owner variant Algorithm 1 of BCD will be used here.
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Algorithm 1 Incremental 2-party block coordinate descent algorithm. The subscript a is for
Alice and b for Bob

1: Alice and Bob initiate β
(0)
a ← 0 and β

(0)
b ← 0, respectively

2: Alice initiates vb ← y
3: i← 0
4: while stopping criterion is not met do
5: player Alice do
6: β̃a ← (XT

a Xa)−1XT
a vb

7: βa ← βa + β̃a
8: va ← vb − Xa β̃a
9: send va to Bob

10: end player
11: player Bob do
12: β̃b ← (XT

b Xb)
−1XT

b va

13: βb ← βb + β̃b
14: vb ← va − Xb β̃b
15: send vb to Alice
16: end player
17: i← i + 1
18: end while

2.4. Data Reconstruction

Block coordinate descent is an efficient federated learning algorithm, but can leak
information about the used data set. In [4], it is explained that the attackers may reconstruct
the used data set up to a rotation. From discussions with the authors of [4], we have
learned that the data is better protected than by a rotation. The original data can be
approximated within a quantifiable margin of error, depending on the amount of shared
intermediate results. Earlier reconstruction attacks suggest that an external attacker with
supplementary information might be able to mimic this approach even without access to
the intermediate results. Although the design, feasibility and success of such an attack are
merely hypothetical, the fact is that at this point, we cannot say to what extent the approach
in [4] protects the processed data. This is one of the reasons to study a differentially private
version of BCD.

This is an example of the broader problem of data privacy. It is hard, if not impossible,
to measure. The reason for this is that typically no optimal attack exists. Since it is hard to
know how much some optimized approach may uncover, evaluating the ‘privacy’ of data
processing is hard. This is one of the reasons to work with theoretical upper bounds on the
amount of information that is leaked. Differential privacy does precisely this. It bounds
the certainty an attacker may obtain from the results of any study, regardless of the extra
information or computational power the attacker may have.

Example 1. Assume that an attacker has obtained a small list of possible data sets {(X(i), y(i))|
1 ≤ i ≤ n}, of which one is used in a deterministic study, meaning that the outcome is a function of
the dataset and the label. The result of this study is a vector β, solving (1), of weights belonging
to a linear model. The attacker can simply test all possible data sets to see which ones generate the
optimal weight vector β. In this way, the attacker may determine which data set was used. This
shows that deterministic methods cannot provide sufficient privacy guarantees.

2.5. Differential Privacy

We begin with the standard definition of differential privacy and a localized
variant [19–21]. An algorithm is (ε, δ)-DP if it finds similar results for similar data sets with
large probability 1− δ. The similarity of the results is described by the privacy budget ε. In
practice, this means that an attacker, who sees a certain result from the algorithm, cannot
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decide which data set was used to generate the result. This implies that records in the data
set remain hidden.

Definition 1 (Differential privacy). A randomized mechanism A provides (ε, δ)-differential
privacy, if for all pairs of data sets x1, x2 ∈ X at distance 1 = d(x1, x2) and for any outcome y

P[A(x1) = y] ≤ eε P[A(x2) = y] + δ .

This definition provides guarantees that are unconditional on the knowledge or capa-
bilities of the attacker. Furthermore, the parameters ε and δ can be bounded from above by
a variety of composition laws. The most common of these will be discussed in Section 2.6.
This allows the data owner to keep track of the maximum amount of data leakage a data
set has suffered.

Example 2. Continuing with Example 1, assume that the list consists of two possible data sets,
X1 and X2. Since there is no additional information, they are equally likely to be used. The weight
vector β is computed using an (ε, 0)−DP algorithm, where both data sets are in the universe of
possible data sets. From the Definition 1 of Differential Privacy, it follows that

P[A(X1) = β] ≤ eε P[A(X2) = β] .

This implies that the likelihood that X1 is used is at most

P[A(X1) = β]

P[A(X1) = β] + P[A(X2) = β]
≤ eε

1 + eε
.

The attacker cannot learn the used data set with certainty, regardless of his computational power
and additional information.

Definition 2 (Locally sensitive differential privacy). A randomized mechanism A provides
(ε, δ)-locally sensitive differential privacy in the data set x1 ∈ X , if for all data sets x2 ∈ X at
distance 1 = d(x1, x2) and for any outcome y

P[A(x1) = y] ≤ eε P[A(x2) = y] + δ .

