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Abstract: Smart contracts are self-executing programs that run on the blockchain and make it possible
for peers to enforce agreements without a third-party guarantee. The smart contract on Ethereum is
the fundamental element of decentralized finance with billions of US dollars in value. Smart contracts
cannot be changed after deployment and hence the code needs to be verified for potential vulnera-
bilities. However, smart contracts are far from being secure and attacks exploiting vulnerabilities
that have led to losses valued in the millions. In this work, we explore the current state of smart
contracts security, prevalent vulnerabilities, and security-analysis tool support, through reviewing
the latest advancement and research published in the past five years. We study 13 vulnerabilities in
Ethereum smart contracts and their countermeasures, and investigate nine security-analysis tools.
Our findings indicate that a uniform set of smart contract vulnerability definitions does not exist
in research work and bugs pertaining to the same mechanisms sometimes appear with different
names. This inconsistency makes it difficult to identify, categorize, and analyze vulnerabilities. We
explain some safeguarding approaches and best practices. However, as technology improves new
vulnerabilities may emerge. Regarding tool support, SmartCheck, DefectChecker, contractWard, and
sFuzz tools are better choices in terms of more coverage of vulnerabilities; however, tools such as
NPChecker, MadMax, Osiris, and Sereum target some specific categories of vulnerabilities if required.
While contractWard is relatively fast and more accurate, it can only detect pre-defined vulnerabilities.
The NPChecker is slower, however, can find new vulnerability patterns.

Keywords: smart contract; blockchain; security; solidity

1. Introduction

Cryptocurrencies and decentralized finance (DeFi) feature the utilization of blockchain
to transfer funds among peers on networks without intermediaries. DeFi proposes a
model in which participants make deals through automated execution of blockchain-
based smart contracts [1], and revolves around decentralized applications (DApps) that
perform financial functions on immutable and publicly visible ledgers called blockchains.
Smart contracts are programs that execute instructions in an automated manner once
triggered. Most DApps are smart contracts that run on a blockchain network and leverage
its consensus protocols to store their source codes and enforce clauses under predefined
rules to render trustworthy services [2].

Ethereum [3] is the first and the most prominent platform that supports the imple-
mentation of smart contracts in a high-level programming language, such as Solidity [4].
Ethereum is the second-largest blockchain platform with a market capitalization of
317.3 Billion USD as of June 2021 [5] and provides a run-time environment for more than
95% of DeFi applications [6,7]. Bitcoin [8] supports the development and execution of smart
contracts too, but the script language it uses has limitations, such as barely supporting
transactions beyond verifying signatures [2]. While Bitcoin is just a cryptocurrency and
payment system that facilitates payment processes, Ethereum is a computation platform [9]
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supported by the Ethereum Virtual Machine (EVM), which is a state machine that creates a
sandbox for executing smart contacts in which the state refers to the ledger.

The smart contract is a fundamental element of DeFi and hence its security is a
matter of great importance. Smart contracts cannot be changed after deployment and
thus the code need to be verified for potential vulnerabilities. Successful attacks on smart
contracts have caused significant financial loss such as the well-known Decentralized
Autonomous Organization (DAO) attack that evaporated millions of dollars and forced the
Ethereum hard fork [10]. The immutability, decentralization, and publicly visible features
of smart contacts not only lead to their wide adoption but also created pitfalls that prevent
further adoption. Furthermore, the high-level programming language for writing smart
contracts is in an early stage itself. Misunderstanding of best practices and mishandling of
programming reflects the lack of knowledge about security issues among smart-contract
developers.

In this paper, we investigate vulnerabilities that pertain to smart contracts by reviewing
the latest work published since 2018 to complement previous studies and address the
following research questions:

• RQ1: What vulnerabilities in Ethereum smart contracts have been recently studied?
• RQ2: What are possible countermeasures to mitigate smart-contract vulnerabilities?
• RQ3: What are the accuracy, efficiency, and limitations of existing security-analysis

tools for smart contracts?

1.1. Methodology

We studies articles from conference proceedings, journals, preprints, theses, and
online content to address our research questions. Since Ethereum is the most common
platform for smart contract implementation, this study focuses on Ethereum vulnerabilities,
countermeasures, and tool support. We searched Google Scholar, ACM Digital Library,
IEEE Xplore Digital Library, Springer Online Library, and arXiv, to find literature related
to Ethereum smart contract security. These databases are the most prevalent repositories
for papers related to smart contracts. About 100 research articles were initially retrieved
and studied, out of which around 50 papers were selected for the final survey based on
our exclusion criteria. We excluded papers written in languages other than English and
disregarded those unrelated to smart contracts or Ethereum. We then checked the relevance
of collected documents to our research questions through their titles and abstracts. Next,
we refered to the list of references of our selected papers and performed the same filtering
process. We also acknowledge that some recent vulnerabilities, attacks, or tools may not
have been reported in academic publications and hence we expanded our literature by
searching online reports and articles through a Google search.

1.2. Contributions

In this work, we review the latest advancement and research work published since
2018 to complement studies such as [11–13]. Our survey also covers some missing analysis
of more recent surveys on the Ethereum smart-contract security vulnerabilities, attacks,
prevention, and tools [14–19]. We studied 13 vulnerabilities in Ethereum smart contract and
their countermeasures, and investigate nine security-analysis tools. Our findings indicate
that a uniform set of smart-contract vulnerability definitions does not exist in research work
and bugs pertaining to the same mechanisms sometimes appear with different names. This
inconsistency makes it difficult to identify, categorize, and analyze vulnerabilities. We ex-
plain some safeguarding approaches and best practices. However, as technology improves
new vulnerabilities may emerge. With regards to tool support, SmartCheck, DefectChecker,
contractWard, and sFuzz tools are better choices in terms of more coverage of vulnerabili-
ties; however, tools such as NPChecker, MadMax, Osiris, and Sereum target some specific
categories of vulnerabilities if required. While contractWard has good accuracy and fast
process time, it can only detect specifically pre-defined vulnerabilities. The NPChecker has
a slower processing time, but it may find new patterns for each vulnerability.
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1.3. Organization

The rest of this paper is as follows. Section 2 introduces the technical background of
the smart contract for later discussion. Section 3 reviews the literature on this topic and
summarizes what has been carried out. Section 4 describes the smart contract vulnerabilities
and their causes. Section 5 provides the results of our comparisons on security-analysis
tools and updates on the status of security tools. Section 6 discusses the limitations and
research questions. Finally, Section 7 draws conclusions and suggests future works.

2. Background

To better understand Ethereum and smart contracts, we explain Ethereum accounts, a
smart contract’s life cycle, and look deeper into its working mechanism.

