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Abstract: Smartphone user authentication based on passwords, PINs, and touch patterns raises
several security concerns. Behavioral Biometrics Continuous Authentication (BBCA) technologies
provide a promising solution which can increase smartphone security and mitigate users’ concerns.
Until now, research in BBCA technologies has mainly focused on developing novel behavioral biomet-
rics continuous authentication systems and their technical characteristics, overlooking users’ attitudes
towards BBCA. To address this gap, we conducted a study grounded on a model that integrates
users’ privacy concerns, trust in technology, and innovativeness with Protection Motivation Theory.
A cross-sectional survey among 778 smartphone users was conducted via Amazon Mechanical
Turk (MTurk) to explore the factors which can predict users’ intention to use BBCA technologies.
Our findings demonstrate that privacy concerns towards intention to use BBCA technology have
a significant impact on all components of PMT. Further to this, another important construct we
identified that affects the usage intention of BBCA technology is innovativeness. Our findings posit
the view that reliability and trustworthiness of security technologies, such as BBCA are important for
users. Together, these results highlighted the importance of addressing users’ perceptions regarding
BBCA technology.

Keywords: behavioral biometrics; continuous authentication; privacy concerns; protection motivation
theory

1. Introduction

Smartphones have become an indispensable part of our lives as they are used for
various aspects of people’s daily activities. Besides communicating with others, we also
use smartphones as cameras, notebooks, digital wallets, etc. Additionally, we exchange
data and conduct payments using Near Field Communication (NFC) and control other
devices through Bluetooth and WiFi. As a result, we keep a lot of personal data stored
in our smartphones (e.g., videos, photos, credit card numbers, PINs, bank accounts, etc.).
Currently, due to the COVID pandemic crisis, we also use smartphones for health issues,
such as contact tracing, which entails storing data about our physical contacts [1]. The
usefulness of smartphones has boosted them to the top of the most used devices on the web
today, keeping a 55% of the global market share according to reported statistics [2]. This
was achieved despite mobile users’ security and privacy concerns [3] and, most importantly,
their concern over the potential disclosure of sensitive data [4,5]. Nowadays a new concern
is arising, called nomophobia, due to the fear of losing smartphones along with the data
stored in them [6-8]. At the same time, the growth of the Internet of Things (IoT) triggers a
growth in the number of device connections, which entails that in the years to come, a vast
number of connected devices must be protected [9].

To overcome these concerns, smartphone vendors implement authentication measures,
such as passwords, PINs, and physiological biometrics (e.g., fingerprints, face recognition,
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etc.) to ensure that devices are used by legitimate users. The adoption rate of physiological
biometrics has raised from 9% to 20% during the decade 2000-2010 [10]. Although these
measures do provide increased security and privacy, one of their major limitations is
that they authenticate users just once, when they connect to a mobile service [11]. Thus,
if a smartphone gets stolen or lost while the user was logged in a service, the person
who found or stole the smartphone can have access to the data stored in it. It has been
shown that a password or PIN on its own is insufficient to provide adequate security for
smartphones [4,12-14]. To meet this challenge, new technologies that provide continuous
authentication, such as Behavioral Biometric Continuous Authentication (BBCA), face
detection, have been introduced [15-19].

BBCA has emerged as a combination of Behavioral Biometrics and Continuous Au-
thentication. BBCA is an indirect method of validation of a legitimate user based on the
capture of behavioral attributes using tools and built-in smartphone sensors [20]. Behav-
ioral biometrics refer to the observable behavior used to identify or confirm the identity
of an individual. In contrast to physiological biometrics, it focuses on behavior patterns
instead of physical characteristics, such as fingerprints and facial features [21]. Continuous
authentication offers a safer and more protective alternative [22], and behavioral biomet-
rics, which are incorporated within the continuous authentication framework, constitute
a preferable solution for the protection of users’ data [23]. In addition, a large corpus
of research has shown evidence regarding the superiority of the fusion of multimodal
biometric approaches. A variety of combinations is used with the fusion of biometrics that
achieves improved results compared to the single modality methods [15,24,25]. Thus, the
fusion of multimodal biometrics authentication emerges as a definite future trend. Hence,
we consider BBCA as an effective protective technology for smartphones users.

Although a significant volume of research on BBCA has been published, the focus of
recent BBCA research lies almost exclusively on the development and the improvement
of behavioral biometrics continuous authentication systems [26]. On the other hand, the
role of users’ attitude towards BBCA technology has been overlooked. We argue that it
is important to investigate the attitudes of people towards new mobile security services
and explore whether factors that contribute to the usability of BBCA affect users’ attitude
towards these services [27]. Specifically, the following research question has guided this
study: What factors affect the intention of smartphone users to use BBCA technologies?

This research intends to examine the factors associated to BBCA adoption, revealing
the fundamental elements that motivate people’s decisions and behavior towards this
technology. To achieve this, we have built and validated a conceptual model using key
elements of the Protection Motivation Theory (PMT) along with constructs that derive from
the current literature related to biometrics authentication and have conducted an online
survey. The survey questionnaire focuses on the identification of elements that motivate
users to adopt BBCA. This work endeavors to provide a comprehensive overview of users’
perspectives towards the booming BBCA applications.

The structure of this paper is as follows. In Section 2, we analyze Behavioral Biometrics
Continuous Authentication technologies, mainly from the users’ point of view, while
Section 3 focuses on related work. In Section 4, we present the theoretical background and
the research model of this work. Subsequently, in Section 5 we present the survey results,
which are further discussed in Section 6. In Section 7, we consider the implications and the
limitations of our research, as well future research directions, and finally conclusions are
given in Section 8.