Definition 1 holds for all pairs of datasets in the universe X at distance 1 of each other.
This implies that the amount of noise added to an analysis of our dataset X may stem from
data sets D and D′ at distance 1 of each other, which are completely different from X and
its neighbourhood. In this way, a lot of noise is added to hide the difference between D
and D′ while studying X. Thus, a lot of noise has to be added to hide an absent data point,
resulting in a large privacy budget with weak guarantees. Therefore, we choose to sacrifice
group composition in order to obtain a closer link between the performed data analysis
and the privacy budget. This results in a universe of possible data sets that is chosen with
local sensitivity in mind.

Definition of a Distance

Definitions 1 and 2 make it clear that some distance on the universe of data sets
must be defined. It is preferable to use concepts that make sense both in the local and the
federated context. We use the following definition here. Two data sets are at a distance
1, if the sets of subjects they have data on differ by one. It thus requires suppression of
an entire row of the data set. Since the data matrices should be of the same dimensions,
this corresponds to having no information on someone and filling an entire row in X(i)

with zeros. This can be interpreted in the federated view too. It means that both parties
remove their information about this subject from their local data. In this case, if both parties
train ε-DP locally, this corresponds by simple composition; see Lemma 1, to 2ε-DP in the
federated setting.
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2.6. Composition Mechanisms

The learning algorithm described in Section 3.1 consumes δ = 0 and a privacy budget
of ε for every learning phase iteration. Using either simple composition [27,28] or advanced
composition [29], it is possible to determine the consumed privacy budget for an entire
protocol run.

Lemma 1 (Simple composition). LetMi be an (εi, δi)-differentially private algorithm. The sequence
of algorithms

A(x) = (M1(x), . . . ,MT(x))

is (∑T
i=1 εi, ∑T

i=1 δi)-differentially private.

Lemma 2 (Advanced composition). For every ε > 0, δ ≥ 0, δ′ > 0 and T ∈ N the class of
(ε, δ)-differentially private mechanisms is (ε′, Tδ + δ′)-differentially private under T-fold adaptive
composition, for

ε′ = ε
√

2T log(1/δ′) + Tε(eε − 1).

For sufficiently small δ′ this means that the advanced composition yields better results, if√
2T log(1/δ′) < T(2− eε),

which leads to

T log(N) < T log(1/δ′) <
T2

2
(2− eε)2, (4)

since δ′ < 1/N. This means that advanced composition is only beneficial, if a protocol
with many iterations and a small privacy budget per iteration is used and ε < log(2). For
example, with T = 5 iterations and ε = 0.2, the data set may consist of at most 4 data points
for advanced composition to be the better choice. Since BCD does not function with a tiny
privacy budget per round, this means that we will only use simple composition.

2.7. Convergence

Since Algorithm 1 is iterative, an end point must be chosen. Typically, one would let the
algorithm run until the result has converged, where the standard definition of convergence
requires any single player to find a remainder v(t) in iteration t that is sufficiently close to a
remainder observed before,

‖v(t) − v(s)‖ ≤ B0 , for 1 ≤ s < t. (5)

This method demands the weights to converge. However, the optimal weights may de-
pend heavily on a single data point. It is precisely this dependence that DP tries to cap.
Furthermore, when adding noise in each round, the weights will absorb some of this noise,
which could lead to a series of increasing remainders, so that convergence may never occur.
For these reasons (5) is not an ideal convergence definition.

At each iteration, the loss L(β) is minimized. At iteration t, a remainder
v(t) = v(t−1) − Xβ(t) with minimum length is passed on to the next player. However,
after a certain number of iterations, the benefit of an additional round will become very
small. One may define that convergence is reached when the length of the remainder

‖v(t)‖2
2 ≥ ‖v(t−1)‖2

2 −BC (6)

hardly decreases or even increases. The bound BC for this would be defined at the initializa-
tion of the training. This definition is not very sophisticated, but it has the added advantage
that it is directly related to the loss function, which is the objective of the training algorithm.
Furthermore, it is applicable in virtually all situations. For example, it will also work in the
case of increasing remainders, which may occur in a differentially private algorithm.
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Rather than using convergence as stopping criterion, the experiments described here
use a fixed number of T = 5 iterations. This makes the analysis of the algorithm and its
performance simpler. Five iterations are much less than typically used in BCD. The reason
for this is that extra iterations are expensive in differential privacy.

