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Abstract: Semi-prime factorization is an increasingly important number theoretic problem, since it
is computationally intractable. Further, this property has been applied in public-key cryptography,
such as the Rivest–Shamir–Adleman (RSA) encryption systems for secure digital communications.
Hence, alternate approaches to solve the semi-prime factorization problem are proposed. Recently,
Pythagorean tuples to factor semi-primes have been explored to consider Fermat’s Christmas theorem,
with the two squares having opposite parity. This paper is motivated by the property that the integer
separating these two squares being odd reduces the search for semi-prime factorization by half. In
this paper, we prove that if a Pythagorean quadruple is known and one of its squares represents a
Pythagorean triple, then the semi-prime is factorized. The problem of semi-prime factorization is
reduced to the problem of finding only one such sum of three squares to factorize a semi-prime. We
modify the Lebesgue identity as the sum of four squares to obtain four sums of three squares. These
are then expressed as four Pythagorean quadruples. The Brahmagupta–Fibonacci identity reduces
these four Pythagorean quadruples to two Pythagorean triples. The greatest common divisors of the
sides contained therein are the factors of the semi-prime. We then prove that to factor a semi-prime,
it is sufficient that only one of these Pythagorean quadruples be known. We provide the algorithm
of our proposed semi-prime factorization method, highlighting its complexity and comparative
advantage of the solution space with Fermat’s method. Our algorithm has the advantage when the
factors of a semi-prime are congruent to 1 modulus 4. Illustrations of our method for real-world
applications, such as factorization of the 768-bit number RSA-768, are established. Further, the
computational viabilities, despite the mathematical constraints and the unexplored properties, are
suggested as opportunities for future research.

Keywords: Euler’s factorization; Pythagorean quadvery minimal, with most computations operating
onruples; Pythagorean triples; Lebesgue identity; Brahmagupta–Fibonacci identity; semi-primes;
RSA cryptosystem

1. Introduction

Prime numbers have caught the attention of mathematicians since the work of Eu-
clid due to their unfathomable structural properties. This paper leverages some elegant
properties of prime numbers beyond their basic definition of being divisible by themselves
and one only. They also possess the property of being randomly distributed, which is
not exploited fully [1–3]. The current perception is that there appears to be only a limited
understanding of their underlying structure, and several mathematicians are constantly
trying to uncover the mysteries behind these prime numbers. There is still much to be
carried out, and areas of further interest are channeled towards a better understanding
of the structure of primes for arriving at faster prime number generating algorithms and
faster solutions to the prime factorization problem [4–7]. There is a need for generating
more robust primes that are less susceptible to known factorization methods. In this paper,
we draw attention to creating new approaches for the prime factorization of large prime
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factors or the semi-prime factorization problem. The focus of this research problem has
an impact worldwide due to its practical application in digital communication, and in
particular, the associated information security attacks and privacy challenges of today [8,9].

In information security, large semi-primes have applications in encryption algorithms.
They are used for generating public keys and private keys, such as in the Rivest–Shamir–
Adleman (RSA) cryptosystems [10]. The property that the prime factorization of large
numbers is a challengingly difficult task is well utilized in RSA-based encryption algo-
rithms. Due to the dominant application of the RSA public-key primitive in cryptography,
the security of RSA has been extensively analyzed for various attack scenarios [11]. In this
paper, we take a modest step further by proposing new methods of semi-prime factorization
of the RSA primitive.

Previous research [1] proved that the semi-primes can be represented as the sum of
four squares. A new factorization method, by exploiting the relationship among the four
squares, was proposed as a faster alternative to Euler’s method, as given in [12]. The
purpose of this paper is to explore the topic of factorization further with a computationally
simple approach for applications in RSA cryptography. In earlier work [1], we showed
that a semi-prime N could be constructed from two primes, p1 and p2, in accordance
with Fermat’s Christmas theorem, as given in [13]. In other words, Fermat stated that
an odd prime p can be represented as the sum of two squares of integers x1 and x2, if
and only if 1 (mod 4) ≡ p = x2

1 + x2
2. Hence, this determined which numbers can be

represented as the sum of two squares and was later proved by Euler [12]. It is also
mathematically represented that the semi-prime product is congruent to 1(mod 4) ≡ p1 p2.
This paper advances further by applying the Brahmagupta–Fibonacci identity uniquely
to establish that the product of these two primes (which is a sum of four squares) could
be mathematically reduced to two sums of two squares [14]. In other words, we prove
mathematically how the Brahmagupta–Fibonacci identity reduces these four Pythagorean
quadruples to two Pythagorean triples. Hence, our proposed factorization method based
on this property would be computationally successful whenever the semi-prime, a product
of two primes, is such that both factors are congruent to 1 modulus 4.