2. Background: Behavioral Biometrics Continuous Authentication

Behavioral Biometric Continuous Authentication (BBCA) is a security enhancing
technology, operating alongside with the initial login process, that monitors user’s behavior
and continuously re-authenticates users throughout a session. BBCA is based on behavioral
modalities, such as walking gait, touch gestures, keystroke dynamics, hand waving, user
profile, and power consumption [15]. According to Abuhamad et al. [20], behavioral
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biometrics are classified into five major categories: gait, motion, voice, keystroke dynamics,
and gesture. Moreover, [20] argues that a multi-modal user authentication can be provided
by combining these modalities.

According to [28], 70 million smartphones are lost each year, while only 7 percent
are recovered. Further to this, article [23] argues that intruders can illegally gain access to
personal information if the password is compromised or if users do not maintain adequate
attention to the smartphone after the initial authentication. The authors of [29] proposed
as a remedy to this issue that the device should continuously monitor and validate the
user after the initial login process. Schaffer [22], emphasizes that continuous authentication
methods could provide a more effective means of authenticating mobile devices” users.
In addition, articles [21,30] support the claim that users’ authentication based on both
Behavioral Biometrics (BB) and Continuous Authentication (CA) can provide high accuracy
of authentication.

Currently, smartphone vendors implement both physiological biometrics and knowledge-
based schemes as the primary security mechanism for identifying a user [20]. Knowledge-
based approaches depend on something the users know (e.g., PINs, password, etc.), while
physiological biometrics approaches depend on users” unique physiological characteristics
(e.g., fingerprint, face recognition, iris). Article [11] argues that PIN-based authentication in
smartphones is neither sufficient nor convenient in most situations. This drawback refers
mostly to the entry-point authentication method, i.e., the authentication that takes place
when a user starts a new session [22]. In addition, [20] argues that both these methods can
provide point-of-entry authentication, but they fall short on delivering tacit continuous
authentication, without causing constant annoyance or inconvenience to users. Another
shortcoming is that physiological biometrics are mostly hardware-dependent, which in-
creases the cost of devices [31]. On the contrary, a strong argument in favor of behavioral
biometrics technology is that it can support continuous and passive authentication without
depending on extra hardware [32]. Thus, behavioral biometrics have a stronger potential
to fulfill the requirements for an effective authentication method [15].

Crawford, Renaud and Storer [33] report that 90% of the participants in the sample of
their study are in favor of behavioral biometrics-based authentication, which reflects an
increasing attention on behavioral biometrics. The authors also demonstrate that 30% of
the sample do not use any security method on their smartphone, although they believe
that their device should be protected. Further to this, several government projects aim
to develop authentication systems based on behavioral biometrics. The US government
has launched a pilot project to use behavioral biometrics for the authentication systems of
the Internal Revenue Service (IRS) [9]. Also, the US Defense Information System Agency
substituted employees’ ID cards with a mix of behavioral biometrics and traditional mea-
sures [9]. Hence, both individual users and government organizations demonstrate an
increased interest in behavioral biometrics. Despite that, however, there is a slow diffusion
of behavioral biometrics pointing out that attention on protection measures usefulness is
not an adequate motivation for adopting the technology. Reference [34] argues that even
though technologies are available and accessible, they are nevertheless not often used. This
is further supported by findings that despite evidence of government support, technologies
have not been effectively diffused [35].

Although users are aware of the dangers and the existing coping technologies, they
often fail to protect themselves [36,37]. Further to this, article [38] argues that there is no
widespread adoption of usable technologies, such as behavioral biometrics. An explanation
of this is provided by [39]; they claim that users’ behavior and decisions are guided by their
mental models, so it is important for designers and developers to know and understand
users’ models when implementing and designing security mechanisms. Chen and Li [40]
revealed that few studies have examined the motivational factors that may predict the
privacy and security behavior of smartphone users. Considering all the above, we argue
that it is important to identify the factors that influence individuals” intention to use BBCA
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technologies. Knowing these factors, BBCA systems developers would be able to improve
the design of their systems so that people would be more willing to use them.

3. Related Work

Over the last two decades, several studies and reviews of continuous authentication
technologies have been conducted, addressing two main topics: The first one involves the
attitudes of users towards authentication, in general. Research [41] examined 175 users
to investigate the adoption of continuous authentication and found that 85% of the par-
ticipants believed that users should be aware of the ongoing monitoring in their devices.
This revealed the importance of privacy regarding the implementation of an authentication
process. The researchers also argued that the use of continuous monitoring is generally
effective. Besides that, the above authors argued that some users are not comfortable with
the transition to novel authentication techniques, such as continuous authentication. They
also found that voice verification and fingerprint recognition were classified as the most
suitable types of login authentication after passwords, with raw overall acceptability scores
of 68% and 67%, respectively, indicating the growing, at the time, acceptance of biometrics.

As smartphone use started to boost, a second, more focused, topic drew the interest of
security researchers. This topic concerns the attitudes and perceptions of smartphone users
towards biometrics-based continuous authentication, investigating at the same time the
limiting and facilitating factors affecting the adoption of these technologies. Research [42]
investigated the perspectives and attitudes towards continuous authentication versus
common point-of-entry authentication techniques and found that users’ perspectives and
attitudes varied significantly. They argued that the main justification for the negative
perspectives was the fear of uncomfortability generated by false rejections. Participants
also demonstrated greater concern to privacy about biometric data processing and about
being continuously monitored without being aware of it.