2.8. Code

The code used in this project is available at https://github.com/JDJ847879/dp-bcd
(accessed on 12 September 2022).

3. Results
3.1. Construction of DP-BCD

If an attacker knows what function or (deterministic) computation has been performed
on a data set, he may derive information about this data from the outcome. This may
allow him to exclude certain data points from the data set, include other specific points or
deduce relations that the data set fulfils. One of the options to limit this possibility is to hide
precisely which computation has been performed. In objective perturbation [8,22–24], it is
the loss function that is perturbed, preventing the attacker from knowing what computation
was performed.

The algorithm presented here consists of two phases. In the first phase, all parties
train a linear model on their local data set. The labels they use for this are the parts missing
from the joint prediction. In the second phase, the linear models are put together to form a
linear model in the federated setting. This linear model can then be published. There are
two potential groups of attackers possible in this setting. During the first phase, it is the
group of all other participants. At publication, it is the outside world that receives the
jointly trained model. Since the group of all other participants is also part of the outside
world, we will only be considering the first group when proving our privacy guarantees.

In this study, we use locally sensitive differential privacy (LSDP), as defined in
Definition 2. Based on this, only data sets at distance 1 of a party’s own data set are
considered. Besides that, we use a small universe of possible data sets X . It consists only of
the actual data set and all data sets obtained by removing one record. We do not include
possible data sets with one record more than our data set. In fact, for such a small universe,
the conditions of Definitions 1 and 2 coincide.

One may argue that using the small universe based on local sensitivity to reduce the
amount of noise needed while lowering the privacy budget, is in vain. This is not the
case. In the transition, the privacy guarantee is shifted from absent data points with a high
privacy budget to the actual data with a low privacy budget. The privacy budget is the
explicit security guarantee that (LS)DP offers and as such is what users look at.

The ambition is to minimize the following 2-party loss function in both an iterative
and a federated manner

L =
(
y−

2

∑
i=1

X(i)β(i))2
+

2

∑
i=1

(
β(i))T(X(i))Tb(i). (7)

This is the 2-party form of (2) with a perturbation term added. A ridge regression term is
omitted to perform a cleaner comparison to the original BCD algorithm. However, nothing
prevents such a term. In (7), each party’s loss function is perturbed by the dot product of
the prediction and a secret vector b(i), known only by party i.

For each party, we write that X(i) ∈ MN×mi , so there are N observations of mi attributes
in this party’s data. It follows from our data assumption that N > mi.

If the vectors b(i) would be sampled from a normal distribution such as (8), the
perturbation term would have the added benefit that the local and federated perturbation
term are of the same form. This would provide a similar perturbation term in the federated
and local objective function. To avoid dimensionality problems, a different distribution is
used, as explained in Remark 1.

https://github.com/JDJ847879/dp-bcd
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Remark 1. The vector b ∈ RN could be sampled from a normal distribution with density

pnaive(b) =
(

ε

2πξ2

)N/2
exp[−

ε‖b‖2
2

2ξ2 ] . (8)

It is clear that the direction of the vector is uniformly sampled from the surface of the N-dimensional
sphere. For its length, we want to solve for R

2
Γ(N/2)

∫ R/(
√

2σ)

0
dr rN−1e−r2

= p , with p ∈ (0, 1) ,

which transforms into
1

Γ(N/2)

∫ R2/(2σ2)

0
dt t(N/2)−1e−t = p

and is solved by the inverse lower incomplete gamma function. This is problematic. The high
dimension pushes the vector outwards, so that the noise vectors tend to get bigger with increasing
number of observations. This leads to noise vectors overwhelming the data and a remainder that is
larger than the input label.

As explained before, only the first party needs to know the labels. Afterwards, during
iteration t, party j obtains the remainder

v(j)
t = y−

2

∑
i=1

X(i)β
(i)
t , where β

(i)
t =

 ∑t
s=1 β

(i)
(s), for i < j

∑t−1
s=1 β

(i)
(s), for i ≥ j

of the label that is not yet explained by party j− 1. From now on we will suppress the sub-
and superscripts when possible. The local solution is given by

0 = XT(v− Xβ∗ − b) ⇒ β∗ = (XTX)−1XT(v− b). (9)

There are two algorithms in use in the protocol. The first is used during the learning
phase to communicate the missing part of the labels. It is given by

Al(X) = v− Xβ∗. (10)

The second is used in the revealing phase and is defined by

Ar(X) =
T

∑
t=1

β∗(t), (11)

where β∗ is in both cases defined in (9). In the special case of unperturbed learning,
i.e., b = 0, we call this solution β?.