In this work, we leverage on the gaps found in the literature towards providing a novel
proposal for semi-prime factorization. While there are several properties of Pythagorean
triples, new patterns based on these properties are yet to be researched in the context of
semi-prime factorization [15]. The main contributions of the paper are envisaged via the
key features of our proposed factorization method, as listed below:

i. The novel semi-prime factorization method uses simple number theory uniquely for
the first of its kind;

ii. The method applies new patterns of Pythagorean tuples and triples that are unex-
plored so far in literature;

iii. By employing simple arithmetic operations, the semi-prime factorization algorithm
assures a low order of computing cost;

iv. The algorithm exhibits an enhanced solution space as compared to Fermat’s method.

The paper is organized as follows: Section 2 provides related works, and Section 3
postulates the background theory of our proposed new method, which includes definitions,
a theorem, and four lemmas. In Section 4, we show how to factorize semi-primes using
Pythagorean quadruples and triples by proving the theorems and the four lemmas. Further,
we provide the algorithm of our proposed semi-prime factorization method and summarize
its complexity, comparison, and constraints with existing similar works qualitatively. In
Section 5, case study examples illustrate the ease of computing the factors of a semi-
prime integer with the proposed approach numerically. Moreover, we demonstrate the
application of the method for RSA-768 successfully. Finally, we draw key conclusions and
future research directions in Section 6.
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2. Related Works

Several studies on the important problem of semi-primes factorization have challenged
the intractability of RSA [16–18]. Since the first RSA cryptanalytic attack by Wiener in 1990
using the continued fractions method [19], several methods have been explored, such as
the lattice reduction approach by Coppersmith [20] and by Blomer and May [21], as well
as the Boneh and Durfee attack on short decryption exponents of RSA [22]. More recent
works approach the problem differently, with varying purposes, such as to find weak RSA
keys for transport layer security (TLS) attacks [23], LogJam [24], or to factorize RSA keys
for smartcard cryptography attacks on several devices [25].

Historically, general-purpose factorization of integers can be dated back to the contin-
ued fraction factorization method (CFRAC) introduced by Lehmer and Powers in 1931 [26],
which was later implemented as a computer algorithm by Morrison and Brillhart [27]. Sub-
sequently, Pomerance and Wagstaff devised an improved algorithm [28], and such works
including Pollard’s ρ algorithm [29] and Pomerance’s quadratic sieve method (1985) [30]
lay the foundation for generating interests in general-purpose factorization of integers in
various applications. In the context of RSA cryptography applications, recent works have
considered such known factorization methods to focus on security parameters such as the
length of the prime factors p1 and p2, of the RSA modulus n = p1 p2, or other structural
properties of the primes. Modifications of existing methods have become popular recently,
such as using the prime sum p1 + p2 with sublattice reduction techniques and Copper-
smith’s methods [31] or using a small prime difference p1 − p2 method with Wiener’s
original method [32]. The method by Lenstra’s elliptic-curve method also serves as the
state-of-the-art proposal for several future studies [33]. A recent work has considered
Chengs’s 4p− 1 method [34] to provide simplified and asymptotically deterministic ver-
sions, as it is similar to the well-known Lenstra’s methods [35]. The study analyzed existing
methods as the means of a potential backdoor for the RSA primes generated.

A survey of the literature shows that the factorization problem of prime numbers is
gaining research popularity, with a recent focus towards developing efficient mathematical
techniques that are computationally faster and simpler [36–39]. Recent research interest
in polynomials, which generate sums of squares, has featured applications to cryptogra-
phy [40–45]. In this context, our previous works leverage the semi-prime representation
as the sum of four squares [1,46] with an enhancement to Euler’s method [47,48]. Such a
factorization method focusing on the special form of primes allows for an efficient factor-
ization of RSA moduli. Thus, an adversary is motivated to subvert the prime generation
to produce such RSA keys and could serve as a backdoor. With this view, we propose
a new semi-prime factorization based on unique properties of Pythagorean triples with
new mathematical theories and underlying patterns that are unexplored so far, with the
purpose of advancing our research further in this direction.

3. Background Theory

This section provides the background theory that forms the mathematical foundations
of this research work. Mathematical proofs, along with a summary of the definitions
and a theorem with the supporting lemmas that are used for our proposed semi-prime
factorization approach, are given below.

