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Abstract: Deepfakes are realistic-looking fake media generated by deep-learning algorithms that
iterate through large datasets until they have learned how to solve the given problem (i.e., swap faces
or objects in video and digital content). The massive generation of such content and modification
technologies is rapidly affecting the quality of public discourse and the safeguarding of human
rights. Deepfakes are being widely used as a malicious source of misinformation in court that seek
to sway a court’s decision. Because digital evidence is critical to the outcome of many legal cases,
detecting deepfake media is extremely important and in high demand in digital forensics. As such, it
is important to identify and build a classifier that can accurately distinguish between authentic and
disguised media, especially in facial-recognition systems as it can be used in identity protection too.
In this work, we compare the most common, state-of-the-art face-detection classifiers such as Custom
CNN, VGG19, and DenseNet-121 using an augmented real and fake face-detection dataset. Data
augmentation is used to boost performance and reduce computational resources. Our preliminary
results indicate that VGG19 has the best performance and highest accuracy of 95% when compared
with other analyzed models.

Keywords: deepfake detection; digital forensics; media forensics; deep learning; VGG19; face-image
manipulation

1. Introduction

In the last few years, cybercrime, which accounts for a 67% increase in the incidents
of security breaches, has been one of the most challenging problems that national security
systems have had to deal with worldwide [1]. Deepfakes (i.e., realistic-looking fake media
that has been generated by deep-learning algorithms) are being widely used to swap faces
or objects in video and digital content. This artificial intelligence-synthesized content can
have a significant impact on the determination of legitimacy due to its wide variety of
applications and formats that deepfakes present online (i.e., audio, image and video).

Considering the quickness, ease of use, and impacts of social media, persuasive
deepfakes can rapidly influence millions of people, destroy the lives of its victims and
have a negative impact on society in general [1]. The generation of deepfake media can
have a wide range of intentions and motivations, from revenge porn to political fake news.
Rana Ayyub, an investigative journalist in India, became a target of this practice when
a deepfake sex video showing her face on another woman’s body was circulated on the
Internet in April 2018 [2]. Deepfakes have also been published to falsify satellite images
with non-existent landscape features for malicious purposes [3].

There are numerous captivating applications of deepfakery in video compositing
and transfiguration in portraits, especially in identity protection as it can replace faces in
photographs with ones from a collection of stock images. Cyber-attackers, using various
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strategies other than deepfakery, are always aiming to penetrate identification or authen-
tication systems to gain illegitimate access. Therefore, identifying deepfake media using
forensic methods remains an immense challenge since cyber-attackers always leverage
newly published detection methods to immediately incorporate them in the next generation
of deepfake generation methods. With the massive usage of the Internet and social media,
and billions of images available on the Internet, there has been an immense loss of trust
from social media users. Deepfakes are a significant threat to our society and to digital
evidence in courts. Therefore, it is highly important to obtain state-of-the-art techniques to
identify deepfake media under criminal investigation.

As demonstrated in Table 1 (inspired by the figure presented in [1]), tampering of evi-
dence, scams and frauds (i.e., fake news), digital kidnapping associated with ransomware
blackmailing, revenge porn and political sabotage are among the vast majority of types of
deepfake activities with the highest level of intention to mislead [1].

Table 1. Deepfake Information trust Table.

Type of Media Examples Intention to Mislead Level of Truth

Hoax
Tampering evidence
Scam and Fraud
Harming Credibility

High Low

Entertainment
Altering movies
Editing Special effects
Art Demonstration

Low Low

Propaganda
Misdirection
Political Warfare
Corruption

High High

Trusted Authentic Content Low High

The first deepfake content published on the Internet was a celebrity pornographic
video that was created by a Reddit user (named deepfake) in 2017. The Generative Ad-
versarial Network (GAN) was first introduced in 2014 and used for image-enhancement
purposes only [4]. However, since the first published deepfake media, it has been un-
avoidable for deepfake and GAN technology to be used for malicious uses. Therefore,
in 2017, GANs were used to generate new facial images for malicious uses for the first
time [5]. Following that, there has been a constant development of other deepfake-based
applications such as FakeApp and FaceSwap. In 2019, Deepnude was developed and
provided undressed videos of the input data [6]. The widespread strategies used to ma-
nipulate multimedia files can be broadly categorized into the following major categories:
copy–move, splicing, deepfake, and resampling [7]. Copy–move, splicing and resampling
involve repositioning the contents of a photo, overlapping different regions of multiple
photos into a new one, and manipulating the scale and position of components of a photo.
The final goal is to manipulate the user by conveying the deception of having a larger
number of components in the photograph than those that were initially present. Deepfake
media, however, leveraging powerful machine-learning (ML) techniques, have signifi-
cantly improved the manipulation of the contents. Deepfake can be considered to be a
type of splicing, where a person’s face, sound, or actions in media is swiped by a fake
target [8]. A wide set of cybercrime activities are usually associated with this type of
manipulation technique, and while spreading them is easy, correcting the records and
avoiding deepfakes are harder [9]. Consequently, it is becoming harder for machine-
learning techniques to identify convolutional traces of deepfake generation algorithms,
as there needs to be frequency-specific anomaly analysis. The most basic algorithms that
were being used to train models for the task of deepfake detection such as Support Vector
Machine (SVM), Convolution Neural Network (CNN), and Recurrent Neural Network
(RNN) are now being coupled with multi-attentional [10] or ensemble [11] methods to
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increase the performance and address weakness of other methods. As proposed by [12],
by implementing an ensemble of standard and attention-based data-augmented detection
networks, the generalization issue of the previous approaches can be avoided. As such,
it is of high importance to identify the most suitable algorithms for the backbone layers
in multi-attentional and ensembled architectures. As generation of deepfake media only
started in 2017, academic writing on the problem is meager [13]. Most of the developed
and published methods/techniques are focused on deepfake videos. The main difference
between deepfake video- and image-detection methods is that video-detection methods can
leverage spatial features [14], spatio-temporal anomalies [15] and supervised domain [16]
to draw a conclusion on the whole video by aggregating the inferred output both in time
and across multiple faces. However, deepfake image-detection techniques have access to
one face image only and mostly leverage pixel- [17] and noise-level analysis [18] to identify
the traces of the manipulation method.