We start with the privacy of the learning algorithm Al . We sample b = l · s with
s ∈ SN−1 uniformly and l with density 2

√
ε

2πξ2 exp[− εl2

2ξ2 ], so that

pξ,ε(b) =
Γ(N

2 )

π
N
2

√
ε

2πξ2 exp[−
ε‖b‖2

2
2ξ2 ] (12)

Thus, the length of the perturbation vector is normally distributed and its direction is
uniformly distributed. This ensures that the length of the perturbation vector is independent
of the number of observations. The parameter ξ is the largest allowed value of ‖vout‖ for a
successful protocol run.
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The standard deviation of the length of the perturbation vector is given by ξ/
√

ε,
where ε is the privacy budget for the round and

ξ = γ‖v− Xβ?‖2.

The parameter γ > 1 gives the maximally allowable deterioration in performance
compared to the unperturbed case. It is a new parameter introduced here. It must be
chosen big enough to satisfy in every iteration t

‖(vin,(t) − Xiβ
∗
(t))⊥i‖

2
2 ≤ ‖vin,(t) − Xiβ

∗
(t)‖

2
2 ≤ ξ2

(t).

This implies that in each iteration of the protocol, the loss scaling parameter must satisfy

γ ≥ sup
d(X,X̃)=1

m=rk(X)=rk(X̃)

{‖v− Xβ?‖2

‖v− X̃ β̃?‖2
,
‖v− X̃ β̃?‖2

‖v− Xβ?‖2

}
. (13)

Thus, γ represents the cost per round of adding differential privacy to the learning algo-
rithm. It is the multiplier of the loss with respect to the unperturbed case, where b = 0.

The probability that two databases X1, X2 of full rank at a distance 1 of each other
yield the same output vector vout = vin − X1β∗1 = vin − X2β∗2 is, according to (9), given by

P[Al(X1) = vout]

P[Al(X2) = vout]
=

P[0 = XT
1 (vout − b1)]

P[0 = XT
2 (vout − b2)]

=
P[b1 ∈ ker(XT

1 ) + vout]

P[b2 ∈ ker(XT
2 ) + vout]

=
P[b1 ∈ ker(XT

1 ) + v1,⊥1 ]

P[b2 ∈ ker(XT
2 ) + v2,⊥2 ]

=
exp[− ε

2ξ2 ‖v1,⊥1‖
2
2]

exp[− ε
2ξ2 ‖v2,⊥2‖2

2]
≤ eε (14)

Here, we have decomposed vout = v1,ker1 + v1,⊥1 = v2,ker2 + v2,⊥2 into parts inside
the kernel and perpendicular to it. Note that the decomposition for X1 is different from
that for X2. For the probabilities, it suffices that

exp[−α(v⊥ + ∑
j

λjwj)
2] = exp[−αv2

⊥] ·∏
j

exp[−αλ2
j ],

where {wj} is an orthonormal basis for the kernel. Note that the parts inside the kernel
can only stem from vin. Since both matrices are of full rank, their kernels have the same
dimensions and selecting a vector out of them is equally likely. For the perpendicular parts,
a standard argument can be used. Using (13), the final inequality follows from

‖vi,⊥‖2
2 ≤ ‖vout‖2

2 = ‖vin − Xiβ
∗
i ‖2

2 ≤ ξ2.