Let us consider the Brahmagupta–Fibonacci identity [14], which expresses the product
of two prime sums of two squares as two sums of two squares in two different ways with
the following mathematical representation:

p1 p2 =
(

x2
11 + x2

12

)(
x2

21 + x2
22

)
= (x11x21)

2 + (x11x22)
2 + (x12x21)

2 + (x12x22)
2 (1)

p1 p2 = (x11x21 ∓ x12x22)
2 + (x11x22 ± x12x21)

2 (2)
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Jacobi [2] provides various sums of four squares for a particular number. Among
these, Equation (1) is a special case in the set of possible r4(n) solutions.

r4(n) = 8 ∑
d|n

(n), n is odd. (3)

Let us consider Lagrange’s four-square theorem, also known as Bachet’s conjec-
ture [49], which states that every natural number can be represented as the sum of four
integer squares with the following mathematical representation:

n =
4

∑
k=1

y2
k , yk are integers such that n = y2

1 + y2
2 + y3

3 + y2
4

According to Legendre’s three-square theorem [50], a natural number n can be repre-
sented as the sum of three squares of integers as follows:

n =
3

∑
l=1

z2
l , zl are integers iff n 6= 4a(8b + 7) where a, b are integers

From Lebesgue’s identity [51], the square of the sum of four squares can be given by
the sum of three squares and can be represented as follows:

n2 =

(
4

∑
k=1

y2
k

)2

=
3

∑
l=1

z2
l , n2 = z2

1 + z2
2 + z2

3 (4)

n = y2
1 + y2

2 + y2
3 + y2

4, z1 = y2
1 + y2

2 − y2
3 − y2

4,

z2 = 2(y1y3 + y2y4), z3 = 2(y1y4 − y2y3)(
y2

1 + y2
2 + y2

3 + y2
4

)2
=
(

y2
1 + y2

2 − y2
3 − y2

4

)2
+ (2(y1y3 + y2y4))

2 + (2(y1y4 − y2y3))
2

Definitions 1. The definitions of Pythagorean triple and Pythagorean quadruple are given be-
low [52].

A Pythagorean triple is an ordered triple of distinct positive integers (α, β, N) with a
mathematical notation as follows [48]:

Pythagorean triple(α, β, N)α2 + β2 = N2, α 6= β (5)

A Pythagorean quadruple is an ordered quadruple of positive integers (z1, z2, z3, N)
expressed mathematically as follows:

Pythagorean quadruple (z1, z2, z3, N)z2
1 + z2

2 + z2
3 = N2, z1, z2, z3 not equal (6)

In this paper, we prove the following theorem with some lemmas:

Theorem 1. If a Pythagorean quadruple has a square of a triple and N is semi-prime, then N can
be factored.

Lemma 1. The square product of two primes (each sum of two squares) is four sums of three
squares.

Lemma 2. The square of a semi-prime is four sums of two squares.

Lemma 3. The greatest common divisor of all the two squares factors the semi-prime.



J. Cybersecur. Priv. 2021, 1 664

Lemma 4. One of the squares of a Pythagorean quadruple represents a Pythagorean triple.

Lemma 1 produces the four Pythagorean quadruples. Lemma 2 reduces the four
Pythagorean quadruples to two Pythagorean triples. Lemma 3 factors the semi-prime.
Lemma 4 reduces a Pythagorean quadruple to a triple. Overall, the theorem shows that it
is sufficient to only find such a Pythagorean quadruple to factor the semi-prime.

4. Proposed Method for Factoring Semi-Primes

The inherent hardness of finding the prime factors of large semi-primes forms the
fundamental premise for RSA robustness [53]. However, this holds good until there is an
efficient method found to compute the unknown prime factors of RSA keys, which are
essentially large semi-prime numbers [54]. While several methods for integer factorization
exist in general [55–57], none of them focus on semi-prime factorization relating to RSA
cryptosystems. Hence, in this paper we will take this challenge and focus on solving the
semi-prime factorization problem with a proposed reduced problem approach. Through
the rest of the paper, it will be shown that the problem can be reduced to finding only one
suitable sum of three squares to factorize a semi-prime. We provide a mathematical proof
for our proposed approach in this section.

Proposed method: “The sum of four squares factorization” generates r4n solutions [48]
(Equation (3)), of which only one solution is applicable to the Brahmagupta–Fibonacci
identity, namely Equations (1) and (2). The remaining solutions do not lead to solutions for
the semi-prime factorization. Some simple case examples are given below.

Case Example 1. Let us consider N = 169.