2.1. Ethereum Accounts

The basic element of Ethereum is accounts, also called account state, and each account
has four fields: nounce, balance, storage, and code. The nonce is a transaction counter, which
means for every new transaction sent by this account, the nonce will be increased by one
and attached in the transaction data structure; the balance is the amount of Ether (the
currency used in the Ethereum platform) the account owns; the storage is memory space
for code and its execution; the code is where the smart-contract code is stored [20].

There are two kinds of accounts: external accounts and contract accounts. The major
difference between the two is whether the code field is empty or not. The external accounts
are controlled by public–private key pairs (owned by human account holders) while the
contract accounts are controlled by their code [20,21]. Both accounts are hashed and stored
in a data structure called a modified Merkle Patricia tree [21], which has its root hashed
and stored in every block. The external accounts could initiate an action that alters the
state of the EVM, which is called a transaction. Transactions are broadcast to the whole
network. A miner will later pick and execute transactions and propagate the resulting
state change to the rest of the network. The execution of transactions is not free because
the execution of transactions and the accompanying state change that must be universally
accepted requires computing resources that consume a lot of energy. The gas is created for
transaction execution and smart-contract interactions. Gas is units that the initiator needs
to pay for the transaction executions; the gas limit is the maximum amount of gas that the
initiator is willing to pay. The initiator also sets the gas price, which shows the amount of
Ether that the initiator is willing to pay for each unit of gas. Usually, the higher the price a
user is willing to pay, the higher chance the user’s transactions are chosen to be executed
by miners. A smart contract is a program that resides in a contract account and controls the
behaviour of the contract account.

2.2. Life Cycle of Smart Contracts

The authors in [22] outline four different stages of the smart contract: creation, deploy-
ment, execution, and completion.

• Creation. In its creation stage, an EVM can be targeted by multiple high-level lan-
guages, such as Solidity [4], Serpent [23] or Bamboo [24]. The most commonly used
one is Solidity. It is a JavaScript-like language and Turing-complete. EVM cannot run
the Solidity codes directly, so they are compiled to opcodes(low-level instructions
used by EVM) and encoded to bytecodes for storage reasons.

• Deployment. The Ethereum protocol outlines two kinds of transactions: one that
invokes message calls, and the other that results in contract deployment [21]. The
developer initiates a transaction that contains bytecodes (stored in a field called init in
the transaction structure), and this action returns another fragment of the code that
will be stored in the EVM running environment and will be executed later.

• Execution. While in the execution stage, a smart contract is a running program, like
a process or thread in a stand-alone computer. It will receive transactions (the first
type) and the data that will be passed to the contract as parameters. Then, the EVM
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executes the instructions one by one until finished or the gas limitation is reached.
This process happens at the time a new block is mined.

• Completion. After the execution, states are updated and stored in blockchains together
with transactions. This completes the life cycle of the smart contract.

2.3. Ethereum Running Environment

Blocks, EVM, and smart-contact codes together make up the running environment
of Ethereum. The block mining process essentially recognizes legitimate transactions and
puts together the corresponding state’s transformation into a new block. To achieve this,
the miner picks transactions, executes the codes in the smart contract, changes the state,
calculates the nonce (proof of work), and attaches the newly mined block onto the previous
blockchain. Ethereum accounts are hashed and stored in a data structure called a modified
Merkle Patricia tree (Modified MPT) [21] and this Modified MPT’s root is hashed and
stored in every block. To better understand the smart contract, we explain the Ethereum
block structure, as shown in Figure 1.

Figure 1. Ethereum block structure.

Block. A block in Ethereum has three parts: header, transaction list, and ommers list. The
header contains three Modified MPT’ root nodes (stateRoot, transactionRoot, and receipts-
Root), and other information about the block. Those three Modified MPTs are world state trie,
transaction trie, and receipts trie. Within those tries, every account, its state and transactions
are stored. There is another Modified MPT, account storage content trie, and its root node is
stored in the account state of world state trie. The two following lists are actual transactions
and ommers, which are picked by the miner during the mining process. Ommers are blocks
that have a parent equal to the present block’s parent’s parent [21].

World state trie. Every leaf node of this trie has a mapping between an account state
and its address. Therefore, all accounts, including the external account and contract account
are tied together in this trie. Every block has only one world state trie.

Account storage contents trie. As we discussed before, the account state has four
fields. The account storage content’s trie’s root node is stored in the field storage. Therefore,
this trie is not directly stored in the block header, instead of being in the block as part of
world state trie. All the contract data is stored in this trie.

Transaction trie. This trie is where the hash of all transactions included in a block is stored.
Once the block is mined, this trie and transaction list in the block will never be changed.

Receipts trie. Every receipt contains results of the execution of transactions, accumu-
lated amount of gas used, logs and status code of the transaction. The serialization of this
information combined with keys is stored in the receipts trie.

3. Related Work

In recent years, more researchers have studied the security of blockchains and Ethereum
smart contracts [13,15–19]. With regards to the security of blockchains in general, Saad et al. [18]
and Li et al. [16] surveyed attacks on blockchain and their countermeasures. Similarly,
Zhu et al. [17] studied vulnerabilities and defenses on bitcoin blockchain.
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3.1. Smart-Contracts Vulnerabilities

Luu et al. [13] investigate Ethereum smart-contracts vulnerabilities using their proposed
formal verification tool, called Oyente, without explaining defense methods. Dika [11] studies
security-analysis tools for the smart contract and provides insights on their effectiveness,
accuracy, and consistency. However, his dataset is relatively small and most of the assessed
tools were in their beta version at that time. Alharby and Moorsel [12] conduct a systematic
mapping study on smart contracts on papers published before 2018 to identify and map
research areas related to smart contracts, and discuss codifying, security, privacy, and perfor-
mance issues. The authors also present a few research gaps in smart-contract research such as
the lack of studies on scalability, performance, and deployment issues. Atzei et al. [25] discuss
major vulnerabilities and attacks in the context of common programming issues, and present
the most cited taxonomy of vulnerabilities of Ethereum smart contracts in three layers: Solidity,
EVM, and Blockchain. This categorization is derived from the running structure of Ethereum
smart contracts, and most of the vulnerabilities fall into those three classes. Their taxonomy
is confined to Ethereum smart-contracts vulnerabilities. In this work, we review the latest
advancement and research work published since 2018.