A usability survey by [43] explored the perception of users regarding physiological
and behavioral authentication methods, both of which involve active smartphones” interac-
tivity. The results demonstrated that 87.3% of 331 attendees acknowledged that biometric
authentication would be appropriate for the security of their smartphones. Also, 78.9%
of the attendees agreed that they would store more private data on their devices if they
were equipped with biometrics scanning features. Additionally, 66.2% of the attendees
favored fingerprint as an authentication method, whereas 6.43% favored voice recognition.
Research [44] found that face and hand recognition seem to be far more comfortable and
lead to an enhanced perception of security in comparison to gesture and voice recognition.

Additionally, research [45] found that the combined use of different modalities had
an average accuracy of 88% while 15% EER was achieved. This is in alignment with
the [46] study in which the authors argued that the development and use of biometric
authentication, physical as well as behavioral, in smartphones enhance their performance,
security, and ease of use without major hardware side-effects that can affect and increase
the price of smartphones. Further to this, article [33] argued that behavioral biometrics
decrease the need for legitimate authentication by 67% compared to knowledge-based
techniques. Reference [47] argued that technologies that use behavioral biometrics to pro-
vide continuous authentication on smartphones are effective since their findings among 37
participants showed that 91% found the technology suitable while 81% of them considered
the level of protection provided as sufficient. In fact, in [48], it is argued that users are
amenable to adopt continuous authentication mechanisms for their smartphones. Finally,
article [31] recommended BBCA as an appropriate security measure in the IoT era, since
conventional methods of authentication suffer from major drawbacks, such as vulnerability
and obtrusiveness.

While the aforementioned studies investigate users’ perceptions towards either contin-
uous authentication or biometrics, there is a lack of contemporary studies that address the
perceptions towards their combination in BBCA. This is the first time, to our knowledge,
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Trust in
Technology
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that PMT is employed in this context. Therefore, the investigation of the factors motivating
users to use BBCA is an open and important issue. Our study aspires to address this gap.

4. Theoretical Background and Research Model

In order to predict users’ intention to use BBCA technology our theoretic model draws
on Protection Motivation Theory along with the constructs of innovativeness, technology
trust, and privacy concerns, Figure 1.
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Figure 1. Research model.

Protection Motivation Theory (PMT) illustrates the way that people are motivated
to react to health threats or risky behaviors, so named fear appeals [49]. Once these fear
appeals arise, individuals use cognitive processes to interpret them in order to evaluate
their own threat response [50].

A comprehensive literature review on PMT [51] pointed out that PMT was applied
to a variety of topics of research, encompassing fields of interest other than health issues.
Besides health issues and disease prevention, PMT has been extended to environmental
concerns as well as privacy and security concerns, political issues, and others. The motiva-
tion concept of protection therefore covers any threat for which the individual can respond
effectively [52].

Two cognitive mediating processes are used in PMT; the threat-appraisal and the
coping-appraisal process, and two types of behavior are considered; the adaptive and the
maladaptive. While adaptive behaviors are acts taken by an individual for self-protection,
maladaptive behaviors are purposefully avoidance reactions in response to a fear appeal.
Maladaptive behavior is a behavior that is not protective against the danger generated
by the fear appeal [49,52,53]. Threat appraisal estimates the consequences of maladaptive
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behavior and comprises three elements: severity, vulnerability (the perceptions of threat),
and maladaptive rewards (intrinsic and extrinsic) [52].

Coping-appraisal assesses the ability to handle the threat and prevent it. Coping-
appraisal comprises three factors: Self-efficacy, Response efficacy (efficacy variables), and
Response costs. Self-efficacy is the person’s perceived ability to perform the adaptive
response [52]. Perceived response efficacy is the faith that the adaptive response will be
successful, that protecting action will indeed be efficient in protecting oneself or others.
Response costs are all costs regarding the adoption of adaptive coping response.

Although the threat appraisal component of the PMT consists of three components
as indicated, for the purposes of this study only perceived vulnerability and perceived
severity are used. This rests on the argument that a unified construct of response costs and
rewards can be achieved since the value of risk behavior and the cost of implementing
prevention measures is conceptually difficult to distinguish [54]. This explains why several
PMT researches did not include response costs and rewards in the same model when
investigating behaviors in informational privacy and security [55-58]. Reference [59] argues
that Protection Motivation Theory (PMT) demonstrates strong explanatory power and,
thus, is a valuable method for explaining precautionary online behavior. However, several
researchers have challenged this argument. For instance [60] states that social cognition
models such as the PMT are problematic due to the vague nature of their constructs and
cannot be tested since they focus more on analytic and rather than synthetic truths. On the
contrary, previous research that has used PMT revealed the effectiveness of PMT to predict
individuals” security behaviors regarding internet usage [57], both via computers [61], and
smartphones [58].

With the inclusion of biometric authentication in modern smartphones, privacy pro-
tection has become increasingly important in securing user biometrics [62]. Being based
on personal traits, whether physiological or behavioral, biometric systems erase certain
privacy issues considering their use. Mainly these issues are:

e Biometrics can be collected or shared without the permission of the specific user,
without adequate knowledge, or without a specific purpose [63].

e Biometric data collected for one purpose may be used for an unintended or unautho-
rized purpose in the future [63].

e  Biometrics can be used for purposes other than those explicitly stated, or biometrics
can be abused to generate extra information [63].

e Individuals can be identified or tracked by biometrics. Since biometric data is consid-
ered unique, it can be used to track and locate persons when they try to get access
to certain facilities or as their biometric attributes are collected by a surveillance
system [63].

e  Biometrics can be stored and/or transmitted incorrectly so they are outside the control
of the user. External attacks against biometrics would be possible as a result of this [64].

e  The potential threat to users’ privacy posed by the misuse of biometric information
is a topic of debate and frequently prevents the widespread adoption of biometric
systems [63].

e  Biometrics cannot be protected via conventional encryption due to their fuzzy nature.
As a consequence, they are vulnerable to a variety of threats [62].