169 = 132 =
(

22 + 32
)(

22 + 32
)
= 42 + 62 + 62 + 92 = 42 + 42 + 42 + 112

Applying the Brahmagupta–Fibonacci identity Equation (2), we obtain:

42 + 62 + 62 + 92 = (9− 4)2 + (6 + 6)2 = 52 + 122 = (9 + 4)2 + (6− 6)2 = 132 + 02

42 + 42 + 42 + 112 6= (11− 4)2 + (4 + 4)2 = 72 + 82 = 113 6= 169

42 + 42 + 42 + 112 6= (11 + 4)2 + (4− 4)2 = 15 + 02 = 225 6= 169

Case Example 2. Let us consider N = 377.

377 = (13)(29) =
(

22 + 32
)(

22 + 52
)
= 42 + 62 + 102 + 152

Applying the Brahmagupta–Fibonacci identity provides the two sums of squares.

377 = 42 + 62 + 102 + 152 = (15− 4)2 + (10 + 6)2 = 112 + 162 = (15 + 4)2 + (10− 6)2 = 192 + 42

377 = 42 + 192 = 112 + 162

Once the two sums of two squares are known, the prime factors can be found using a
modified Euler factorization [1].

∆e = 16− 4 = 12, ∆o = 19− 11 = 8, g = gcd(8, 12) = 4, p1 =

(
8
4

)2
+

(
12
4

)2
= 13
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However, in this case, there are nine sums of four squares, as follows:

(1, 4, 6, 18), (1, 6, 12, 14), (2, 2, 12, 15), (2, 6, 9, 16), (4, 6, 6, 17)

(4, 6, 10, 15), (5, 8, 12, 12), (6, 6, 7, 16), (6, 8, 9, 14)

Only one of these is applicable to the Brahmagupta–Fibonacci identity, providing the
two sums of two squares. A faster method, using a modified binary greatest common
divisor [14], quickly validates a sum of four squares given below:

(4, 6, 10, 15) = 15, 2(5, 2, 3)⇒ (5, 2), (2, 3)⇒
(

22 + 52
)(

22 + 32
)
= (29)(13) = 377 (7)

This requires the sums of four squares to be found until the correct sum of four squares
is factored. This is not viable for the factorization of large semi-primes. In this paper, it will
be shown that it is sufficient to find only one suitable sum of three squares to factorize a
semi-prime, and a theorem proof and four lemmas follow.

Restating Theorem 1. If a Pythagorean quadruple has a square of a triple and N is semi-prime,
then N can be factored. Some lemmas required are provided below.

Lemma 1. The square product of two primes (each sum of two squares) is four sums of three
squares.

Proof. Consider the Lebesgue identity. The square of the sum of four squares can be given
by the sum of three squares. From Equation (4), we have:

n2 =

(
4

∑
k=1

y2
k

)2

=
3

∑
l=1

z2
l , n2 = z2

1 + z2
2 + z2

3

and
c2

1 = a2
1 + b2

1, c2
2 = a2

2 + b2
2, n = c1c2, n2 = (c1c2)

2 = c2
1c2

2

c2
1c2

2 = c2
1

(
a2

2 + b2
2

)
= (a2c1)

2 + (b2c1)
2 (8)

c2
1c2

2 = c2
2

(
a2

1 + b2
1

)
= (a1c2)

2 + (b1c2)
2 (9)

The four sums of three squares are thus:

(a2c1)
2 + (b2c1)

2 = (a2c1)
2 + (b2a1)

2 + (b2b1)
2 (10)

(a2c1)
2 + (b2c1)

2 = (a2a1)
2 + (a2b1)

2 + (b2c1)
2 (11)

(a1c2)
2 + (b1c2)

2 = (a1c2)
2 + (b1a2)

2 + (b1b2)
2 (12)

(a1c2)
2 + (b1c2)

2 = (a1a2)
2 + (a1b2)

2 + (b1c2)
2 (13)

The four Pythagorean quadruples from Equations (9)–(12) are given as:

(a1b2, b1b2, c1a2, c1c2), (a1a2, b1a2, c1b2, c1c2), (a1c2, b1a2, b1b2, c1c2) (a1a2, a1b2, b1c2, c1c2) (14)

�

Lemma 2. The square of the semi-prime is four sums of two squares.