Dingman [26] examines smart-contract codes with the NIST framework and report
49 bugs categorized into 10 classes. Their taxonomy focuses on coding bugs and dives
into the technical side of coding. Grishchenko et al. [27] provide a formal definition of the
security properties of smart contracts: call integrity, atomicity, independence, and run-time
correctness. Di Angelo and Salzer [19] study 27 Ethereum smart-contract security-analysis
tools and map them to their purpose as well as to 18 vulnerabilities. Praitheeshan et al. [28]
investigate 16 smart-contract vulnerabilities, map them to software security flaws, and
discuss and categorize seven security-analysis tools. Huang et al. [29] study common
vulnerabilities of the smart contract and examine various tools developed to mitigate risks
induced by those vulnerabilities. They categorized those methods into four phases of the
software development cycle: design, test, implementation and audit. Sayeed et al. [30]
focus on application bugs in the smart contract and discuss seven vulnerability types and
10 security-analysis tools for smart contracts. Durieux et al. [31] evaluate and compare nine
smart-contract security-analysis tools on a large dataset of Ethereum smart contracts. Tan-
tikul and Ngamsuriyaroj [32] compare Ethereum smart-contracts vulnerability-detection
tools. They perform correlation analysis on detected vulnerabilities in the real world.
Chen et al. [14] conduct a thorough survey on Ethereum-system vulnerabilities and de-
fenses. They identify 40 vulnerabilities, 29 attacks, and 51 defenses. The authors map
attacks to the vulnerabilities that caused them. However, they do not cover much about
detection tools. Tang et al. [15] review Ethereum smart-contract vulnerabilities-detection
tools in three categories: static analysis, dynamic analysis, and formal analysis. They con-
sider 15 different security vulnerabilities and present related detection tools. They suggest
to use machine-learning methods to analyze smart contracts. They discuss only 15 security
vulnerabilities and miss several other important vulnerabilities. Rameder [33] presents a
comprehensive systematic literature and tool review of the relevant published studies in
the field of Ethereum smart-contract vulnerabilities, detection methods and analysis tools.
The author also provides a classification of smart-contract vulnerabilities and a taxonomy
of analysis tools. However, countermeasures and tool comparison with regards to accuracy
and efficiency, as well as mapping vulnerabilities to CWEs, is missing.

The previous surveys do not cover all aspects of Ethereum smart-contract security
vulnerabilities, countermeasures, and tool support and may miss details about tools or
defense mechanisms. For instance, while [14,33] conduct an extensive survey, they do
not provide tools comparison with regards to their accuracy and efficiency, nor map
vulnerabilities to CWE indices. A very recent work [34] conducts a systematic review of
vulnerabilities in Ethereum smart contracts, which has a major overlap with our study.
While the authors study the same topic as ours and cover more vulnerabilities, they do not
consider comparing tools with regards to their accuracy and efficiency.



J. Cybersecur. Priv. 2022, 2 363

Table 1 presents a comparison between our study and the existing surveys on smart-
contract vulnerabilities. In this work, we aim to complement the above-mentioned studies
by considering recent literature and comparing the accuracy and efficiency of some of the
existing tools.

Table 1. Comparison between the existing surveys on smart contract vulnerabilities and our work.

Survey Year Vulnerabilities Tools Attacks Countermeasures Ethereum Specific

Our Work 2022 X X X X X

Luu et al. [13] 2016 X X X

Atzei et al. [25] 2017 X X

Dika [11] 2017 X X X X X

Alharby and Moorsel [12] 2017 X X

Grishchenko et al. [27] 2018 X X

Di Angelo and Salzer [19] 2019 X X

Saad et al. [18] 2019 X X X

Dingman [26] 2019 X X

Praitheeshan et al. [28] 2019 X X X X X

Huang et al. [29] 2019 X X X X

Li et al. [16] 2020 X X X

Zhu et al. [17] 2020 X X X

Sayeed et al. [30] 2020 X X X

Durieux et al. [31] 2020 X

Tantikul and Ngamsuriyaroj [32] 2020 X X X X

Chen et al. [14] 2020 X X X X

Tang et al. [15] 2021 X X

Rameder [33] 2021 X X X

Kushwaha et al. [34] 2022 X X X X X

3.2. Security-Analysis Tools and Methods

Recently, Ghaleb and Pattabiraman [35] propose an automated tool called SolidiFI
to evaluate several static analysis tools, including Oyente [13], Securify [36], Mythril [37],
SmartCheck [38], Manticore [39] and Slither [40]. SolidiFI injects seven types of bugs into
smart contracts, then security-analysis tools are used to detect those bugs. The result
reflects the effectiveness of those security tools. The bugs focused are Timestamp dependency,
Unhandled exceptions, Integer Overflow/Underflow, tx.origin, re-entrancy, unchecked send, and
transaction order dependence. SolidiFI can evaluate other static analysis tools, however, it
does not reveal evaluation for dynamic analysis and formal verification tools.

Following the survey approach of Praitheeshan et al. [28], we study smart-contract
security-analysis methods in the three categories of static, dynamic, and formal verification,
for newly proposed security-analysis tools.

3.2.1. Static Analysis

Grech et al. [41] use static analysis to detect gas-related vulnerabilities. They decompile
the EVM bytecode using Vandal [42] and analyze the output of Vandal to detect patterns
such as loops, induction variables and data flow. Chen et al. [43] present a symbolic
execution-based tool to detect eight contract defects. It disassembles the smart-contract
bytecodes into opcodes and symbolically executes instructions while monitoring pat-
terns such as money call, loop, or payable function. Wang et al. [44] applies machine
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learning to detect six vulnerabilities: integer overflow/underflow, transaction-ordering Depen-
dence, stack limits, timestamp dependency and re-entrancy. Torres et al. develop a tool called
OSIRIS that combines symbolic analysis and taint analysis to detect integer-focused bugs [45].
Wang et al. [46] focus on detecting non-deterministic bugs in smart contracts by analyzing
EVM bytecodes and checking flagged global and local variables. Tikhomirov et al. imple-
ment a tool called SmartCheck to detect vulnerabilities in Ethereum smart contracts [38],
which generates an XML parse tree as an intermediate representation (IR) and uses XPath
queries on the IR to track vulnerability patterns. Wang et al. [47] build a tool called Artemis
based on the Oyente framework [13] and extend it to detect vulnerabilities such as Ether lost
in transfer and delegated call. Zhang et al. present MPro [48], which is based on Slither [40]
and Mythril [37], which optimizes the symbolic execution.