It is worth noting that determining the “true” risk of privacy violation requires taking
into account a variety of factors including the factors that affect users’ intention to use
BBCA technologies. Given the above debate, we focus on the privacy issues of individual
smartphone users, the risks they view as reasonable, and their effect on the intention to use
BBCA as a self-protective behavior.

4.1. Threat-Appraisal

Threat appraisal illustrates an individual’s risk assessment of a dangerous inci-
dent [65,66]. In the context of our study threat appraisal consists of the following two
constructs: perceived vulnerability and perceived severity.
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Perceived vulnerability refers to the likelihood that somebody might become the
target of an unexpected event (i.e., a data breach incident) [50]. In our study, perceived
vulnerability indicates users” appraisal of whether they are vulnerable to information
security threats if no measures are taken to prevent them.

Various studies [50,66-68] demonstrate that perceived vulnerability has a major impact
on coping reactions and also that people that perceive vulnerability to be high show a
stronger intention to follow coping recommendations. Therefore, we hypothesize that:

Hypothesis 1 (H1). Perceived vulnerability positively affects users” intention to use BBCA tech-
nology.

Perceived severity is the degree to which an individual considers the consequences
of an unexpected event to be severe. Article [69] argued that if an individual perceives a
threat to be severe, he/she will be probably inclined to take some action. Thus, security
behavior and perceived severity are linked together. Therefore, we hypothesize that:

Hypothesis 2 (H2). Perceived severity positively affects users’ intention to use BBCA technology.

4.2. Coping-Appraisal

The process of coping-appraisal assesses the capability to cope with a threat and
prevent it. Factors encompassing the process of coping are efficacy variables (self-efficacy
and perceived response efficacy) and perceived response cost [52].

Self-efficacy is the person’s perceived capability to perform the adaptive response.
Self-efficacy in the context of our study is defined as users’ belief in their ability to protect
data stored in their smartphones from unauthorized disclosure, erasure, modification,
destruction, and lack of availability. Self-efficacy has been discovered to have a significant
illustrative impact on both technological usage and cybersecurity behavior in respect to
personal information security practices [70]. Considering the above, we hypothesize that:

Hypothesis 3 (H3). Self-efficacy positively affects users” intention to use BBCA technology.

Perceived Response efficacy refers to the perception that the adaptive response will
be effective. In the context of our research, Perceived Response efficacy refers to the
users’ belief that using BBCA technology will effectively protect their data. Thus, we
hypothesize that:

Hypothesis 4 (H4). Perceived Response efficacy positively affects users” intention to use BBCA tech-
nology.

As mentioned above, some users are not comfortable with the concept of continuous
monitoring. Another common issue raised against the use of continuous authentication
technologies concerns power consumption. In the context of our research, we consider that
users may perceive as a response cost the possibility to get lower quality of services by
their smartphones if they decide to adopt BBCA. Thus, perceived response costs are all
costs regarding the adoption of adaptive coping response (e.g., financial, time, effort). In
this research, we argue that users would express stronger intentions to adopt BBCA, if they
consider the costs of performing protective behaviors to be low.

Therefore, we posit the following hypothesis:

Hypothesis 5 (H5). Response costs negatively affect users” intention to use BBCA technology.

4.3. Innovativeness

Personal innovativeness, according to [71], is important for examining the acceptance
of information technology innovation. They defined personal innovativeness as the in-
dividual’s willingness to experiment with any new information technology. They claim
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that a highly innovative person could be risk-seeking or an early adopter. Consequently,
personal innovativeness influences the user’s behavior or intention to use the new technol-
ogy. Additionally [72] argues that security tools are what Rogers [73] names a preventive
innovation. These innovations are technologies such as BBCA, that eliminate the risks of
future unwanted consequences. Therefore, in the context of PMT, innovativeness is also
found to be a key factor in determining the way that new technologies are adopted. Indeed,
as stated in Innovation Diffusion Theory [49], the ability of an individual to try and consider
new things is closely linked to the acceptance of innovative technology. Consequently,
we hypothesize:

Hypothesis 6 (H6). Innovativeness positively users’ intention to use BBCA technology.

4.4. Privacy Concerns

As computers have become so prevalent in daily life and there is a huge amount of data
stored on computer devices, privacy and security have evolved into public concern [74].
Hence, the notion of informational privacy has been spotlighted in many disciplines as a
key research topic, including justice, marketing, economics, psychology, and particularly in
the Information Systems discipline [3]. The idea that privacy concerns relate to protective
behavior is grounded in [75] who proposed that people try to use behavior strategies to
achieve desired levels of privacy. Extensive research indicates that information privacy
concerns are strong predictors of risk beliefs and trust in the context of electronic com-
merce [76] as well as the antecedents of protective behavior to disclose Internet personal
information [77]. Also, privacy concerns are positively related to privacy protection, and
those worried about their online privacy prefer to follow behaviors that regulate their
disclosure and online privacy risks [78-80]. Further to this, many theories and studies
argue that users adopt protective behaviors, if they feel they are endangered and/or if
the risk is considered severe. Also, we may expect that people who are concerned about
their privacy may feel more vulnerable to privacy threats and they may perceive the con-
sequences of privacy violations to be more severe. Based on the above, we propose the
following hypotheses:

Hypothesis 7 (H7). Privacy concerns positively affect perceived vulnerability.
Hypothesis 8 (H8). Privacy concerns positively affect perceived severity.

We also expect that people who are concerned about privacy may be more willing to
learn how to use technologies that provide protection, such as BBCA technologies, and
may perceive their efficacy to use these technologies to be high.

Hypothesis 9 (H9). Privacy concerns positively affect self-efficacy.