Proof: We have the following product of two sums of squares:

(c1c2)
2 = c2

1c2
2 =

(
a2

1 + b2
1

)2(
a2

2 + b2
2

)2
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Using the Brahmagupta–Fibonacci identity, we obtain:

c2
1 =

(
a2

1

)2
+ (a1b1)

2 + (a1b1)
2 +

(
b2

1

)2
=
(

a2
1 − b2

1

)2
+ (2a1b1)

2 =
(

a2
1 + b2

1

)2

c2
2 =

(
a2

2

)2
+ (a2b2)

2 + (a2b2)
2 +

(
b2

2

)2
=
(

a2
2 − b2

2

)2
+ (2a2b2)

2 =
(

a2
2 + b2

2

)2

c2
1 =

(
a2

1 − b2
1

)2
+ (2a1b1)

2 =
(

a2
1 + b2

1

)2
, c2

2 =
(

a2
2 − b2

2

)2
+ (2a2b2)

2 =
(

a2
2 + b2

2

)2
(c1c2)

2 =
[(

a2
1 + b2

1

)(
a2

2 + b2
2

)]2

c1c2 = (a1a2)
2 + (b1a2)

2 + (a1b2)
2 + (b1b2)

2

= (a1a2 − b1b2)
2 + (a1b2 + b1a2)

2= (a1a2 + b1b2)
2 + (a1b2 − b1a2)

2

(c1c2)
2 =

[
(a1a2 − b1b2)

2 + (a1b2 + b1a2)
2
][
(a1a2 + b1b2)

2 + (a1b2 − b1a2)
2
]

(c1c2)
2 = ((a1a2 − b1b2)(a1a2 + b1b2))

2 + ((a1a2 − b1b2)(a1b2 − b1a2))
2

+((a1b2 + b1a2)(a1a2 + b1b2))
2 + ((a1b2 + b1a2)(a1b2 − b1a2))

2

(c1c2)
2 = ((a1a2 − b1b2)(a1a2 + b1b2) + (a1b2 + b1a2)(a1b2 − b1a2))

2

+((a1a2 − b1b2)(a1b2 − b1a2)− (a1b2 + b1a2)(a1a2 + b1b2))
2

(c1c2)
2 = ((a1a2 − b1b2)(a1a2 + b1b2))−((a1b2 + b1a2)(a1b2 − b1a2))

2

+((a1a2 − b1b2)(a1b2 − b1a2))+((a1b2 + b1a2)(a1a2 + b1b2))
2

+((a1a2 − b1b2)(a1b2 − b1a2))+((a1b2 + b1a2)(a1a2 + b1b2))
2

(15)

We make use of Equations (7) and (8), and we have the four sums of two squares for
(c1c2)

2, as follows:
((a1a2 − b1b2)(a1a2 + b1b2) + (a1b2 + b1a2)(a1b2 − b1a2))

2

+ ((a1a2 − b1b2)(a1b2 − b1a2)− (a1b2 + b1a2) (a1a2 + b1b2))
2 (16)

((a1a2 − b1b2)(a1a2 + b1b2)− (a1b2 + b1a2)(a1b2 − b1a2))
2

+ ((a1a2 − b1b2)(a1b2 − b1a2) + (a1b2 + b1a2)(a1a2 + b1b2))
2.

(17)

Two of the four Pythagorean triples from Equations (18) and (19) have no com-
mon factors. The other two of the four Pythagorean triples, which are factorable from
Equations (7) and (8), are given by:

(c1a2, c1b2, c1c2), (c2a1, c2b1, c1c2) (18)

�

Lemma 3. The greatest common divisors of the sums of two squares factor the semi-prime.

Proof. Consider the semi-prime n = c1c2 and assume that c1, c2 = 1 (mod 4), i.e., c1 and
c2 are the sum of two squares, then we have:

1(mod 4) ≡ c = x2
1 + x2

2

From Equation (14), we have:

(c1a2, c1b2, c1c2), (c2a1, c2b1, c1c2)

(c1a2, c1b2, c1c2)⇒ gcd(c1a2, c1b2) = c1, (c2a1, c2b1, c1c2)⇒ gcd(c2a1, c2b1) = c2
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The greatest common divisors of the sums of two squares are the factors of the semi-
prime.

(α, β, N), c1 = gcd(α, β), c2 =
N
c1

(19)

�

Lemma 4. There exists a Pythagorean quadruple, a square of which represents a triple.