For the revealing phase, a very similar argument works. Instead of the missing labels,
it is now the weights that are communicated. The privacy loss for revealing a single β∗(t) is
computed by
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P[Ar(X1) = β∗(t)]

P[Ar(X2) = β∗
(t)]

=
P[0 = XT

1 (vin,(t) − X1β∗(t) − b1,(t))]

P[0 = XT
2 (vin,(t) − X2β∗

(t) − b2,(t))]

=
P[b1,(t) ∈ ker(XT

1 ) + (vin,(t) − X1β∗(t))⊥1 ]

P[b2,(t) ∈ ker(XT
2 ) + (vin,(t) − X2β∗

(t))⊥2 ]

≤
exp[− ε

2ξ2
(t)
‖(vin,(t) − X1β∗(t))⊥1‖

2
2]

exp[− ε
2ξ2

t
‖(vin,(t) − X2β∗

(t))⊥2‖2
2]
≤ eε. (15)

From simple composition, Lemma 1, it follows that revealing the weights ∑T
t=1 β∗(t) con-

sumes at most a privacy budget of Tε.
To demand that observations should generate a full rank matrix is a minor demand. If

it were not the case, a certain attribute could be predicted perfectly by the other attributes.
Hence, it could be removed from the database to generate a full rank matrix again. Further-
more, it is not necessary for the proof to work with full rank matrices. They should only be
of equal rank.

The complete 2-party algorithm DP-BCD is shown in Algorithm 2. A generalization to
more parties is straightforward.

Algorithm 2 Differentially private 2-party block coordinate descent algorithm

1: ε′ > 0, T ∈ N and γ > 1
2: Alice and Bob initiate βa ← 0 and βb ← 0, respectively.
3: Alice initiates vb ← y
4: for t ∈ {1, . . . , T} do
5: player Alice do
6: ξa = γ‖vb − Xaβ?

a‖2
7: ba ∼ pξa ,ε′/(2T)

8: β̃a ← (XT
a Xa)−1XT

a (vb − ba)
9: βa ← βa + β̃a

10: va ← vb − Xa β̃a
11: if ‖va‖2 ≤ ξa then
12: send va to Bob
13: else
14: abort
15: end if
16: end player
17: player Bob do
18: ξb = γ‖va − Xbβ?

b‖2
19: bb ∼ pξb ,ε′/(2T)

20: β̃b ← (XT
b Xb)

−1XT
b (va − bb)

21: βb ← βb + β̃b
22: vb ← va − Xb β̃b
23: if ‖vb‖2 ≤ ξb then
24: send vb to Alice
25: else
26: abort
27: end if
28: end player
29: end for
30: Alice sends βa to Bob.
31: Bob sends βb to Alice.
32: Alice and Bob publish (βa, βb).
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Utility Bound

During the protocol run, the participants must check in every iteration whether the
loss increase is less that a factor γ, as demanded in (13). If this is not the case, the protocol
will be aborted by the participants, because a model with sufficient utility cannot be trained.
Hence, at every single iteration the sum of squared errors, which is the unperturbed loss, is
bounded by

‖v− Xβ∗‖2
2 ≤ γ2‖v− Xβ?‖2

2.

This information can be used in another way. It is directly related to the utility loss and
provides an upper bound for the utility loss. In a protocol run with k = 2 parties and T
iterations, the sum of squared errors is at most a factor γ2kT larger than in the unperturbed
case. If we denote with f∗ the differentially private predictions and with f? those without
DP, then we observe that the utility measure

R2 = 1−
‖y− f∗‖2

2
Vary

≥ 1− γ2kt ‖y− f?‖2
2

Vary
= 1− γ2kt(1− R2

?). (16)

This shows that we obtain a utility guarantee along with the privacy guarantee. The additional
utility loss is bounded by parameters that can be set before the start of the protocol.

This proves the following theorem.

Theorem 1. The linear regression of y, held by Alice, against the data (Xa, Xb) can be approximated
by Algorithm 2, provided that rk(Xa) = ma and rk(Xb) = mb are of full column rank and contain
N data points, where N > ma and N > mb. For T ∈ N, ε′ > 0 and γ > 1 it is an ε′-differentially
private algorithm. Furthermore, the utility is bounded from below by

R2 ≥ 1− γ4T(1− R2
?),

where R2
? is the utility of the block coordinate algorithm without differential privacy (Algorithm 1).

3.2. Experiments on Synthetic Data

In order to quantify the performance of DP-BCD simulations with synthetic data
are performed. We use standard normally distributed data and normally distributed β
parameters (µ = 2, σ = 1.5). In the baseline scenario, there are nine predictors, with a
correlation of 0.3, N = 1000, R2 = 0.3, ε = 1, and γ = 1.2 with two parties. Because
preliminary analyses have indicated that five iterations is a favourable cut-off in the trade-
off between privacy and noise-accumulation, this is the number of iterations used.