Therefore, identifying the most reliable methods for face-image forgery detection that
relies on convolutional neural networks (CNN) as the backbone for a binary classification
task could provide valuable insight for the future direction in the development of deepfake-
detection techniques. The overall approach taken in this work is illustrated in Figure 1.

Figure 1. General overview of our proposed approach to detect deepfake media in a digital foren-
sics scenario.

DenseNet has shown significant promise in the field of facial recognition. DenseNet
as an extension of Residual CNN (ResNet) architecture has addressed the low-supervision
problem of all its counterparts by initiating a between-layer connection using dense blocks.
The dense blocks in the DenseNet architecture improve the learning process by leverag-
ing a transition layer (essentially convolution, average pooling, and batch normalization
between each dense block) that concatenates feature maps. As such, gradients from the
initial input and loss function are shared by all the layers. The described implementation
reduces the number of required parameters and feature maps, and consequently provides
a less computationally expensive model. Therefore, we have decided to test DenseNet’s
capabilities and compare it with other neural network architectures.

VGG-19, as an algorithm that has been widely used to extract the features of the
detected face frames [19], was chosen to be compared with the DenseNet architecture.
VGG-19’s architecture eases the face-annotation process by forming a large training dataset
with the use of online knowledge sources that are then used to implement deep CNNs to
perform the task of face recognition. The formed model is then evaluated on face recognition
benchmarks to analyze model efficiency regarding the generation of facial features. During
this process, VGG-19 is trained on classifiers with sigmoid activation function in the output
layer which produces a vector representation of facial features (face embedding) to fine-
tune the model. The fine-tuning process differentiates class similarities using Euclidean
distance that is achieved using a triplet loss function that aims at comparing Euclidean
spaces of similar and different faces using learning score vectors. The CNN architecture
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implemented in VGG-19 implements fully connected classifiers that include kernels and
ReLU activation followed by maxpooling layers.

Finally, we have implemented a Custom CNN architecture to evaluate the performance
of previously described algorithms and analyze the effectiveness of dropout, padding,
augmentation and grayscale analysis on model performance.

This study aims to provide an in-depth analysis on the described algorithms, structures
and mechanisms that could be leveraged in the implementation of an ensembled multi-
attentional network to identify deepfake media. The result of this work contributes to the
nascent literature on deepfakery by providing a comparative study on effective algorithms
for deepfake detection on facial images within the possible use of digital forensics in
criminal investigations.

The rest of this paper is organized as follows. Section 2 provides a literature review of
the algorithms and datasets that are widely used for deepfake detection. Section 3 provides
details on the analysis methods and configurations of the compared algorithms as well as
with the details on the tested dataset. Section 4 provides the results of the comparative
analysis. Finally, Section 5 concludes with implications, limitations, and suggestions for
future research.

2. Literature Review

Anti-deepfake technology can be divided into three categories: (1) detection of the
deepfake; (2) authentication of the published content; and (3) prevention of the spread
of contents that can be used for deepfake production. Technology towards detection and
authentication of deepfakery is growing fast; however, the capacity to generate deepfakes
is proceeding much faster than the ability to detect them. Twitter has reported attempts
to publish misinformation and fake media by 8 million accounts per week [20]. There has
been a wide variety of deepfake media, and the detection techniques that have been used
to identify them is shown in Figure 2. This has created a massive challenge for researchers
to provide a solution that can promptly analyze all the posted material on the Internet
and social media platforms to identify deepfakes. Previous research has mostly aimed at
improving previously developed technologies to train a new detection system.

Figure 2. Current deepfake media types and detection techniques.