Proof. From Pythagorean quadruple Equation (6) given by N2 = z2
1 + z2

2 + z2
3 and

Pythagorean triple Equation (5) given by N2 = α2 + β2, α 6= β we have the following:

If β ∈ {z1, z2, z3} ∃ (α, β, N) : α2 = N2 − β2, α 6= β (20)

From Equation (13), it can be seen that:

(a1b2, b1b2, c1a2, c1c2)⇒ β1 = c1a2 ⇒

α1, β1, c1c2) = (α1, c1a2, c1c2)⇒ α1 = c1b2

(a1a2, b1a2, c1b2, c1c2)⇒ β2 = c1b2 ⇒

(α2, β2, c1c2) = (α2, c1b2, c1c2)⇒ α2 = c1a2

(a1c2, b1a2, b1b2, c1c2)⇒ β3 = c2a1 ⇒ (α3, β3, c1c2) = (α3, c2a1, c1c2)⇒ α3 = c2b1

(a1a2, a1b2, b1c2, c1c2)⇒ β4 = c2b1 ⇒ (α4, β4, c1c2) = (α4, c2b1, c1c2)⇒ α4 = c2a1

(β1, α1, c1c2) = (α2, β2, c1c2) = (c1a2, c1b2, c1c2), (β3, α3, c1c2) =

(α4, β4, c1c2) = (c2a1, c2b1, c1c2)

β ∈ {c1b2, c1a2, c2b1, c2a1}∃ (α, β, N) : α2 = N2 − β2, α 6= β

�

Theorem 2. If a Pythagorean quadruple has a square of a triple, the semi-prime can be factored.

Proof. From Lemma 1, we have:
The four Pythagorean quadruples from Equation (13) are given as:

(a1b2, b1b2, c1a2, c1c2), (a1a2, b1a2, c1b2, c1c2),

(a1c2, b1a2, b1b2, c1c2), (a1a2, a1b2, b1c2, c1c2)

From Lemma 4, there exists a Pythagorean quadruple, a square of which represents a
triple.

β ∈ {c1b2, c1a2, c2b1, c2a1}∃ (α, β, N) : α2 = N2 − β2, α 6= β (21)

From Lemma 2, the Pythagorean triples with prime factors from Equation (14) are
given as follows:

(c1a2, c1b2, c1c2), (c2a1, c2b1, c1c2)

N = c1c2, ∃ (α, β, N) : (α, β) ∈ {(a2c1, b2c1), (a1c2, b1c2)} (22)

From Lemma 3, we have:

(α, β, N), c1 = gcd(α, β), c2 =
N
c1

�
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4.1. Algorithm of Our Proposed Semi-Prime Factorization

Cryptographic algorithms make use of standard integer factorization algorithms found
in the literature, such as Pollard’s factoring algorithm, Lenstra’s elliptic curve factorization
algorithm, and others with different kinds of number sieves [58,59]. For our algorithm
to factor semi-primes, we capitalize on the properties of semi-prime representations as
the sum of three squares, which is supported by well-proven theorems [60]. Based on the
theoretical background postulated in this work, our algorithm consists of four key steps, as
given below:

Step 1. Square the semi-prime to be factored: N2.
Step 2. Find sums of three squares such that:(

N2 − x2
)
= prime ≡ 1 mod 4 = β2 + a2

//Increment x until a prime is found congruent to 1 mod 4 [61]
{x+
+x2

N2 − x2 }
Do primality test, 1 mod 4 test, sum of two squares}

Step 3. Save {x, a, b} such that (N, x, a, b), β : β ∈ {x, a, b}
Test β to find α such that α2 = N2 − β2

Step 3.1 Test {x, a, b} to find {α, β}, x2, a2, b2; N2 − x2, N2 − a2, N2 − b2

Step 3.2 Test for perfect square // use a square root function)
Step 4. Calculate and output the semi-prime factors c1 and c2 such that N = c1c2

Step 4.1 c1 = gcd(α, β) // use gcd function
Step 4.2 c2 = N

c1

4.2. Complexity, Comparison and Constraints of Our Algorithm

We summarize the complexity of our proposed semi-prime factorization algorithm
in terms of memory and computational time. These complexity measures are followed in
similar lines to existing methods reported in the literature [61]. The memory requirement
of our algorithm is very minimal, with most computations operating on the memory
variables (N, x, a, b, α, β), which use BigInteger arithmetic. In terms of time complexity,
our method compares favorably against Fermat’s factorization method, in that only one
solution exists in Fermat’s method. As was shown in Case Example 2, our method has
identified 45 solutions, of which 11 could lead directly to a factorization and the others
may as well, if their sums of squares are part of a tree that reveals other sums of squares.