For comparison with this baseline scenario, each of the following factors are varied
separately: the sample size N ∈ {100, 250, 1000, 5000, 10,000}, the correlation between
predictors {0.1, 0.3, 0.5}, R2 ∈ {0.1, 0.3, 0.8}, ε ∈ {0.1, 0.3, 0.5, 0.8, 1.0, 1.5, 2.5, 10}, and
γ ∈ {1.15, 1.25, 1.5, 1.8, 2, 2.5, 3}. The γ values are chosen big enough to avoid an abortion of
the protocol run with high probability. For low values of γ, the algorithm may terminate (see
Algorithm 1, because γ is too low. This could lead to an unbalanced comparison between
scenarios where the γ is sufficiently high and those where the algorithm could not carry
out all iterations for each repetition. Each of the variations is repeated 500 times with the
exception of the sample size experiment, which is repeated 100 times per variation. At every
iteration, a different data set (X and y) is generated. In experiments where the privacy
parameters ε and γ are varied, different β parameters are generated for every iteration.

To evaluate the utility, two results are considered. These are the R2 and the β estimates.
These outcomes are also generated in the centralized setting and using BCD without
differential privacy. Because the results for these two algorithms are practically identical,
we only compare it to the centralized results. For several scenarios, we compute the average
absolute proportional distance (AAPD) for these β estimates. For r repetitions of a scenario
with m predictors, the corresponding AAPD is defined as
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AAPD =
∑r

i=1 ‖β∗ − β?‖1

rm
.

3.2.1. Impact of Privacy Parameters

The impact of γ and ε on the β and R2 estimates is non-linear. We find that γ has a
stronger impact on R2 than ε. From Figure 1b, it can be observed that the bound for R2

decreases significantly with γ. However, for the synthetic data, the expected decrease is not
nearly as steep as its bound. For example, for γ = 3, the average R2 is approximately −2.5,
whereas it is bounded by −2.44× 109. Although the results are in line with Theorem 1, the
bound can be almost meaningless for large values of γ.

The β estimates grow closer to the BCD results as ε increases, which is in line with the
expectation. Table 1 shows that for ε = 1, the β estimates deviate 47% from the centralized
β parameters on average. For γ = 1.15 (the lowest tested value), the β estimates deviate
295% from the centralized setting, but note that this is for ε = 1, see Table 2. For higher
values of ε, the estimates are closer to the centralized β parameters, though still differing by
up to 47%. As a reference, the average and median deviation after five iterations for BCD
without DP are practically zero.

(a) (b)

Figure 1. R2 of DP-BCD in artificial test data. (a) R2 after DP-BCD as a function of ε; (b) R2 after
DP-BCD as a function of γ.

Table 1. Mean and median proportional absolute error of β estimates compared to centralized setting,
over ε after five iterations for γ = 1.2.

ε Mean Median

0.2 1.50 10.09
1.0 0.67 4.37
2.0 0.47 3.08
3.0 0.38 2.51
5.0 0.30 1.94

10.0 0.21 1.37
20.0 0.15 0.97
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Table 2. Mean and median proportional absolute error of β estimates compared to centralized setting,
over γ after five iterations for ε = 1.

γ Mean Median

1.15 2.95 0.45
1.25 3.21 0.49
1.50 3.86 0.59
1.80 4.64 0.71
2.00 5.17 0.79
2.50 6.51 0.98
3.00 7.87 1.18

3.2.2. Impact of R2

As R2 increases in the data-generating model, more predictive power is preserved
with DP-BCD as well, see Figure 2. The precision and bias with which the β parameters
can be estimated are also significantly impacted by R2 in the data generating model, see
Table 3.

Figure 2. R2 after DP-BCD as a function of R2 in the data-generating model.

Table 3. Mean and median proportional absolute error over R2.

R2 Mean Median

0.1 4.72 0.85
0.3 3.08 0.47
0.5 1.88 0.33
0.8 1.02 0.21

3.2.3. Impact of Correlation

The impact of the correlation on the utility of the learned model can be seen in Figure 3.
As expected, the average β error increases with the correlation between predictors. This
can be observed in the wider sampling distribution in Table 4. This is to be expected for
an implementation of DP, since more noise must be added to hide the outliers in the data.
For very high correlations, the average β parameters differ as well, which means that the
estimates are biased. The R2, however, remains unaffected by this parameter, though it is
lower than with the BCD algorithm.