Privacy was demonstrated as a core value that drives users to adopt a protective
behavior [81]. In order to apply protective behavior, users should have faith in the specific
protective behavior’s ability to protect them from the threat. We may expect that when
users are concerned about their privacy, they may have a more positive view of protective
technologies and, consequently, they may perceive their efficacy to be higher. Thus, we
hypothesize:

Hypothesis 10 (H10). Privacy concerns positively affect perceived response efficacy.

Response cost includes the inconvenience caused by the use of extra protective tech-
nology, i.e., (BBCA), as well as the perceived cost of behavioural biometrics data collection.
The latter is directly associated with the privacy concerns of the user. If users are concerned
about their privacy, they may also be worried that the BBCA tool may misuse their personal
data. Thus, we hypothesize that:
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Hypothesis 11 (H11). Privacy concerns positively affect perceived response cost.

4.5. Trust

In the context of research focusing on the adaptation of innovative emerging technolo-
gies by society, technology trust is particularly essential [82]. Thus, trust in the context of
our research is defined as the degree of trust that users have in technology providers, in
terms of whether the services/applications they provide effectively protect their private
data. Vance et al. [83] demonstrate that the degree of trust (or the lack of it) in the IT
artifacts is probable to influence the intention of users to accept or not the IT artifact. Fur-
thermore, trust, defined as the belief that personal information given to the provider will
be handled securely and safely, contributes to the willingness to share personal information
positively [80,84]. Having in mind this debate, we hypothesize that:

Hypothesis 12 (H12). Trust positively affects perceived response efficacy.

Trust is considered to associate with response cost through the concept of least effort
to accomplish a task [85]. Thus, in the context of our study, this means that while the
degree of trust is getting greater, the perceived response cost is getting lower. So, we
hypothesize that:

Hypothesis 13 (H13). Trust negatively affects perceived response cost.

4.6. Survey Instrument

The survey instrument is presented in detail (see Table Al in Appendix A). When-
ever feasible, the items were adapted from previously validated instruments. All items
were measured on a 7-point Likert scale from 1 (strongly disagree) to 7 (strongly agree).
The questionnaire was developed and pre-tested among four researchers to determine
the instrument’s face validity. It then was pilot tested with 18 individuals from the tar-
get population. The participants were recruited from multiple areas of undergraduate
and postgraduate computer engineers’ school. Questions have been added, omitted, or
modified based on this pilot. Finally, we recruited 778 individuals through MTurk as our
research sample to complete our survey.

5. Results
In this section, we present the descriptive analysis and results of our research.

5.1. Descriptive Analysis

The sample of our research consists of 778 individuals from Europe (Germany, France,
United Kingdom, Spain, Italy, Greece, Cyprus), the USA, and Asia. The respondents were
from 18 to 65 years old, 62.6% were male, while 37.4% were female. Moreover, 63.1% of
respondents hold a Bachelor’s degree, 30.6% a Master’s degree, while 1.2% hold a Ph.D.
2% have completed Secondary Education, and 4.3% hold a Higher National Diploma. Of
our sample, 38.9% were employers or entrepreneurs with salaried employees, 18% were
employed, 30.1% were self-employed, 4.5% were employers or entrepreneurs without
employees, 4.4% were university students, 1.6% were unemployed, and 1.6 were retired.

5.2. Measurement Model

The Kolmogorov-Smirnov’s test (p < 0.01) showed that there is no normal distribution
in all items of the model. As a result, the partial least squares (PLS) method was used as
the most adequate method [86-88]. Also, to test the research hypotheses, we applied the
bootstrapping method and used SmartPLS version 3.0 for the analysis [89].

Model estimation was the initial stage in data analysis. An evaluation of the internal
consistency as well as discriminant validity of the instrument items are included in the
measurement model test. To ensure validity, a test’s internal consistency should be val-
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idated before it can be used for study or examination. Internal consistency refers to the
extent to which all of the items in a test measure the same notion or construct and is thus
linked to the test’s interrelatedness [90].

In this study we use three measures to validate internal consistency:

e Composite reliability (CR) estimations generate an internal consistency reliability
coefficient based on the proportion of variation explained by the test items compared
to the overall variance of the composite test score [91].

e  AVEis the average amount of variance in observed variables that a latent construct is
able to explain. It is required to have an AVE of 0.5 [92,93].

e  Cronbach’s alpha was introduced by Lee Cronbach in 1951 [94] to provide a measure
of a test’s internal consistency; it is expressed as a number between 0 and 1 [94].

Thus, we examined internal consistency via composite reliability (CR) in Figure 2,
the average variance (AVE) in Figure 3, and Cronbach’s alpha in Figure 4. Values were all
above the threshold of 0.60 (ranged from 0.700 to 0.909). The AVE values vary within the
limits of 0.625 to 0.822, CR values ranged from 0.833 to 0.936, everything well above the
minimum recommended of 0.50 and 0.70, respectively. Table 1 shows the factor loadings
for each construct (27 in total), which all exceed the recommended value of 0.70.
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Figure 2. Composite Reliability.
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Figure 3. Average Variance Extracted (AVE).
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Figure 4. Cronbach’s Alpha.
Table 1. Measurement.
Construct Item Mean Std. Dev. Factor Loadings
I1 5.49 1.31 0.875
Innovation 12 5.53 1.28 0.825
I3 5.66 1.19 0.803
Privacy Concern PC1 5.40 1.39 0.907
y PC2 5.67 129 0.874
TT1 5.52 1.28 0.866
. TT2 5.66 1.18 0.805
Trust in Technology TT3 5.52 129 0.829
TT4 5.61 117 0.841
PV1. 5.65 1.24 0.843
Perceived Vulnerability PV2 5.51 1.35 0.746
PV3 5.59 1.32 0.781
PS1 5.59 1.27 0.817
Perceived Severity PS2 5.57 1.34 0.789
PS3 5.18 1.52 0.786
SE1 5.31 1.34 0.861
Self-Efficacy SE2 5.42 1.32 0.766
SE3 5.35 1.32 0.839
PRE1 5.42 1.28 0.855
Perceived Response Efficacy PRE2 5.60 1.19 0.781
PRE3 5.29 1.40 0.835
PRC1 4.57 1.79 0.920
. PRC2 4.70 1.76 0.877
Perceived Response Cost PRC3 461 1.79 0.901
PRC4 4.87 1.62 0.846
havioral . BI1 5.40 1.36 0.917
Behavioral Intention BI2 5.49 133 0.897