3.2.2. Dynamic Analysis

Jiang et al. analyze the ABI specification of smart-contracts functions and generate
fuzzing inputs [49]. Ashraf et al. [50] build a fuzzer called GasFuzzer based on Contract-
Fuzzer [49], which focuses on the gas consumption of executions and gas-related vulnerabili-
ties. He et al. [51] run symbolic execution of real-world contracts to generate thousands of
sequences of transactions as their ILF Fuzzer. Nguyen et al. [52] propose an adaptive fuzzer,
sFuzz, for smart-contract vulnerabilities detection, which generates many transactions that
call functions in the contract, monitors the execution of transactions and collects feedback
from the execution. Rodler et al. extend EVMs by implementing a new Ethereum client
based on the widely adopted client: go-ethereum [53]. They add a taint engine and attack
detector to monitor and detect the run-time state of EVM for re-entrancy vulnerability [54].
Simulator environments [55] could also be used to dynamically execute smart-contract
vulnerability detectors based on known patterns or resource usages.

3.2.3. Formal Verification

Murray and Anisi conduct a survey on formal verification methods on smart contracts [56].
Their research shows that variants of model checking or theorem-proving methods are successful
on simple contracts, not complex contracts or advanced contract syntax. Garfatta et al. [57]
compare and discuss a number of tools including FSolidM [58], VeriSolid [59], ZEUS [60],
OYENTE [13], and OSIRIS [45], and show that a limited number of vulnerabilities, such as
arithmetic bugs, TSD, TOD, re-entrancy, and self destruction, are covered by tools using formal
verification methods.

4. Smart-Contracts Vulnerabilities and Countermeasures

Normally deemed cryptographically secured, immutable and anonymous, blockchain
technology and applications built on it are not necessarily secured. Security issues, vul-
nerabilities and attacks come up with the broader adoption of smart contracts. The DAO
attacks [10] and the Parity Wallet hack [61] are the most notorious attacks that exploited
smart-contract vulnerabilities. In this section, we study the vulnerabilities in Ethereum
smart contracts written in Solidity to answer RQ1 (vulnerabilities) and RQ2 (countermea-
sures to mitigate). We first present our taxonomy of smart-contract vulnerabilities in
Section 4.1 and then explain each vulnerability and its countermeasures in Section 4.2.

4.1. The Proposed Taxonomy

We adapt the three-layer structure taxonomy of [25] and present our updated tax-
onomy of smart-contract security in Table 2 by categorizing vulnerabilities that are not
covered in [25] and omitting some which have been addressed such as stack size limit. The
Smart Contract Weakness Classification Registry [62] gathers smart-contract weaknesses
and maps them to Common Weakness Enumeration (CWE) [63]. We also add known
CWE identifiers to the smart-contract vulnerabilities identified in Table 2 to help correlate
our taxonomy with external taxonomies. Note that for vulnerabilities “External contract
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referencing”, “Short address/parameter issues”, and “Freezing Ether”, the CWE index was
not included in the registry website, and we mapped it by browsing the CWE website.

Table 2. Our taxonomy of smart-contract vulnerabilities.

Level Vulnerability CWE Index Real-World
Attack

Solidity

Re-entrancy
CWE-841: Improper Enforcement of
Behavioral Workflow

The DAO
Attack [10]

Arithmetic issues CWE-682: Incorrect Calculation PoWHcoin
attack [64]

Delegatecall to insecure contracts
CWE-829: Inclusion of Functionality from
Untrusted Control Sphere

Parity
Wallet(Second

Hack) [65]

Selfdestruct CWE-284: Improper Access Control Parity Library
bug [66]

Tx.origin CWE-477: Use of Obsolete Function -

Mishandled exceptions CWE-252: Unchecked Return Value KingofTheEther
attack [67]

Default visibility
CWE-710: Improper Adherence to
Coding Standards

Parity
Wallet(First
Hack) [68]

External contract referencing
CWE-829: Inclusion of Functionality from
Untrusted Control Sphere Honey Pot [69]

EVM

Short address/parameter issues
CWE-88: Improper Neutralization of
Argument Delimiters in a Command
(‘Argument Injection’)

-

Freezing Ether
CWE-17: Code Development
(Specification, Design, and Implementation) -

Blockchain

Transaction order dependence
CWE-362: Concurrent Execution using
Shared Resource with Improper Synchronization
(‘Race Condition’)

Attack on
Bancor [70]

Generating randomness CWE-330: Use of Insufficiently Random Values PRNG
contract [71]

Timestamp dependence
CWE-829: Inclusion of Functionality
from Untrusted Control Sphere

GovernMental
attack [72]

4.2. Vulnerabilities and Countermeasures
4.2.1. Re-Entrancy

Re-entrancy describes a situation when a contract A calls contract B, which could call A
back and execute A’s call again. The fallback mechanism of Solidity causes this situation. The
fallback function will be executed when calls from other contracts cannot find a matching
function. When the caller uses the call function without giving any function signature,
callee’s fallback function will be activated. This function could call the caller’s function to
re-enter the caller. This mechanism could force unexpected and uncontrolled transfers of
Ether in some circumstances.

In the following code excerpt shown in Listing 1 (modified based on [73]), call is used
to send Ether to the caller. In the beginning, the attacker calls the withdraw() function in
contract A to ask for a one-Ether withdrawal. Contract A uses call to send the Ether and
does not attach any function signature. Contract attacker’s fallback function responds to
this call by calling A’s withdraw function again. The second call is regarded as a “nested”
call inside the previous withdrawal call because the previous one has not finished yet.
This is the time that a recursive call begins to form. Normally, the caller will receive
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one Ether, and the caller’s balance will be deducted as the execution of the instruction
balances[msg.sender] -= _amount;. However, in a re-entrancy situation, this instruction will
never be executed because the call function above this line will lead to recursively calling
the withdraw() function until the total balance of Contract A is less than one Ether or the gas
limit is reached.

Listing 1. Re-entrancy vulnerability.

contract A {
mapping (address => uint) public balances;
function withdraw(uint _amount) public {

msg.sender.call{value: _amount}(‘‘’’);
balances[msg.sender] -= _amount;

}
/*Other codes*/

}

contract Attacker {
A public a;
fallback () external payable {

a.withdraw (1 ether);
}
function attack (){

a.withdraw (1 ether);
}

}

Countermeasures. There are three techniques to prevent re-entrancy. The first is to
restrain using call function whenever possible. The transfer function could be used to
send Ether to other accounts. This function only sends 2300 gas with external calls, so the
called contract will not have enough gas to re-enter the caller contract. The second is to
add a “lock”, which is usually a state variable that shows the state of external calls and
permits the external call only if the state is right [74]. The third is to make all logic changes
before the call function is executed. For example, in the code snippet in Listing 1 moving
balances[msg.sender] -= _amount to before msg.sender.call{value: _amount}(‘‘’’).