As studied by [4], strongly correlated data require more iterations for accurate pa-
rameter estimation. In fact, for highly correlated data with over 25 variables, hundreds of
iterations can be required for convergence of the weights. In a differential privacy setting,
this may consume vast privacy budgets or yield poor results due to noise accumulation.
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Figure 3. R2 after DP-BCD as a function of the correlation between predictors in the data-generating
model.

Table 4. Mean and median proportional absolute error over the correlation between predictors.

Correlation Mean Median

0.1 0.56 0.27
0.3 1.06 0.45
0.5 3.11 0.69

3.2.4. Impact of Sample Size

Sample size is well known to have a large impact on the performance of differen-
tially private model, see Figure 4. As can be observed from Table 5, the β error steadily
decreases with the sample size. Furthermore, the R2 distribution grows closer to the
centralized results.

Figure 4. R2 after DP-BCD as a function of N.
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Table 5. Mean and median proportional absolute error over N.

N Mean Median

100 7.68 1.46
250 3.82 0.95

1000 2.30 0.47
5000 0.85 0.22

10,000 0.59 0.15

3.3. Evaluation with Real-World Data

We run experiments with two real-world data sets: a forest fires data set by [25], which
was used by [4] and a Garment Industry employee productivity data set by [26]. For both
data sets, we computed the average coefficients, using γ = 1.2, ε = 1, 10, T = 5 iterations
and repeated the experiment 1000 times. We plot the the 2.5th and 97.5th percentiles and
compare this to the parameter estimates for the centralized analysis. In addition, R2 is
computed in every iteration and plotted for the ε values of 0.2, 1, 2, 5, and 10. For both data
sets we use two parties.

3.3.1. Evaluation with Forest Fires Data

The forest fires data set contains 517 records with 12 predictors containing meteorolog-
ical and other information to predict the burned area of forest fires. A total of 27 predictors
were used in the regression analysis, with the variables pertaining to the month and day
transformed to dummy variables.

The plot in Figure 5 shows a plot similar to Figure 5 of [4] using the same data and
parties. We also plot the parameter estimates for the centralized analysis (which [4] was
demonstrated to be almost identical to BCD with 450 iterations).

For a relatively small privacy budget of ε = 1, the average coefficients are similar to
those from the centralized setting. For ε = 10, the distributions are narrower, which is
in line with the synthetic data results. The closeness of the sampling distributions to the
centralized setting is likely affected by the low correlations between the predictors (with an
absolute average and median of 0.08 and 0.05, respectively).

The R2 values are quite low, due to the fact that the centralized R2 is only 0.07. Because
R2 values for DP-BCD are generally lower than BCD, all median R2 values are negative for
the forest fires data. The y-axis in Figure 6 is cut off at −0.5, because negative R2 values are
not informative, but that for ε = 1.0 and ε = 2.0 the median R2 values are −4.07 and −0.94,
respectively. Thus, for a centralized model that already has low predictive power, adding
differential privacy generally results in a complete loss of predictive power.

Figure 5. Centralized parameter estimates (black) for forest fire analysis, with average coefficients
and 95% confidence intervals for ε = 1 (orange) and ε = 10 (green), for γ = 1.2, 1000 repetitions. Parties
are separated with background shading.
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Figure 6. R2 over ε for the forest fires data set (5 iterations, 100 repetitions, and γ = 1.2).

3.3.2. Evaluation with Garment Employee Productivity Data

We have also tested the algorithm with data from the Garment Industry by [26]. This
data set contains 1197 employee records, with 15 predictors for employee productivity (on
a continuous 0–1 scale). We removed the variables wip (to avoid missing values) and date
(for a simpler regression problem) and used dummy variables for department and date.
This data set also has quite low correlations, with a median correlation of 0.03. Figure 7
depicts the distribution of variables between the parties.

On average, the β estimates are close to the centralized analysis, although they do
differ with a single run (see Figure 7). The effect of ε is similar to that for the forest fires
analysis. The distribution is narrower for ε = 10.

With respect to R2, Figure 8 depicts that the relation between ε and R2 is similar to
those observed for the synthetic data and forest fires data. However, compared to the forest
fires data set, more predictive power is preserved, which is related to centralized R2 of 0.24,
This can be observed from the median R2 values, which are both higher and closer to the
centralized results.