2.1. Deepfake Detection Datasets

Deepfake detection systems typically leverage binary classifiers to cluster informa-
tion into real and fake classes. This method requires a great quantity of good-quality
authentic and tampered data to train classification models. The first known datasets that
had a great impact on the growth and improvement of deepfake detection technologies
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were UADFV [21] and DFTIMIT [22]. FaceForensics++ dataset includes 977 downloaded
videos from YouTube, provides 1000 sequences of original unobstructed faces, as well as
their manipulated versions. The manipulated versions were generated by four methods:
Deepfakes, Face2Face, FaceSwap and NeuralTextures [23]. The DeepFakeDetection dataset
(DFD) released by Google in collaboration with Jigsaw contains over 363 original sequences
from 28 paid actors in 16 different scenes as well as over 3000 manipulated videos using
deepfakes [23]. The Deepfake Detection Challenge (DFDC) dataset [24] published by Face-
book is another publicly available large dataset that includes over 100,000 total clips from
3426 actors, produced with deepfake, GAN-based and unsupervised models. Celeb-DF
(v2) [25] dataset published by [25] is an extension to Celeb-DF (v1) that contains real and
fake videos that are generated via deepfake algorithm by providing images with the same
quality as the synthesized videos circulating online. This dataset provides 5639 videos with
subjects of different ages, ethnic groups and genders, and their corresponding deepfake
videos. The DeeperForensics-1.0 dataset is a large-scale benchmark for face forgery de-
tection that represents the largest face forgery detection dataset by far. This benchmark
includes 60,000 videos forming a total of 17.6 million frames generated by an end-to-end
face-swapping framework. Furthermore, extensive real-world perturbations are applied to
obtain a more challenging benchmark of larger scale and higher diversity [26].

For our research and analysis, we took the “Real and Fake Face-Detection” dataset
from Yonsei University [27] that contains expert-generated high-quality PhotoShopped face
images. The dataset includes 960 fake and 1081 real images that are composites of different
faces, separated by eyes, nose, mouth, or whole face. The second dataset that has been used
in this work is the “140K Real and Fake Faces” that consists of 70K real faces from the Flickr
dataset collected by Nvidia, as well as 70K fake faces sampled from the 1 million fake faces
(generated by StyleGAN) that were published by Bojan [28]. These two datasets were used
to include both GAN-generated images along with expert/human-generated images to
provide many good-quality data. All the above-mentioned datasets can be used for image
and video classification, segmentation, generation and augmentation of new data. Table 2
represents a cumulative comparison of the mentioned datasets; please note that the rows
with a “*” sign include images only (not videos). Deepfake datasets have been categorized
into two generations based on several factors and elements. Considering release time and
synthesis algorithms involved in the generation of the data, UADFV and DF-TIMIT are
categorized as the first generation. Considering the quality and quantity of the generated
data, DFD, DeeperForensics, DFDC, and the Celeb-DF datasets are categorized as the
second generation [25].

Table 2. Comparison of publicly available deepfake datasets.

Real Fake

Dataset Video Frame Video Frame Generation Method Release Date Generation Group

UADFV 49 17.3K 49 17.3K FakeAPP 11/2018 1st

DF-TIMIT 320 34K 320 34K Faceswap-GAN 12/2018 1st

*Real & Fake Face Detection 1081 405.2K 960 399.8K Expert-generated high-quality photoshopped 01/2019 2st

FaceForensics++ 1000 509.9k 1000 509.9K DeepFakes, Face2Face, FaceSwap, NeuralTextures 01/2019 2nd

DeepFakeDetection 363 315.4K 3068 2242.7K Similar to FaceForensics++ 09/2019 2nd

DFDC 1131 488.4K 4113 1783.3K Deepfake, GAN-based, and non-learned methods 10/2019 2nd

Celeb-DF 590 225.4K 5639 2116.8K Improved DeepFake synthesis algorithm 11/2019 2nd

*140K Real & Fake Faces 70K 15.8M 70K 15.8M StyleGAN 12/2019 2nd

DeeperForensics 50,000 12.6M 10,000 2.3M Newly proposed end-to-end face swapping framework 06/2020 2nd