4.2.2. Arithmetic Issues

In Solidity, integer type has a specific range. During the arithmetic operations on
variables, their values may go beyond the upper or lower bound. If that happens, the
value will warp to the other side of the bound. For example, if the real value is larger than
the upper bound, the actual value will be the real value less the upper bound. In earlier
versions of Solidity, this abnormality does not trigger any alarm. Attackers could increase
or decrease specific integer values to trick the smart contract into unwanted behaviour.
Solidity does not support floating points yet. The representation of floating numbers in
smart contracts must be dealt with integer types. For example, in the design of ERC20 (a
token standard), decimal is used to represent the number of digits after the decimal point.
The division in Solidity always rounds down, so the precision is only to its nearest lower
integer. The loss of information after the decimal points could cause severe problems when
higher precision is needed.

Countermeasures. Since arithmetic vulnerability lies in Solidity, using a well-designed,
audited library such as SafeMath [75] provided by Openzepplin [76] instead of built-in
arithmetic operations will mitigate the risk.

4.2.3. Delegatecall to Insecure Contracts

Delegatecall is a special function in Solidity. It is the same as the call function with one
major difference. The delegatecall re-uses codes of the called contract and executes them
in the caller’s context. For example, in the following code excerpt in Listing 2 (modified
based on [77]), msg.sender, msg.data in the contract VulnerableContract will be the caller’s
address and data, and the state variables will use the caller contract’s. Once the contract
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InsecureContract is called via delegatecall, the function doSomething is executed in the caller’s
context in which the caller’s state variable owner in the contract VulernableContract will have
an unexpected modification. The VulnerableContract block does not provide any way to
change its ownership once it is constructed. However, when the attacker calls this contract
at a certain point of execution, it will delegatecall InsecureContract in which the state variable
owner is modified to the new value of msg.sender, which is the address of the attacker. In other
words, delegatecall gives other contracts, such as InsecureContract, permission to alter its
own state variables, such as address public owner. This is because the delegatecall function
preservers context.

Listing 2. Delegatecall to insecure contracts.

contract VulernableContract {
address public owner;
InsecureContract public c;
constructor(InsecureContract _c) public {

owner = msg.sender;
c = InsecureContact(_c);

}
/*Other codes ...*/
c.delegatecall(abi.encodeWithSignature(‘‘doSomething ()’’));
/*Other codes ...*/

}

contract InsecureContract {
address public owner;
function doSomething () public {

/*Other codes ...*/
owner = msg.sender;
/*Other codes ...*/

}
}

Countermeasures. Since DELEGATECALL exploits the context change of smart contracts,
the first thing to do is checking the possible context of contracts and their calling libraries
(or other contracts). Solidity also provides keyword Library to restrict aligning state variable
slots with a caller’s state variables [78]. The Solidity library cannot have its state variable,
so there will be no context switching and unauthorized change of caller’s state variables.

4.2.4. Selfdestruct

The selfdestruct operation in Solidity provides a way to remove contracts from the
following blocks (it is still part of the historical blocks in the blockchain). This operation is
dangerous because if senders are not all updated with the new contract’s address, some
will still send Ether to the destructed contract, which will cause the loss of Ether. Moreover,
this process will forcefully send the remaining Ether of the contract to a designated address.
Malicious adversaries could exploit this behaviour to force-send Ether to some contracts.
The victim contract’s this.balance will be manipulated with this force-send, especially if
this.balance is used as conditions for certain operations.

Countermeasures. To avoid an unexpected selfdestruct call, try the best practice of
using caution when making external calls [79]. In the meantime, the contract’s logic
should avoid depending on the value of this.balance, because it can be forcibly modified
by attackers.

4.2.5. Freezing Ether

This vulnerability is also known as greedy contract [43], and locked money [38]. A
smart contract is designed to be able to receive and send Ether. A freezing-Ether situation
is a contract that could only receive Ether but has no means to send Ether out. A contract
can be greedy and the Ether sent to its address is frozen if the contract does not define any
withdraw functions.
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Countermeasures. It is a good practice to avoid this situation at the smart-contract
designing phase. Those contracts that could receive Ethers should have functions to
withdraw Ethers [43].

4.2.6. Randomness Generation

Generating random numbers is a problem for many programming languages. The
pseudo-randomness generation process leverages certain secret seeds to achieve a level of
randomness. However, seeds cannot be privately stored on the chain in a smart contract
in Solidity because everything on the blockchain is visible to its participants. The current
practice is using block-relate information such as block.timestamp or block.hash. If historical
blocks’ timestamp or hash is used, attackers can use the same random number-generation
process to obtain the same result because historical blocks never change; if using the future
blocks, the process may be susceptible to malicious miners who can intentionally choose
transactions and their execution orders.

Countermeasures. Block-related information should not be used as an entropy source
for randomness. The source should be outside of the blockchain environment. Other pro-
posals are a crowd commit to the random number and reveal process (commit-reveal [80])
or RANDAO [81].

4.2.7. tx.origin

The tx.origin is a unique global variable in Solidity. It stores the original caller’s
address of a transaction, unlike msg.sender, which is the immediate caller. Therefore, tx.
origin is always an external account’s address. If this variable is used as an authorization
parameter, the identity of the actual owner of a smart contract could be exploited. For
instance, if require(tx.origin == owner); is invoked by the attacker’s contract, which is called
by the real owner, the attacker could go on to execute code that follows.

Countermeasures. Attackers could run their code under the name of caller’s tx.origin,
so never use tx.origin in identity verification or authentication [79,82].

4.2.8. Mishandled Exceptions

In Solidity, the require, assert, try/catch could be utilized to verify all kinds of in-
formation to ensure that the smart contract behaves as it is designed to. However, some
low-level functions such as address.send(), call(), delegatecall(), staticcall() find another
way when an error comes up. Normally, when an exception is found, the transactions are
reverted and gas is consumed, but if low-level functions encounter errors (e.g., the call
stack is depleted), they will return a false value without any exceptions. Any transactions
executed before those functions will not be reverted, and gas is spent. In other words,
when using low-level functions, a false return value should be noted and properly handled;
otherwise, the security of the smart contract will be affected.

Countermeasures. As suggested by Solidity Documentation [83], low-level functions
should not be used whenever possible. The transfer function can be used to transfer Ether
to other accounts. If those low-level functions must be used, it is better to check every
return value of those functions and handle the false ones.

4.2.9. Timestamp Dependence

Blocks in Ethereum are created in the mining process in which the miner has a certain
degree of arbitrariness to decide the timestamp of the whole block. The time range used
to be 900 s, but it was narrowed down to a few seconds after an upgrade [84]. All the
transactions recorded on the block have the same timestamp. Since the miner can decide
timestamps on transactions, certain applications that function correctly under time con-
straints are susceptible to malicious miners. The timestamp is also used as a seed when
generating random numbers. Attackers may manipulate the timestamp of a block to trigger
expected behaviours from smart contracts [28].
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Countermeasures. Antonopoulos and Wood [74] mention that using block.number is a
better choice than block.timestamp. As block generating speed is usually 10 s, there will be
60,480 blocks, approximately, in one week. By specifying a future block number, a time
estimation comes with this future block.number.