Figure 7. Centralized parameter estimates (black) for regression analysis with Garment employee
productivity data set, with average coefficients and 95% confidence intervals for ε = 1 (orange) and
ε = 10 (green), for γ = 1.2, 1000 repetitions. Parties are separated with background shading.
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Figure 8. R2 over ε for the Garment employee productivity data set (5 iterations, 1000 repetitions,
and γ = 1.2).

4. Discussion

In this paper, we have constructed and tested the DP-BCD algorithm. We have
demonstrated that it comes with a utility bound, that bounds the loss of R2 as a function
of the privacy parameters and the R2 of the BCD solution. This is a new concept in DP
learning. However, in its current form its practical relevance is very small, since the bound
is too wide. The lower bound in this form deteriorates quickly with an increasing number
of parties and iterations.

The simulations in Sections 3.2 and 3.3 demonstrate that the weights obtained with
DP-BCD are similar to BCD, also for correlated data. Nonetheless, the predictive power is
lower, especially for problems with low R2. Nonetheless, the median R2 values observed
are similar to the BCD, albeit with larger deviations and some outliers. We find that the
predictive power is considerably lower for small values of ε, high values of γ or small
sample sizes, provided that γ is chosen big enough not to abort.

Both γ and ε have a strong impact on the predictive power. Therefore, the γ value
should be set as low as possible, as there is no benefit to having a high γ. With respect to
ε, the algorithm retained predictive power even for single-digit privacy budgets. Though
not incorporated in the simulation, the number of parties is also expected to impact R2,
as it makes the BCD procedure more challenging and has a significant impact on the
utility bound.

Unbiased estimation of β parameters is a more challenging task than retaining pre-
dictive power. With the current procedure, this is not feasible with the amount of noise
required. Particularly for highly correlated variables, the number of iterations may exceed
the point where the increased precision as a result of iterations is overshadowed by the
accumulated noise. For large sample sizes and large values of ε, it is possible to obtain β
parameters similar to the BCD procedure. This was also visualized in the forest fire analysis,
where ε = 20 led to parameter estimates closer, though not identical, to the centralized and
BCD setting.

A fixed number of iterations has been used in the experiments. In this way, a clearer
presentation of the performance of DP-BCD can be given. However, a convergence criterion,
as described in Section 2.7, makes it possible to explicitly decide each round whether the
improved utility is worth the consumed privacy budget. In this way, algorithms with better
performance in terms of privacy budget and utility can be constructed.

The problem of federated linear regression on vertically partitioned data is also studied
in [15]. Based on the used techniques, it is our estimate that their solution can provide a
higher utility on average, since it only requires a single round of noise addition. On the
other hand, the use of secure multiplication techniques will probably lead to a longer
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learning phase, we expect our solution to be faster. Since we had no access to their code,
we can only compare the solutions qualitatively.

The approach chosen in this article may work as well for logistic regression. The BCD
algorithm can also be used for logistic regression [4] on vertically partitioned data. It has
been demonstrated that objective perturbation works well for logistic regression [23].
However, it is not clear whether it is possible to provide a utility guarantee of a similar
nature for logistic regression.

5. Conclusions

In this article, we have presented a differentially private extension of the block coordi-
nate descent algorithm for a single label owner, called DP-BCD. We demonstrate that in
scenarios where privacy concerns or regulations limit collaborative opportunities, DP-BCD
can be used to enable multi-party collaboration, with strict privacy bounds. The algorithm
can be used for linear regression analysis of vertically partitioned data. Our construction
applies objective perturbation in combination with a small universe of possible data sets
following from local sensitivity. In this way, we are able to generate models with both
comparable predictive power as BCD and single digit privacy budgets. Furthermore, the
set-up allows for a theoretical utility bound that gives a lower bound for the R2 of the
differentially private version in terms of that of the original algorithm.

The acceptable performance loss of DP-BCD compared to BCD is parametrized by a
new parameter γ. It allows parties to agree on both a privacy and a utility goal. A direct
consequence of this is that DP-BCD comes with theoretical utility guarantees.

Experiments indicate that DP-BCD performs particularly well in settings where the
data has a high R2, meaning that the data contains a lot of explanatory power. Furthermore,
the low number of iterations used benefits data sets with little correlation. For the real-
world data sets, we find that the obtained weights are similar on average, although the R2

is lower.
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