2.2. Deepfake Detection Algorithms

Deepfake detection techniques aim to conceal revealing traces of deepfakes by extract-
ing semantic and contextual understanding of the content. Research in the field of media
forensics provides a wide range of imperfections as indicators of fake media: face wobble,
shimmer and distortion; waviness in a person’s movements; inconsistencies with speech
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and mouth movements; abnormal movements of fixed objects such as a microphone stand;
inconsistencies in lighting, reflections and shadows; blurred edges; angles and blurring of
facial features; lack of breathing; unnatural eye direction; missing facial features such as
a known mole on a cheek; softness and weight of clothing and hair; overly smooth skin;
missing hair and teeth details; misalignment in face symmetry; inconsistencies in pixel
levels; and strange behavior of an individual doing something implausible are all the indi-
cators and features used by deepfake detection algorithms [13]. The use of deep-learning
techniques and algorithms such as CNN and GAN has made deepfake detection more
challenging for forensics models because deepfakes can preserve pose, facial expression
and lighting of the photographs [29]. Frequency domain, JPEG Ghost and Error Level
Analysis (ELA) are among the first methods that were used to identify manipulation traces
on images. However, they are not successful in identifying manipulated images that are
generated with deep-learning and GAN algorithms. Neural networks are one of the most
widely used methods for deepfake detection. There are some proposals on the usage of
X-rays [18], and spectrograms [30] to identify traces of blending and noise in deepfake
media. However, such methods cannot detect random noise and suffer from a performance
drop when encountering low-resolution images. Deepfakes are implemented mainly using
a CNN that generates deepfake images and an encoder–decoder network structure (ED),
or GAN [4] that synthesizes fake videos. Deepfake detection techniques focused on anoma-
lies in the face region only can be categorized into holistic and feature-based matching
techniques [31]. The holistic techniques, which are mostly used to identify deepfake face
images and include Principal Component Analysis (PCA), Support Vector Machines (SVM),
and CNN, mainly analyze the face as a whole. These techniques aim at reducing data
dimensionality by forming a smaller set of linear combinations of the image pixels that
are then fed to a binary classifier to identify authentic and fake images. Feature-based
or attention-based matching techniques, however, are used for both deepfake video and
image identification, and split the whole face into different regions of focus such as eye,
nose, lips, skin, head position, color mismatches, etc. [32]. Holistic techniques are suc-
cessful in detecting localized deepfake characteristics (i.e., anomalies in the face and jaw
region) and can be leveraged to identify specific feature characteristics (eyes, nose, mouth)
that could be significant in detection [12]. Convolutional Neural Network (CNN)-based
image classification and recognition models have been proven to be trainable to classify
manipulated images from authentic ones [33]. Luca et al. [34] aimed to extract and detect
fingerprints that represent convolution traces left in the process of generating GAN images
using the Expectation-Maximization algorithm. Wang et al. [35] demonstrated that with
careful pre- and post-processing and data augmentation, a standard classifier trained on
ProGAN, an unconditional CNN generator can be generalized surprisingly well to unseen
architectures, datasets, and training methods. CNN have also been trained to detect ma-
nipulation techniques such as lack of eye-blinking [36], missing details in eyes from an
image [37], and facial wrapping artifacts. Furthermore, CNNs have been shown to be able
to capture distinctive traces of generation methods that have worked on further wrapping
the faces with high-resolution sources [17].

VGG19 and VGG16 has significantly improved large-scale fake image recognition
by increasing the layer depth (23/26 layers) of CNN-based models [38]. Chang et al. [39]
presented an improved VGG network, namely NA-VGG, based on image augmentation
and noise-level analysis to detect a deepfake face image. The experimental results using the
Celeb-DF dataset shows that NA-VGG improved accuracy over other state-of-the-art fake
image detectors. Kim et al. [40] demonstrated that VGG-16 has a better performance than
the ShallowNet architecture to classify genuine facial images from disguised face images.

Furthermore, DenseNet architecture has also been demonstrated to be computationally
more efficient with its feed-forward design network, which connects each layer to every
other layer [41]. In DenseNet architecture, feature maps of all former layers are used as the
input for each layer. DenseNet requires significantly fewer parameters and computation to
achieve state-of-the-art performance [33]. Hsu, Chih-Chung, Yi-Xiu Zhuang, and Chia-Yen
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Lee [42] in their work proposed a fake face-image detector based on the novel CFFN,
consisting of an improved DenseNet backbone network and Siamese network architecture.
Their comprehensive analysis demonstrated that deep features-based deepfake-detection
systems such as DenseNet obtain significant accuracy when trained and tested on the same
kind of manipulation technique.

Feature-based techniques have started identifying the deficiencies of deepfake genera-
tion methods such as unnatural eye-blinking patterns and temporal flickering, which gave
rise to a more improved generation of deepfake models that were trained on datasets that
have addressed the identified deficiencies. Yang et al. [43] demonstrated that facial land-
marks could be used to provide an estimate of head posture direction. The work of [44,45]
illustrated that eye pupils’ inconsistencies are one of the indicators of fake media. Some
studies [46] including audio into the training process have illustrated that the difference
between lip movements and voice matching distinguishes real and fake media. There have
been some efforts on domain-specific deepfake detection such as [47] that leveraged foren-
sic techniques to model political leaders’ facial expressions and speaking patterns; however,
it would be a more difficult task to train and generalize such approach for the whole world.
Even though feature-based techniques are more robust to deformations, they have been
mainly designed to have the best performance on domain-specific datasets. Holistic tech-
niques are competent in learning human faces and extracting higher-dimensional semantic
features for classification.