4.2.10. Transaction Order Dependence

Since transactions change the world state from one to another, the world state or state
of contracts depends on the transaction execution order. The miner arbitrarily decides
the execution order, and this non-deterministic feature of the execution order makes it
difficult to forecast the state before transactions are submitted. In a real-world situation
where a transaction depends on the state of the contract, a different order may cause severe
problems such as buying or selling items at unexpected prices [28].

Countermeasures. Transaction order is affected by accounts that pay the higher gas
price or miners who decide the order. If an upper bound is put on the gas price, a proportion
of transactions will not be exploited by attackers willing to pay more gas prices.

4.2.11. Default Visibility

Solidity has visibility specifiers, public, private, external, and internal, that control func-
tions and variables’ visibility from outside of the contract and if public is not set as the default.
If a developer does not specify an internally-used function as private, that function could be
called from outside the contract, which will lead to unexpected operation escalation.

Countermeasures. It is a good practice to always determine specifiers and Solidity
also generates warnings for functions without specifiers while compiling.

4.2.12. External Contract Referencing

Smart contracts need to re-use other contracts’ codes sometimes by referencing their ad-
dresses. For example, a developer could initiate an outside library in his contract’s constructor.
The library’s address will be provided during deployment. This seems legitimate and safe
from code audit. However, if given a wrong address in the deployment, a security hole is
created because a malicious contract (honey pot) may be called from that wrong address.

Countermeasures. One could hard code the external addresses into contract’s codes if
they are public or use new keyword to create contracts instead of deployment input.

4.2.13. Short Address/Parameter Issues

The parameters of smart-contract functions are encoded before passing to it. The
encoded parameter is 32 bytes, and the EVM will concatenate all the encoded parameters
together and pad 0 at the end if needed [83]. If the first parameter does not have enough
length, e.g., 30 bytes, this will cause a 2-byte left shift after the EVM padding. The shift and
padding will increase the value of the second parameter, which could cause severe issues if
the second parameter denotes the number of tokens or Ether.

Countermeasures. To address this vulnerability, parameters sent to the smart contracts
on Ethereum should be validated first. This is a best practice for third-party applications
that interact with smart contracts. For smart-contract developers, parameter order matters
since the padding only happens at the end of concatenated parameters.

4.3. Vulnerability Causes

Based on previous work [11,13,22,25,85], we summarize several causes for smart-
contract vulnerabilities.

• Visibility: Ethereum records all of its validated historical transactions in world state
(refer to Section 2), which is visible to the whole network. This visibility may cause
some problems when the smart-contract owner wants to keep it from the public due to
privacy concerns. Prior studies have shown that inspecting accumulated transactions’
statistic characteristics and leveraging analysis graph structures could reveal valuable
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and practical information, given users are granted anonymity with pseudonymous
public keys [86,87].

• Opacity: On the other hand, the opacity of smart contracts poses another concern. Live
contracts need rigid inspection and source-code audits since they manage millions of USD.
However, 77% of running smart contracts are opaque and hold USD 3 billion [88].

• Immutability: Smart contracts cannot be modified once deployed on Ethereum. This
immutability perpetuates problematic contracts on the chain. Workarounds such as
updating contracts or addresses at the user side could solve the problem to a certain
degree, however, they introduce other security concerns.

• Automated Execution: A control flow transfer (CFT) between two instructions A and
B means that after A’s execution, B is excuted immediately. When smart contracts
interact with each other, those CFTs are not always under control. In the uncontrolled-
function call-permission cases, the self-elevation of a malicious attacker could happen
by triggering some high-privilege functions [85].

• Mining: Which transactions to be processed depends on the miner’s choice. The
deterministic result of a single transaction’s execution no longer exists when multiple
transactions are involved. Their execution order may vary based on the miner’s choice.
This uncertainty severely affects order-sensitive transactions. The final result of a series
of transactions might reach vastly different outcomes.

• EVM: EVM structure provides a stand-alone, isolated running-time environment
(sandbox) for smart contracts.
EVM utilizes an oracle to handle the incoming real-world inputs. An oracle is a concept
that bridges blockchain and the real world and acts as APIs on chain, which can be
accessed by the smart contracts to receive feeds from the real world [89]. Centralized
oracles introduce several attack vectors and issues to smart contract such as integrity,
accuracy, and consistency [90]. However, the decentralized designs of oracle such as
Chainlink [91] are trying to solve this problem.

• Immature Programming Language: Solidity is an evolving programming language
and its widely known vulnerability is the re-entrancy problem, which is caused by the
fallback mechanism in Solidity. Mishandled exceptions could be a severe problem for
smart contracts too.

5. Security-Analysis Tools

Existing security-analysis tools for smart contracts mainly apply static or dynamic
analysis. Newly proposed tools incorporate other approaches such as deep learning or
focus on certain types of vulnerabilities. In order to answer RQ3, in this section, we study
smart-contract security-analysis tools and compare nine recently proposed tools that were
released after 2017. Our work complements [11], which was carried out in 2017. Compared
to our study, [33] covers many more tools. While they consider tools introduced since
2014, we focus on recently proposed tools after 2018 that are specific to Ethereum and
are also prevalently used or mentioned in multiple recent studies. Moreover, we did not
consider a number of tools that either have no coverage of our set of vulnerabilities or their
developers/authors do not report their efficiency or accuracy analysis.

5.1. Recent Security-Tools Support

Table 3 shows how each tool covers the most ubiquitous vulnerabilities. Many tools
have their own set of vulnerabilities and methods to find them (see Table 4). There are
overlapping vulnerabilities that many tools try to detect. We consider reported accuracy
above 90% as high, below 50% as low, and the rest as medium. The accuracy works in
the realm of each tool’s defined vulnerabilities, so this comparison will give readers an
impression of how each tool works for their own set of vulnerabilities.
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Table 3. Tools and vulnerabilities matrix.
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Oyente X X X X

Securify X X X X X X

SmartCheck X X X X X

DefectChecker X X X X X

ContractWard X X X X

NPChecker X X X

MadMax X

Osiris X

ContractFuzzer X X X X X X

Sereum X

sFuzz X X X X X X X

smartCheck. This tool is a static analysis tool that uses ANTLR [92] (a parser generator)
to translate Solidity source code into an XML pare tree [93] (an XML-based intermediate
representation), and checks it against XPath [94] patterns [38].