Discriminant validity was examined to determine whether the AVE square root of
each construct was greater than its highest correlation with any other construct, and the
results demonstrated that there is no discriminant validity issue in the data (see Figure 5).
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Figure 5. Discriminant validity (diagonal values show AVE square root).
5.3. Structural Model Results and Hypotheses Testing
Respondents answered Likert-scale questions on which we applied one-sample t-tests.
The results are presented in Table 2 showing the t-values for each correlation between the
variables. For each correlation, we are interested primarily in three values: Direct effects {3,
t-value, and p-value. The t is interested in being greater than 0, and p <= 0.05. In the case
where we have an indirect effect in BI, then for each correlation, we are interested primarily
in three values: specific indirect effects 3, t-value, and p-value.
Table 2. Direct effects, total indirect, and total effects 3 of determinants of intention to use BBCA technology.
Path Direct Effects 3 t-Value R? HyPothe§1s
Confirmations
Behavioral Intention (BI) 0.724
H1: Perceived Vulnerability (PV) —0.100 3.193 Not Supported
H2: Perceived Severity (PS) 0.046 1.261 Rejected
H3: Self-Efficacy (SE) 0.103 3.273 Supported
H4: Perceived Response Efficacy (PRE) 0.532 13.735 Supported
H5: Perceived Response Cost (PRC) —0.007 0.275 Supported
Hé: Innovativeness (Innov) 0.347 9.676 Supported
Perceived Vulnerability (PV)
H7: Privacy Concerns (PC) 0.583 16.356 0.340 Supported
Perceived Severity (PS) 0.208
HS8: Privacy Concerns (PC) 0.456 10.463 Supported
Self-Efficacy (SE) 0.059
HO9: Privacy Concerns (PC) 0.242 5.921 Supported
Perceived Response Efficacy (PRE) 0.649
H10: Privacy Concerns (PC) 0.073 2.673 Supported
H12: Trust in Technology (TT) 0.784 35.674 Supported
Perceived Response Cost (PRC)
H11: Privacy Concerns (PC) 0.213 4.904 Supported
H13: Trust in Technology (TT) 0.063 1.442 0.056 Rejected

Note: All effects are significant at p < 0.001 except H1 and H3 with p = 0.001.

Table 2 summarizes the results of the Bootstrapping estimation with 500 resamples
and Figure 6 the structural model result. The model explains 72.4% of behavioral intention
to use the technology’s (BI).
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non-significant.

Hypothesis 1 suggests that there is a positive relationship between Perceived Vul-
nerability (PV) and intention to use BBCA technology. No support was found for this
relationship (b = —0.100; p > 0.01). Thus, Perceived Vulnerability (PV) works as an inhibitor
in intention to use BBCA technology. This finding is in consistence with prior studies that
argue [63] that the potential harm to users’ privacy posed by the misuse of biometric data
is a topic of debate and it frequently discourages large-scale adoption of biometric systems.
Hypothesis 2 suggests a positive relationship between perceived severity and intention to
use BBCA technology. This hypothesis is not supported (b = 0.046; p > 0.01). This result
is consistent with some prior research works [95], but not all [48]. Thus, this evidence
provides mixed findings on perceived severity.

Hypothesis 3 proposes a positive relationship between self efficacy and intention to
use BBCA technology. Self-efficacy, as hypothesized, contributes positively to intention
to use BBCA technology. This is consistent with prior studies that argue that people who
have a high degree of self-efficacy have a greater sense of self-belief in their ability to
mobilize motivation, and courses of action required to complete a mission successfully [93].
Consistent with prior studies [69], our study found that users who have a stronger confi-
dence in the availability of information security technologies and procedures, in general,
have expressed greater belief in their ability to manipulate personal threats to information
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security. Hypothesis 4 suggests a positive relationship between Perceived Response Ef-
ficacy (PRE) and users’ intention to use BBCA technology. Perceived Response Efficacy
(PRE) contributes positively to Privacy Concerns (PC) (b = 0.532; p < 0.01); thus supporting
Hypothesis 4. This is consistent with current research, which has found that response effec-
tiveness is one of the strongest predictors of behavioral outcomes related to information
security [95,96]. Hypothesis 5 proposes a negative relationship between response costs and
intention to use BBCA technology. Response costs (b = —0.007; p < 0.01) as hypothesized
works as an inhibitor to the intention to use BBCA technology, which is aligned with prior
studies [49]. Hypothesis 6 proposes a positive relationship between innovativeness and
users’ intention to use BBCA technology. Innovativeness contributes positively to users’
intention to use BBCA technology (b = 0.347; p < 0.01); thus supporting Hypothesis 6.
This is in alignment with [70] that found that the acceptance of innovative information
technologies by their intended users is an important issue for both users and practitioners.