Other techniques that leverage spatial features and spatio-temporal anomalies in
the supervised domain such as Xception [48] and EfficientNet [49] have been shown to
be more efficient than CNNs. Xception architecture claims to gain a more efficient use
of model parameters due to depthwise separable convolutions that can understand as
an inception module. Kumar and Bhavsar [16] demonstrated that Xception combined
with metric learning can enhance the classification in high-compression scenarios. They
were able to achieve an AUC score of 99.2% and accuracy of 90.71% for deepfake video
identification on the Celeb-DF dataset. Ismail et al. [14] in their experimental analysis
demonstrated that XceptionNet combined with an additional Bi-LSTM and LSTM layer
can achieve a 79% ROC-AUC score. Li et al. [50] demonstrated that Xception does not
have a good performance on face-image datasets (AUC of 73.2) and, furthermore, it has a
high true-negative rate while having the lowest true-positive rate. To summarize, Xception
may provide better performance for fake video detection; however, it does not address
the generalizability issue across different datasets and does not perform well when fed
with images only. EfficientNET proposes a new scaling method that uniformly scales all
dimensions of depth/width/resolution using compound coefficient. Coccomini et al. [15]
were able to achieve an AUC of 0.95% and F1-score of 88% on the DFDC dataset. Pokroy
and Egorov [51] demonstrated that an increased scale in all dimensions may not always
lead to higher accuracy due to the fact that CNNs will have to deal with more complex
patterns that are difficult to transfer to a different task. Mitra et al. [52] were able to achieve
a 96% accuracy on the FaseForensics++ dataset by making the complexity of detecting
forged videos low using the depthwise separable convulsion of EfficientNet. In conclusion,
Xception and EfficientNet, by uniformly scaling all dimensions, can gain a more efficient use
of model parameters. Furthermore, they can extract spatial features and spatio-temporal
anomalies by aggregating the inferred output both in time and across multiple faces due to
their depthwise separable convolutions. These methods have illustrated that they can draw
an improved conclusion on the whole video; however, they have not demonstrated any
improvements to deepfake classification on a single image (i.e., deepfake image-detection).

Recent scholarly work has been focused on implementing an ensemble of holistic
and feature-based detection networks by addressing the drawbacks of both methods.
Dolescki et al. [53], in their work implementing a classification method, which involves a
collection of classifiers with a certain utility function regarded as an aggregation operator,
were able to achieve accuracy of 87%. Silva et al. [12] were able to achieve a 92% accuracy
on the DFDC dataset by implementing a hierarchical explainable forensics algorithm that
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incorporates humans in the detection loop. Hanqing et al. [10] proposed a multi-attentional
deepfake detection network that can achieve a 97% accuracy by implementing multiple
spatial attention heads, textural feature enhancement blocks and aggregating low-level
textural features and high-level semantic features. Bonettini et al. [11] were able to achieve
AUC of 87% on DFDC by assembling different trained Convolutional Neural Network
(CNN) models that combined EfficientNetB4 with attention layers and Siamese training.
Du et al. [54] demonstrated that a good balance between accuracy and efficiency can be
achieved with two separated EfficientNet architectures that simultaneously analyze raw
content and its frequency-domain representation.

Given that the most successful approaches to identifying and preventing deepfakes
are deep-learning methods that rely on CNNs as the backbone for a binary classification
task [12], and a large 2D CNN model can prove to be better than EfficientNet model if
deepfake classification is the only desired result [55], we have evaluated the most common
backbone architecture of existing developed frameworks (CNN, VGG-19 and DenseNet) that
are demonstrated to have the best performance on the task of deepfake image classification.

3. Approach

Our proposed method for deepfake detection on images is shown in Figure 1. We have
taken two different classification procedures in this work. As shown in both Figures 1 and 3,
input data goes through the same procedure with the same architecture; however, Figure 3
demonstrates a second round of analysis with an additional post-processing classification
step that has been added to the last output layer of the analyzed models. The second
round of analysis with additional post-processing was performed to analyze the effects of
principal component analysis on the task of deepfake classification. Further details about
the post-processing step are described in the final paragraphs of the evaluation subsection
of this section.

Figure 3. Detailed steps of post-processing in our proposed approach for deepfake detection.

3.1. Implementation

Input data are a dataset that is labeled and clustered into two categories of real and
fake. They are augmented for training purposes using the following specifications:

• Rotation range of 20 for DenseNET and no rotation on Custom CNN
• Scaling factor of 1/255 was used for coefficient reduction
• Shear range of 0.2 to randomly apply shearing transformations
• Zoom range of 0.2 to randomly zoom inside pictures
• Randomized images using horizontal and vertical flipping

After augmentation, the face images are classified as either fake or real using three
different models: Custom CNN, VGG, and DenseNET. We defined two classes for our
binary classification task: 0 to denote the real (e.g., normal, validation, and disguised face
images) and 1 to denote fake (e.g., impersonator face images) groups, respectively.

The “Real and Fake Face-Detection” dataset was used to train the three models at a
learning rate of 0.001 and for 10 epochs. The test accuracy was then calculated using the
test set. We applied data augmentation to flip all original images horizontally and vertically,
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hence a three-fold increase of the dataset size (original image + horizontally flipped image
+ vertically flipped image).