DefectChecker. The defectChecker tool takes bytecodes as input, disassembles them
into opcodes, splits the opcodes into several basic blocks and symbolically executes instruc-
tions in each block [43]. Then it generates the control flow graph (CFG) and records all
stack events. Using CFG and stack events information, it detects three pre-defined features:
money call, loop block and payable function. After feature detection, it applies rules to
detect eight vulnerabilities: transaction state dependency, DoS under external influence, strict
balance equality, re-entrancy, nested call, greedy contract, unchecked external calls, and block info
dependency.

contractWard. The contractWard applies supervised learning to find vulnerabilities [44].
It extracts 1619 dimensional bigram features from opcodes using an n-gram algorithm [95] and
forms a feature space. Then it labels contracts in training set with six types of vulnerabilities
using Oyente [13]. The label is stored in a six-dimension vector (e.g., [1 0 1 0 1 1]) where each
bit stands for an existing vulnerability. Based on the feature space and labels of the training set,
contractWard uses five classification algorithms to detect vulnerabilities.

NPChecker. This tool analyzes the non-determinism in the smart-contract execution
context and then performs systematic modelling to expose various non-deterministic
factors in the contract execution context [46]. Non-deterministic factors are factors that
could impact final results to the end-user and make them unforeseeable. Possible factors
discussed in NPChecker are block and transaction state, transaction execution scheduling, and
external callee. The NPChecker disassembles the EVM bytecode and translates them into
LLVM intermediate representation (IR) code [96], recovers the control flow structures and
enhances the LLVM IR with function information, identifies state and global variables, and
performs information-flow tracking to analyze their influences on the fund’s transfer.
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MadMax. The MadMax tool uses the Vandal decompiler [42] to produce CFG, a
three-address code for all operations in the smart contract, and function boundaries [41].
Then it analyzes the three-address-code representation, recognizes concepts such as loops
and induction variables, analyzes memory and dynamic data structures, and infers the
concept of gas-focused vulnerabilities. This tool only detects gas-focused vulnerabilities, such
as unbounded mass operations (infinite or nearly infinite loops), external calls that throw
out-of-gas exceptions or arithmetic integer overflows, because those vulnerabilities will
cause unexpected gas consumption.

Osiris. The Osiris combines symbolic analysis and taint analysis technology to find
integer bugs in smart contracts [45]. It has three components: symbolic analysis, taint
analysis and integer error detection. The symbolic analysis component creates CFG and
symbolical executions of every path in the CFG. Then, the taint analysis part checks for
taints across the stack, memory and storage, and integer error detection looking for possible
integer bugs within the executed instruction.

contractFuzzer. The contractFuzzer tool combines static analysis of ABI and bytecodes
and fuzzing technology to explore vulnerabilities of smart contracts [49]. It creates an
Ethereum test net using offline EVM to monitor the execution of the smart contracts and
extract information from the execution process. By analyzing the ABIs and bytecodes,
contractFuzzer calculates the function selector (first four bytes of the hash of the function’s
signature) and maps each ABI function to a set of function selectors used. Then an input
generation algorithm is created to fuzz each function based on the information of the
previous step. It collects three types of test oracles during the execution of smart contracts:
attributes of a contract call or delegatecall, run-time information about opcodes invoked,
and the state of the contract.

Sereum. It is a modified Ethereum client based on Geth [97] that focuses on re-
entrancy vulnerabilities [54]: cross-function re-entrancy, delegated re-entrancy, and create-based
re-entrancy. The cross-function re-entrancy is to re-enter another function in the same
contract. The delegated re-entrancy is to re-enter a smart contract via delegatecall to
an unsafe library that may use address.call().value() to call back to the original contract.
The create-based re-entrancy utilizes the fact that a newly created contract will have its
constructor function executed immediately when the contract is deployed. The constructor
is deemed safe and trusted, but it could contain external calls to malicious contracts. If the
victim contract creates another contract in function A and calls the attacker’s contract in
the newly created contract’s constructor, the attacker’s contract could re-enter the victim
contract by calling function A. Sereum adds two components to the Geth client: taint
engine (taints and tracks state variables along with the executions of various functions that
detects conditional JUMP instructions influenced by a storage variable), and attack detector
(creates locks that prohibit further updates for state variables that influence control flows).

sFuzz. The sFuzz tool is an adaptive fuzzer that combines the strategy in the AFL
fuzzer [98] and other adaptive strategies [52] built on Aleth [99] with implementations of
three more components: runner, libfuzzer, and liboracles. The runner sets up the test net
environment and options of the other two components. Then the contracts are executed on
the test net, where transactions are generated based on the analysis of the contract’s ABI.
The libfuzzer selectively generates test cases by implementing a feedback-guided adaptive
fuzzing strategy. The liboracles monitors the execution of a test case and the corresponding
stack events to check for vulnerabilities.

5.2. Comparisons

Table 4 summarizes our comparisons and shows that new tools are more static analyz-
ers and are focused on self-defined or widely accepted sub-categories of vulnerabilities.
The first two rows are based on [11] that, prior to 2018, studied Oyente [13], Securify [36], a
beta version of SmartCheck (that was later published in 2018), and Remix [100], which now
uses Securify for safety assurance. The NPChecker defines non-deterministic factors and
works on vulnerabilities raised by those factors. The MadMax, Osiris, and Sereum focus on
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gas-related, arithmetic, and re-entrancy problems, respectively. We extracted evaluation
information from each cited paper for our comparison and report accuracy and efficiency
in the Table 4. We explain threats to the validity of our comparison in Section 6.

Table 4. A comparison of security-analysis tools. The first two rows were studied before 2018 by Dika
in [11]. Note that the accuracy and efficiency of these tools are not really comparable as they rely on
self-defined metrics by their authors. We consider reported accuracy above 90% as high, below 50%
as low, and the rest as medium.

Tools Name Methods Vulnerabilities Covered Accuracy Efficiency

Oyente [13] Static
Vulnerabilities in the taxonomy:
Transaction order dependence, Timestamp dependence,
Mishandled exceptions, Re-entrancy.

High (94.3%) 29.5 s per
execution path

Securify [36] Static

Vulnerabilities in the taxonomy:
Freezing Ether, Re-entrancy, Delegatedcall to insecure contracts,
Mishandled exceptions, Transaction order dependency,
Short address/parameter issues

Not reported 30 s per contract

SmartCheck [38] Static

Vulnerabilities in the taxonomy:
Re-entrancy, Tx.origin, Freezing Ether, Arithmetic Issues,
Timestamp dependence; Self-defined vulnerabilities:
Unchecked external calls, DoS by external contract

Low (31.11%) 1.67 per contract

DefectChecker [43] Static

Vulnerabilities in the taxonomy:
Transaction order dependence, Re-entrancy, Freezing Ether,
Mishandled exceptions, Timestamp dependence;
Self-defined vulnerabilities: DoS, Strict balance equality,
Nested call, Unchecked external calls.