The model of our study explains 34% of Perceived Vulnerability (PV) and 20.8% of
Perceived Severity (PS), as both H7 and HS8 are supported. Hypothesis 7 suggests a positive
relationship between Privacy Concerns (PC) and Perceived Vulnerability (PV). Privacy
Concern (PC) is a strong antecedent of Perceived Vulnerability (PV) (b = 0.583; p < 0.01).
Also Hypothesis 8 proposes a positive relationship between Privacy Concerns (PC) and
perceived severity. Privacy Concern contributes positively to perceived severity (b = 0.456;
p < 0.01); thus supporting Hypothesis 8. Both findings are consistent with studies that
claim that the level of privacy concern motivates coping behaviors to deal with privacy
risks [89].

Hypothesis 9 suggests a positive relationship between Privacy Concerns (PC) and
self-efficacy. Privacy concern has a positive effect on self-efficacy (b = 0.242; p < 0.01),
thus supporting Hypothesis 9. This suggests that users” who are concerned about their
privacy are more interested in learning how to use privacy-protecting technologies. This
finding supports prior studies that show a significant relationship between self-efficacy
and privacy concerns [52].

Hypothesis 10 proposes a positive relationship between Privacy Concerns (PC) and
Perceived Response Efficacy (PRE). Privacy Concerns (PC) contribute positively to Per-
ceived Response Efficacy (PRE) (b = 0.073; p < 0.01); thus supporting Hypothesis 10. This
is in consistence with prior studies [7,61,65] that have found that users who have higher
privacy concerns seek sufficient information about the efficacy of a suggested coping
mechanisms in providing protection from a threat or danger and they are more likely to
follow adaptive behavior. Hypothesis 11 suggests a positive relationship between Privacy
Concerns (PC) and Perceived Response Cost (PRC). Privacy concerns has a positive effect
on Perceived Response Cost (PRC) (b = 0.213; p < 0.01), thus supporting Hypothesis 11.
Users may be concerned about their privacy, as well as the possibility that this technology
will jeopardize their personal data. Hypothesis 12 suggests a positive relationship be-
tween Trust (T) and Perceived Response Efficacy (PRE). Privacy Concerns (PC) contribute
positively to Perceived Response Efficacy (PRE) (b = 0.784; p < 0.01), thus supporting
Hypothesis 12. This is in consistence with the findings of [82] claiming that the level of
trust (or lack of it) in IT artifacts affects users” decision to accept or reject the IT artifact.

6. Discussion
6.1. Privacy Concerns as Antecedent of Coping Appraisal

This study has contributed to a better understanding of information privacy concerns
as a predictor of coping and threat appraisal processes, since our findings reveal that privacy
concerns have a significant direct effect on both aforementioned processes. Specifically, we
found that privacy concerns have a significant impact on all components of PMT. Privacy
concerns, as was expected, have a positive direct effect on Perceived severity. Indeed, this
research proposes that users who have higher privacy concerns, consider the consequences
of the risk to be more severe than those who have lower privacy concerns. Also, privacy
concerns positively affect perceived vulnerability. Both findings are in alignment with
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studies that argue that the level of privacy concerns motivates coping behaviors to handle
privacy risks [95].

The path from privacy concerns to self-efficacy was also found to be significant. Thus,
users who demonstrate high interest in privacy feel stronger confidence to use information
security technologies that protect their privacy. It was also found that privacy concerns
have a direct positive effect on perceived response efficacy as hypothesized. Indeed,
users who have higher privacy concerns seek sufficient information about the efficacy of
suggested coping mechanisms that provide protection, and they are more likely to follow
an adaptive behavior.

Moreover, our findings demonstrate that privacy concerns positively affect perceived
response cost. This suggests that users with high privacy concerns are worried that their
behavioral biometrics, managed by the BBCA tool, could be misused. Thus, the risk of
biometrics misuse (e.g., to be disclosed or to use biometric of someone for purposes other
than those specified) adds to the perceived cost of using BBCA technologies.

6.2. Perceived Vulnerability

Contrary to our hypothesis, the perceived vulnerability affects the user’s intention
to use BBCA technologies as an inhibitor. Although this was unexpected, an important
finding of our research is that users consider the BBCA itself as a potential threat. This
suggests that the feeling of vulnerability against privacy threats is overlapping with the
feeling of vulnerability caused by the threat of an improper behavioral monitoring tool.
Therefore, we argue that users who feel vulnerable to a privacy violation hesitate to use
BBCA technologies. Further to the above, this finding provides strong evidence that users
emphasize the reliability and trustworthiness of security tools. This could be a very useful
suggestion for BBCA tools developers.

6.3. Self Efficacy

Self-efficacy positively affects users’ intention to use BBCA technology. The findings
suggest that users’ strong beliefs about their abilities to engage in using BBCA has an
impact on their intention to use or not the technology. Users with a high level of self-
efficacy are more confident in their capacity to take the steps necessary to fulfill a mission
successfully. Hence, a strong sense of efficacy motivates individuals to use protective
technologies, such as BBCA.

6.4. Perceived Response Efficacy

Findings also suggest that perceived response efficacy is the major facilitator in users’
intention to use BBCA technology. This is in alignment with current studies that have
found that response effectiveness is typically one of the strongest predictors of behavioral
outcome linked to information security [95,96]. Therefore, our study’s findings emphasize
the critical importance of convincing users that BBCA is an effective technology.

6.5. Innovativeness

Finally, we found that innovativeness is another important construct that affects the
intention to use BBCA technologies. The supportive findings show that more innovative
users are more positive towards BBCA. This suggests that the acceptance of innovative
security technologies by the intended users is an important issue.