The Custom CNN architecture included six convolution layers (Conv2D) each paired
with batch normalization, max pooling and dropout layers. Rectified Linear Unit (ReLU)
and sigmoid activation functions were applied for the input and output layers respectively.
Dropout was applied to each layer to minimize over-fitting and padding was also applied
to the kernel to allow for a more accurate analysis of images. The Custom CNN archi-
tectures have been trained and validated on the original and augmented datasets with a
1/255 scaling factor. Data augmentation was performed to observe effects of data aggrega-
tion on model performance and promote the generalizability of the findings. Details on
augmentation process includes horizontal flip along with a 0.2 zoom range, shear range of
0.2 along with rescaling factor to avoid image quality to factor in model behavior during
classification since not all the images had the same pixel-level quality.

Following a similar approach to [56], the VGG-19 model that was used is a 16-layer
CNN architecture paired with three fully connected layers, five maxpooling layers and one
SoftMax layer that is modeled from architectures in [56]. VGG-19 has been pretrained on a
wide variety of object categories, which leads to its ability to learn rich feature representa-
tions. VGG-19 has demonstrated that it can provide a high accuracy level when classifying
partial faces. This architecture demonstrated that its highest accuracy is accessible when its
size is increased [57]; therefore, we have applied a high-end configuration to it by adding a
dense layer after the last layer block that provides the facial features and added a dense
layer as the output layer with sigmoid activation function to fine-tune the model for the
task of deepfake detection.

The DenseNET architecture used in this work is Keras’s DenseNet-264 architecture
with an additional dense layer as the last output layer. This architecture starts with a 7 × 7
stride 2 convolutional layer followed by a 3 × 3 stride-2 MaxPooling layer. It also includes
four dense blocks paired with batch normalization and ReLU activation function for the
input layers and sigmoid activation function for the output layer. Furthermore, there are
transition layers between each denseblock that include a 2 by 2 average pooling layer along
with a 1 by 1 convolutional layer. The last dense block is followed by a classification layer
that leverages the feature maps of all layers of the network for the task of classification
which we have coupled with a denseblock with the sigmoid activation function as the
output layer. This model was trained on 100,000 images and validated on 20,000 images.
This model has been trained and validated on the original, grayscale and augmented
datasets with a 1/255 scaling factor too. We aimed to add to the diversity of the training
data by performing augmentation to the DenseNet architecture by applying a horizontal
flip, a 20 range rotation along with the same rescaling procedure that was applied in the
Custom CNN architecture. Because pixel-level resolution of grayscale and color images
are different, we have also measured the importance of color on model behavior towards
classifying data into the fake and real categories by training the DenseNet architecture on
grayscale only data too. The VGG architecture, however, was only trained and tested on
the original dataset. All the analyzed models in this work are used as they were designed
with an additional custom dense layer with sigmoid activation function. The rationale
behind adding this layer to all models was to add a useful rectifier activation function layer
for the task of binary classification to produce a probability output in the range of 0 to 1
that can easily and automatically be converted to crisp class values.

3.2. Evaluation

The performance of the described models is assessed with accuracy, precision, recall,
F1-score, average precision (AP) and area under the ROC curve.

Accuracy, simply put, indicates how close the model prediction is to the target or
actual value (fake vs. real), meaning how many times the model was able to make a
correct predication among all the predictions it has made. Equation (1) indicates the overall
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formula used to calculate prediction, where TPR stands for true prediction and TOPR
stands for total predictions made by the model.

Accuracy =
TPR

TOPR
(1)

Precision, on the other hand, refers to how consistent results are regardless of how
close to the true value they are using the target label. Equation (2) demonstrates the ratio
that indicates the proportion of positive identifications by model that were actually correct.
TP in Equation (2) stands for the number of true positives and FP stands for the number of
false positives.

Percision =
TP

TP + FP
(2)

The recall is the proportion of actual positives that were identified by the model that
were correct. Equation (3) demonstrates this ratio where TP is the number of true positives
and FN the number of false negatives. The recall is intuitively the ability of the classifier to
find all the positive samples.

Recall =
TP

TP + FN
(3)

The F1-score, by taking into account both precision and recall, balances the precision
and recall and indicates model ability to accurately predict both true-positive and true-
negative classes. The F1 score can be interpreted as a harmonic mean of the precision and
recall. For the task of deepfake classification, F1-score is a better measure to assess model
performance, since both classes are of importance and the relative contribution of precision
and recall to the F1 score are better than equal. Equation (4) demonstrates how F1-score is
calculated.

F1 =
2 ∗ (Percision ∗ Recall)

Percision + Recall
(4)

Average Precision (AP) was used as an aggregation function for the task of object
detection to summarize the precision–recall curve as the weighted mean of precision
achieved at each threshold, with the increase in recall from the previous threshold used as
the weight based on Equation (5), where Rn and Pn are the precision and recall at the nth
threshold [58].