Medium
(84.16%)

2.42 s per
contract

ContractWard [44] Static

Vulnerabilities in the taxonomy:Arithmetic issues,
Transaction order dependency, timestamp dependency,
Re-entrancy; Self-defined vulnerabilities:
stack size limit (deprecated)

High (96%) 4 s per contract

NPChecker [46] Static

Vulnerabilities in the taxonomy: Timestamp dependence,
Re-entrancy, Transaction order dependence;
Self-defined vulnerabilities: external calls and other
non-determinism-related smart-contract payment bugs.

High (94%) 351 s per
contract

MadMax [41] Static
Vulnerabilities in the taxonomy:Arithmetic issues;
Self-defined vulnerabilities:
Unbounded mass operations, Non-isolated external calls.

Medium (81%) 5.9 s per
contract

Osiris [45] Static
Vulnerabilities in the taxonomy:Arithmetic issues;
Self-defined vulnerabilities: Division by zero,
Modulo zero, Type cast, Signedness.

Not reported 75 s per contract

ContractFuzzer [49] Dynamic
Vulnerabilities in the taxonomy: Selfdestruct,
Mishandled exception, Re-entrancy, Timestamp dependency,
Delegatedcall to insecure contracts, Freezing ether.

High (98.91%) Not reported

Sereum [54] Dynamic
Self-defined Re-entrancy vulnerabilities:
Cross-function reentrancy,
Delegated renentrancy and Create-based reentrancy

High (99.4%)

2494.5 ms per
block runtime
(2277.0 ms on

Geth)

sFuzz [52] Dynamic

Vulnerabilities in the taxonomy:
Selfdestruct, Mishandled exceptions, Re-entrancy,
Timestamp dependency, Delegatecall to insecure contracts,
Arithmetic Issues, freezing ether

High (90.56%)

Generates 208
test cases per

second on
average.

Accuracy: Based on their own understanding of the smart-contract vulnerabilities and
causes, each tool has its own metrics to determine true positives and false positives, and
the statistics are strongly related to the covered vulnerabilities. The accuracy numbers for
Oyente and Securify are calculated based on [13] and Figure 8 in [11], respectively.

Efficiency: The efficiency is evaluated based on each tool’s approach. It is based on the
process time of each contract for the static tools, and it is based on the specific mechanism
of each dynamic tool. For Oyente and Securify, no efficiency data is reported either in [11]
or in their own proposals. Sereum is a modified Geth [97] client (a client that interacts
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with Ethereum blockchain) and replays the execution of each transaction in the blockchain;
thus, its efficiency is compared with Geth client running performance. In addition, sFuzz’s
efficiency is evaluated on how fast it can generate fuzzing inputs.

6. Discussion
6.1. Findings

Our findings regarding RQ1 (vulnerabilities) indicate that a uniform set of smart-
contract vulnerability definitions does not exist in research work and bugs pertaining to
the same mechanisms sometimes appear with different names. For example, the mishandled
exception vulnerability has been referred to as exception disorder in [25], unchecked-send bug
in [11], unhandled exception in [101], and unchecked external calls in [43,102]. This inconsistency
makes it difficult to identify, categorize, and analyze vulnerabilities, as well as challenging to
compare security-analysis tools. The Smart Contract Weakness Classification Registry [62]
gathers smart-contract weaknesses and maps them to Common Weakness Enumeration
(CWE) [63]. The community also has Ethereum Improvement Proposal [103], which
describes standards for the platform, protocol and contract, and guidelines for Ethereum
smart-contract best practices [79] to approach a better security level for smart contracts
and their run-time environment. For RQ2 (countermeasures to mitigate), we explained
some safeguarding approaches and best practices. However, as technology improves new
vulnerabilities may emerge.

As far as RQ3 (tool support) is concerned, the results indicate that SmartCheck, De-
fectChecker, contractWard and sFuzz tools are better choices in terms of more coverage of
vulnerabilities; however, tools such as NPChecker, MadMax, Osiris, and Sereum target some
specific categories of vulnerabilities if required. While contractWard has good accuracy and
fast process time, it can only detect specifically pre-defined vulnerabilities. The NPChecker
has a slower processing time, but it may find new patterns for each vulnerability.

Our results complement [35] and only share the SmartCheck tool. However, their
data is SolidiFI-eccentric and thus there is no direct comparison between their accuracy
and efficiency with ours. We found that there is inconsistency in the definition of various
vulnerabilities in different research work. This poses challenges to creating unified metrics
or benchmarks for comparisons among security-analysis tools.

6.2. Threats to Validity

A threat to the external validity of our study is with regards to the comparison of the
tools in terms of their accuracy. We cannot simply compare those tools’ accuracy because
each tool has its own dataset and metric to define true positives and false positives. These
metrics are derived from different understandings and scopes of vulnerabilities defined
and hence it is not easy to include all the vulnerabilities in one dataset and experiment tools
based on that. However, reported numbers could reflect the efficacy of the tool in detecting
target vulnerabilities. Another external validity threat is regarding the generalization of the
studied tools. We acknowledge that our set of tools is not comprehensive, and there exist
other tools, particularly very recent ones, that we might have missed in our comparison.
However, we believe that the studied tools represent recently proposed tools specific to
Ethereum and are also prevalently used or mentioned in multiple recent studies. Moreover,
we did not consider several tools that either had no coverage of our set of vulnerabilities
or their developers/authors did not report their efficiency or accuracy analysis. Our
comparison in Section 5.2 is based on what the authors claim in the papers. However, tools
may evolve, and research papers may not have up-to-date lists of vulnerabilities detected
by the tool.

7. Conclusions and Future Work

We surveyed 13 vulnerabilities in Ethereum smart contracts and their countermeasures,
and investigated nine security-analysis tools. The inconsistencies in definitions of various
vulnerabilities in different research work make it challenging to create a unified metric or
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benchmark for comparison among security-analysis tools. Consistent naming conventions
and widely accepted definitions of vulnerabilities are highly helpful for further research
and comparisons. More research efforts are needed to expand this work, and new security-
analysis techniques are needed to further enhance smart contracts’ security. Another future
extension of this work is studying vulnerabilities related to blockchain platforms other than
Ethereum such as Hyperledger Fabric, Hyperledger Sawtooth, EOS, Tezos, Solana, Corda,
NEO, and Cardano.
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