7. Implications, Limitations, and Future Research

The goal of this study is to identify the factors that motivate individuals” intention to
use BBCA technology from the perspective of PMT, so that BBCA vendors can be better
informed about how to develop more user-friendly tools that are more in tune with users’
requirements. Our research adds to the existing body of knowledge by incorporating the
constructs of privacy concerns as predictors of coping and threat appraisal processes, as
well as innovativeness as a predictor of intention to use. Specifically, this research reveals
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the significance of privacy concerns when the Protection Motivation Theory is applied in the
field of digital privacy. Regarding maladaptive coping behaviors, we provide an alternative
explanation why protective information security behaviors have yet to be adopted, as users
hesitate to use BBCA technologies when they feel vulnerable to potential misuse of their
personal data by the same technologies that aim to protect their privacy and security. Even
when people are motivated to protect themselves, the sense of vulnerability generated by
the threat of an improper monitoring tool outweighs the fear of privacy threats.

Regarding practice, our findings benefit developers of BBCA technologies in devel-
oping tools that better satisfy the needs of users. Our research provides useful insights to
them, revealing the need for reliable and trustworthy BBCA tools that assure users that
their behavioral biometric data are safe. Most significantly, BBCA vendors need to design
and promote comprehensive standards to build trust with users and ensure that BBCA
tools development complies with these requirements.

While this study’s results are insightful, they must be viewed in the context of certain
limitations. First, since the questionary was filled out online, the study environment
was less regulated. Background noise or the presence of other people in the session, for
example, may have disrupted or affected participants. This implies that actions may have
been influenced by factors other than the manipulated variables. It is also conceivable
that some of the measurement items in the study questionnaire, as well as their wordings,
might have been misinterpreted by the respondents, resulting in biased responses. Further
to the above, a major drawback of the use of MTurk for academic research is the threat to
external validity [16].

However, the external validity of data collected through MTurk appears to be a benefit
rather than a concern, as MTurk offers a unique range of diversity in the United States and
globally, which we took advantage of.

Finally, although our PMT-based model is fairly effective in predicting behavior,
further research could be conducted to investigate other factors, such as ethical, social,
and convenience factors, to increase its predictive power. Another approach could include
situational considerations, such as current legal regulations and user’s previous experience
of security breaches.

8. Conclusions

In this study, we investigated the factors that affect the intention of using BBCA
technology. We employed Protection Motivation Theory and enhanced our research model
with constructs that derive from the extant literature. After collecting the data from our
recruited sample, our statistical analysis concluded that privacy concerns towards the
intention of use BBCA technology had an important impact on all components of PMT.
Further to this, another important construct that we found that affects the usage intention
of BBCA technology is innovativeness. In addition:

72.4% of users have the intention to use BBCA technology. Among them.
34% will use BBCA because of Perceived Vulnerability.

20.8% will use BBCE because of Perceived Severity.

64.9% will use BBCA because of Perceived Response Efficacy.

Thus, regarding PMT, we found that users focus more on response efficacy rather
than severity and vulnerability. We believe that this implies that users would use a BBCA
technology that is effective and practical even if the response cost of using it is high. This is
a hopeful result that makes us optimistic for the adoption of BBCA.
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Appendix A. Questionnaire

Table A1. Bioprivacy Survey Instrument.

Construct Item Question Adapted From
I1 I am among the first to try out new technologies.
Innovativeness 12 When I hear about a new technology, I look for ways to adopt it. [97]
1 13 I'like to experiment with new technologies. [98]
14 I am a person who searches for novel approaches not required at the time.
Privacy Concerns PC1 I am concerned that my personal information could be used for wrong purposes. [99]
PC PC2 I am concerned that my personal information could be accessed by unknown parties.
TT1 I would trust biometric authentication system.
TT2 I think the biometric authentication service would be reliable. [100]
Trust in Technology TT3 I believe that a biometric authentication system would be employed in my best [101]
TT Interest.
TT4 I feel fine using biometric authentication systems since they are generally
reliable and accurate.
PVl If my data leak while using my mobile phone, I could be vulnerable to an information security threat. [102]
Perceived Vulnerability PV2 If any data breach while using my mobile phone, my organization could be vulnerable to an information [66]
PV security threat.
PV3 If the data that I keep in my phone (e.g., photos, messages) leak, then my privacy would be compromised. Self-developed
PS1 I believe that if my personal data that I keep in my mobile phone leak, it will be harmful for me. [103]
Perceived Severity PS2 A loss of my personal data from my mobile phone could cause a serious anxiety problem to me and my [102]
Ps family.
PS3 My lost or stolen mobile phone would bring financial or reputational loss to my company. [104]
SE1 I would use mobile internet technologies, including biometric authentication systems, if  had only the [105]
system manuals for reference.
Self-Efficacy SE2 I would use mobile internet technologies, including biometric authentication systems, if  had seen [106]
SE someone else using it before trying it myself.
SE3 I would use mobile internet technologies, including biometric authentication systems, if I could call
someone for help if I got stuck.
PRE1 The biometric authentication measures available to me to for stopping people from getting my confidential [107]
Perceived Response Efficacy information from my mobile phone are adequate.
PRE PRE2 I am confident that biometric authentication systems would be effective in keeping my data safe. [108]
PRE3 I am confident that the biometric authentication system will not use my personal data for other purposes.
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Table A1. Cont.

Construct Item Question Adapted From
PRC1 Using a biometric authentication system is too much trouble. [103]
Perceived R C PRC2 Biometric authentication system may cause problems to other programs on my mobile phone. [109]
P;{réelve esponse Cost PRC3 Biometric authentication system may make me loose critical information.
The cost of using a biometric authentication system, including the inconvenience it might cause to me,
PRC4 . [107]
exceeds benefits.
Behavioral Intention to accept BI1 I should apply this BBCA technology as soon as possible. [110]
the technology . o
BI2 I should use this BBCA technology soon after it is launched.

BI
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