AP = ∑
n
(Rn − Rn−1)Pn (5)

Finally, as shown in Figure 3, the output vectors of the final hidden layer of the
analyzed architectures were extracted and treated as a representation of the images. Dimen-
sions of the vectors for the Custom CNN architecture, VGG-19 and DenseNet architectures
were 512, 2048 and 1024, respectively. Principal Component Analysis (PCA) was performed
to keep the most dominant variable vector points and preserved 50 principal components.
The resulting vectors from the PCA were fed into a support vector machine (SVM) to
classify them into the two classes of real and fake.

4. Preliminary Results

This section provides the results obtained from the three different neural network
architectures that have been tested in this work. The dataset section provides an overview
of the advantages, drawbacks, and improvements of the datasets described in the litera-
ture review.

4.1. Dataset

Deepfake datasets should have careful consideration of quality, scale, and diversity.
UADF and DFTMIT provide a baseline dataset for preliminary analysis in deepfake de-
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tection; however, they lack the quantity and diversity elements. The DeepFakeDetection
dataset extends the preliminary FaceForensics dataset; however, it contains relatively few
videos with few subjects and limited size and number of methods that are represented.
The DFDC dataset addresses the drawbacks of the previously published datasets by provid-
ing a large number of clips, of varying quality, and with a good representation of the current
state-of-the-art face-swap methods. However, it still has various visual artifacts that make
them easily distinguishable from the real videos. The DFDC dataset resolves the limited
availability of source footage, few videos and fewer subjects; however, the Celeb-DF dataset
provides more relevant data to evaluate and support the future development of deepfake
detection methods by fixing color mismatch, inaccurate face masks, and temporal flickering
of previously discussed datasets. Finally, deeper forensics, by addressing the drawbacks
of all mentioned datasets, provides a benchmark of larger scale and higher diversity that
can be leveraged to achieve the best performance of deepfake detection algorithms. Table 3
summarizes the drawbacks and improvements of the described datasets.

Table 3. Dataset analysis summary.

Dataset Drawbacks Improvements

UADF
DFTMIT Lack of quantity and Diversity Suitable baseline

DFD Limited size and methods Extension to FaceForensics dataset

DFDC Distinguishable visual artifacts Large number of clips of varying
quality

Celeb-DF
Low realness score
Biased: impractical for face
Forgery detection

Fixed color mismatch
Accurate face masks

Deeper Forensics-1.0 Challenging as a test database High realness score

The mentioned datasets include videos that could be used for face detection in images;
however, the “Real and Fake Face-Detection” dataset combined with the “140K Real and
Fake Faces” includes both GAN-generated images as well as expert/human-generated
images, and is considered by far one of the largest available face-image datasets. The two
described datasets together include 70,960 fake and 71,081 real images. As shown in Table 4,
70K of the fake images are GAN-generated and 960 of them are human expert-generated.
Similarly for the real images, 70K of them are GAN-generated and 1081 of them are human
expert-generated. The distribution of the human-generated fake images is not balanced
with the GAN-generated photos, but this is the largest human-generated image dataset
available currently.

Table 4. Distribution of the used datasets.

Generation Method Fake Real

GAN 70K 70K

Human Expert 960 1081

4.2. Algorithms

The accuracy, precision and recall rates of analyzed models demonstrated in Table 5,
the ROC curve demonstrated in Figure 4, the area under the ROC curve (AUC), F1-scores
and AP results demonstrated in Table 6 were used to evaluate model performance in
terms of separability and their ability to differentiate between classes. The algorithm
comparison results revealed that the VGG-19 model had the best performance among all
3 other algorithms, with an accuracy level of 95%.
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The results of this study demonstrate that VGG-19 can be a suitable choice not only for
partial face images, but also for full-face images confirming the findings of [57]. The better
performance of VGG-19 is because it is pretrained on a wide variety of objects. AP was used
as an aggregation function to summarize the precision–recall curve into a single value that
represents the average of all precisions. VGG-19, even though it had the highest accuracy,
had the lowest AP of 95% in comparison to all other analyzed models. The DenseNet
architecture on the original dataset and grayscale dataset had a closer performance to
VGG-19, with 94% accuracy. Results from DenseNET architecture demonstrates that
gray channel-based analysis does not have a huge impact on model accuracy level in
classifying images into the two categories of real and fake. The DenseNet architecture,
even though was second best in terms of performance, achieved an AP of 99% on both
augmented and grayscale datasets, which is slightly in contrast to the results found in [59]
in terms of precision rate; however, it aligns with claims regarding detection time. Custom
CNN architecture had the lowest accuracy level (89%). The second-highest AP score after
DenseNet was the Custom CNN model. Augmented input reduced model performance and
accuracy level on both DenseNET and Custom CNN by 5–22%. However, the Custom CNN
had a better performance on augmented data in comparison to the DenseNet architecture.
Precision and recall rates from DenseNet architecture trained on augmented data suggest
that the final dense block that we have coupled with the DenseNet classification layer did
not have a positive impact on model behavior. The issue with reduced performance on
augmented data might be resolved by training the model for a larger number of epochs,
since augmentation results in harder training samples. VGG-19, even though it was great in
terms of performance, aligns with results from [60]; it was computationally very expensive,
especially if fed with augmented data. DenseNET was computationally more efficient
in comparison to VGG-19 and Custom CNN, which aligns with the results from [40].
The F1-score of the DenseNet architecture on grayscale was the highest, reaching 97%
suggesting it could be a suitable backbone when dealing with unbalanced class distribution
in their dataset. The second-highest F1-score was achieved by VGG-19, as it achieved
a 95% F1-score. The lowest F1-score was achieved by the Custom CNN on augmented
data, as the F1-score was only 85%. Taking F1-score as a measurement to balance precision
and recall, DenseNet on grayscale data might seem to be a better solution, however, since
the dataset used for training in this analysis had a balanced class distribution accuracy
level and is a better judge in this analysis. The results from the PCA-SVM classification
demonstrated that VGG-19 was able to form a distinctive cluster of fake and real images
using the PCA vectors as a representation of the image (demonstrated in Figure 5). Custom
CNN architectures and DenseNet trained on the original and augmented datasets showed
decent classification. However, DenseNet trained on grayscale images presented very poor
performance (Table 5).

Table 5. Algorithm comparison results. OD stands for Original Dataset, AD stands for Augmented
Dataset and GS stands for Grayscale Dataset.

Model Performance PCA-SVM Performance

Architecture Accuracy Precision Recall Accuracy Precision Recall

VGG-19 95 93 97 99 99 99

DenseNet OD 94 92 96 98 98 98

DenseNet AD 73 66 95 86 86 86

DenseNet GS 94 91 99 50 50 47

Custom CNN OD 89 91 87 97 97 97

Custom CNN AD 84 87 79 91 90 91

Overall analysis of the results reveal that all the architectures had a higher efficiency
in detection and classification of GAN-generated images due to the traces that GAN
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generators left on the generated media. Considering VGG-19’s performance and behavior,
even though it may not be the most computationally efficient model, it had a competitively
better performance than the other analyzed model and it showed a promising improvement
when coupled with PCA-SVM classification layers. This suggests that VGG-19 could be
a more suitable backbone architecture for the task of deepfake detection related to the
essential technical and legal requirements that determine evidence admissibility. Deepfakes
are a threat to the admissibility of digital evidence in courts. Quick and effective detection
of authentic media is critical in any criminal investigations. VGG-19 could be a fast solution
for detecting deepfakes in courts. We must test more datasets from digital evidence and
conduct further experiments.

Table 6. F-1, ROC-AUC, and AP scores.

Architecture F-1 ROC-AUC AP

VGG-19 95 96 93

DenseNet OD 92 99 99

DenseNet AD 92 97 97

DenseNet GS 97 99 99

Custom CNN OD 91 98 98

Custom CNN AD 85 95 95

Figure 4. ROC curve representation.
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Figure 5. PCA-SVM clustering comparison.

5. Conclusions and Future Work

The results of our work demonstrated that deep-learning architectures are reliable
and accurate at distinguishing fake vs. real images; however, detection of the minimal
inaccuracies and misclassifications remain a critical area of research. Recent efforts have
focused on improving the algorithms that create deepfakes by adding especially designed
noise to digital photographs or videos that are not visible to human eyes and can fool the
face-detection algorithms [61]. The results of our work indicate that VGG-19 performed
best, taking accuracy, F1-score, precision, AUC-ROC and PCA-SVM measures into the
account. DenseNet had a slightly better performance in terms of AP, and the results from the
Custom CNN trained on original data were satisfactory too. This suggests that aggregation
of the results from multiple models, i.e., ensemble or multi-attention approaches, can be
more robust in distinguishing deepfake media.

Future work could also leverage unsupervised clustering methods such as auto-
encoders to analyze its effectiveness on the task of deepfake classification and provide a
better interpretation of the CNN algorithms designed in this work. There could be classifi-
cation methods developed that would examine and flag social media users who uploaded
images/videos before being posted on the Internet to avoid the spread of misinforma-
tion [62]. We plan to further improve performance with deep-learning algorithms as well as
exploring the application of stenography, steganalysis and cryptography in the identifica-
tion and classification of the genuine and disguised face images [63]. Future work not only
has to include collecting and experimenting with different disguised classifiers, but also
must work on the development of training data that can improve the performance of im-
plemented architectures as suggested by [33]. The authors of the paper plan to discover the
use of information pellets on the development of an ensemble framework. As suggested
in [64] using a patch-based fuzzy rough set feature-selection strategy can preserve the
discrimination ability of original patches. Such implementation can assist in anomaly detec-
tion for the task of deepfake detection. By integrating the local-to-global feature-learning
method with multi-attention and ensemble-modeling (holistic, feature-based, noise-level,
steganographic) approach, we believe we can achieve a superior performance than the cur-
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rent state-of-the-art methods. Considering the limitations of Eff-YNet network developed
by [55], which has an advantage in examining visual differences within individual frames,
analyzing EfficientNet performance on deepfake image datasets used in this work can be
another direction for future work, as it may identify another suitable baseline model for
ensembled approaches.
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