In our algorithm, the initial step of squaring the number to be factorized could be a
constraint for large semi-prime numbers. Further, the method is also probabilistic, while
in many ways it is comparable to the stochastic nature of finding a sum of two squares.
However, the advantage of our algorithm is that there are many possible solutions in
the set of the sum of three squares, making it more likely that such a solution also leads
towards finding a sum of two squares. Moreover, once a sum of three squares is known,
the squares themselves form trees, which will be explored in future work. For instance,
in Case Example 2 discussed earlier, 45 possible sums of squares were obtained. Among
these, 11 created direct solutions to the factorization of the semi-prime and our method
provides more possibilities of the solution space. Otherwise, using common approaches
such as Fermat’s, only two sums of squares exist for the semi-prime. Therefore, using our
method, the probability of finding a solution is greatly enhanced and, in this case, it is
more likely by an order of six times than the common methods. Further, traversing the
tree of squares, if any of the 45 possible solutions are discovered, then any of these may
lead to a factorization solution, which is 22 times more likely to lead to a solution. These
trees provide additional sums of three squares, some of which will lead to a sum of two
squares. Once a sum of two squares is known, the search for the second sum of squares is
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contained in a subset, thereby reducing the search space via the efficient use of polynomials
to factorize semi-primes quickly [1].

5. Case Study Examples Applied to RSA Key Factorization

In this section, we illustrate the application of our proposed semi-prime factorization
method using case study examples. An application area of particular interest in considering
specific variants of RSA is how both small and large encryption keys perform within our
proposed factorization approach. With the evolution of the Internet of things (IoT), the
emergence of lightweight cryptography is on the rise. However, due to the relatively low
computational power of personal devices, malicious attacks are recently targeting IoT
networks [62–64]. Since the security of cryptographic operations in both small keys as well
as large keys depends upon whether the semi-prime factorization can be solved efficiently,
we consider one application example for each of the two scenarios.

Application Example 1. Let us consider Case Example 2 with N = 377.

The 45 Pythagorean quadruples are:
(12,81,368,377), (12,108,361,377), (12,156,343,377), (12,224,303,377), (15,252,280,377),

(17,144,348,377), (17,192,324,377), (24,143,348,377), (24,177,332,377), (28,72,369,377), (28,252,
279,377), (39,72,368,377), (39,208,312,377), (44,207,312,377), (44,228,297,377), (64,252,273,377),
(72,199,312,377), (72,252,271,377), (81,108,352,377), (84,132,343,377), (84,208,303,377), (87,116,
348,377), (87,156,332,377), (87,172,324,377), (89,192,312,377), (100,105,348,377), (100,240,273,
377), (105,252,260,377), (108,207,296,377), (108,233,276,377), (116,177,312,377), (116,192,303,
377), (132,224,273,377), (143,156,312,377), (143,228,264,377), (144,172,303,377), (145,240,252,
377), (152,207,276,377), (156,172,297,377), (156,208,273,377), (156,233,252,377), (172,207,264,
377), (177,180,280,377), (180,215,252,377), (192,208,249,377)

β ∈ {12, 15, 17, 24, 28, 39, 44, 64, 72, 81, 84, 87, 89, 100, 105, 108, 116, 132, 143, 144, 145,
152, 156, 172, 177, 180, 192, 207, 208, 215, 224, 228, 233, 240, 249, 252, 260, 264, 271, 273, 276,
279, 280, 296, 297, 303, 312, 324, 332, 343, 348, 352, 361, 368, 369}

From Lemma 4 and Equation (20) we have:

β ∈ (z1, z2, z3) ∃ (α, β, N) : α2 = N2 − β2, α 6= β

The four Pythagorean triples are:
(135,352,377), (145,348,377), (152,345,377), (260,273,377)
Note that:

∃α : {α} * {β} : {135, 345}

@{β} with gcd(α, β) = 1 are not solutions to the semi-prime. However, solutions can
be found as follows [1,14]:

{α} * {β} ⇒ gcd(α, β) = 1,

(135, 352, 377)⇒ gcd(135, 352) = 1,

x1 =

√(
377− 135

2

)
= 11, x2 =

√
377− 112 = 16

377 = 112 + 162

(152, 345, 377)⇒ gcd(152, 345) = 1

x3 =

√(
377− 345

2

)
= 4, x4 =

√
377− 42 = 19

377 = 42 + 192

o = 19− 11 = 8, e = 16− 4 = 12, g = gcd(8, 12) = 4
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p1 =

(
o
g

)2
+

(
e
g

)2
=

(
8
4

)2
+

(
12
4

)2
= 22 + 32 = 13

p2 =
N
p1

=
377
13

= 29

From Lemma 3 and Equation (15) we have:

(α, β, N), c1 = gcd(α, β), c2 =
N
c1

{α} ∩ {β} ⇒ gcd(α, β) = c1

(145, 348, 377)⇒ gcd(145, 348) = 29,
377
29

= 13

(260, 273, 377)⇒ gcd(260, 273) = 13,
377
13

= 29

N = c1c2 = 377 = (13)(29)

From Lemma 2 we have:
The Pythagorean triples with prime factors from Equation (14) are given as follows:

(c1a2, c1b2, c1c2), (c2a1, c2b1, c1c2)

(a1, b1, c1) = (5, 12, 13), (a2, b2, c2) = (20, 21, 29)

(c1a2, c1b2, c1c2) = (13 ∗ 20, 13 ∗ 21, 377) = (260, 273, 377)⇒ gcd(260, 273) = 13

(c2a1, c2b1, c1c2) = (29 ∗ 5, 29 ∗ 12, 377) = (145, 348, 377)⇒ gcd(145, 348) = 29

Figure 1 provides a pictorial representation of Pythagorean triples with prime factors
for the case example with N = 377.
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Application Example 2. In computer security applications, the aim of a cryptosystem
is to encrypt a message before communication, and only the authenticated user that has
the right key can be able to decrypt the message, thereby enforcing message integrity,
confidentiality, authentication, and privacy. Among several ciphers developed for this
purpose, RSA is widely used in key exchange, digital signatures, and small blocks of data
encryption. For the second application example, we consider RSA where the key is derived
from a very large number (a semi-prime). Since determining the two prime factors of the
large number is computationally difficult, research studies on evaluating the RSA and the
factorization schemes are gaining attention [65–67]. Hence, we describe how our proposed
semi-prime factorization method can be applied to factorize RSA quickly.

The steps involved in RSA encryption are given below:

1. Pick two large prime numbers c1 and c2;
2. Consider the semi-prime N = c1c2;
3. Consider ϕ(N) = (c1 − 1) ∗ (c2 − 1);
4. Choose an integer e such that 1 < e < ϕ(N) and gcd(e, ϕ(N)) = 1;
5. Compute d such that de ≡ 1 (mod ϕ(N)).

While the public key (N, e) is distributed for encrypting a message, the private key
(N, d) is kept a secret for decrypting the message only by an authorized entity. Hence,
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based on this RSA scheme, it is evident that with the factorization of N, we can compute
de ≡ 1 (mod ϕ(N)) [68], which gives the private key (N, d). When the factorization is
efficient, RSA can be broken. The factoring challenge was introduced to identify the
safety limits of the key length to be used for the RSA encryption algorithm that can
ensure information security. Hence, researchers focus on mathematically proving the
cryptanalytic strength using efficient RSA factorization methods. Table 1 demonstrates
the application of our proposed semi-prime factorization method for a key length of
768 decimal digits, denoted as RSA-768. The sums of squares and polynomials have
been explored for semi-prime factorization in previous research works [1,46,69]. However,
there are more than 50 properties of Pythagorean triples that have been reported and
new patterns yet to be explored [15,70]. In this research work, the proposed method
has applied such unique patterns unexplored so far in the literature and maintains the
algorithm’s order of computational complexity, similar to the existing approaches that
have been evaluated and reported recently [71,72]. A recent experimental study employed
the representation of primes in the form p = 6 · x ± 1 and applied the theory to the RSA
factorization problem [73]. Another work shows the decomposition of the two prime
numbers with the Pisano period factorization method, which has been proven to be
a subexponential complexity method [74]. Several integer factorization methods have
also suggested direct application to cryptanalysis of RSA by applying different genetic
algorithms [75]. While genetic algorithms could be a promising avenue of research for
integer factorization, they are computationally complex. This paper’s focus to involve
new simple arithmetic operations while exploring unique structures of prime numbers has
resulted in an efficient factorization.

Table 1. Application of the proposed semi-prime factorization method for RSA-768 attack.

c1c2 RSA768

123018668453011775513049495838496272077285356959533479219732245215
172640050726365751874520219978646938995647494277406384592519255732
630345373154826850791702612214291346167042921431160222124047927473

7794080665351419597459856902143413

(c1c2)
2

151335927879520346290803999457322598363508796074958341058717144380
245872835312747521375274637572332720319718269519140130366434717995
557448975805325285592901195789698493475842912499609903738365207236
511522080338199512854710820317535056362120218189196094883472059867
670273711218840191206761008283107936158558105422755888818703810974
813042919826949446811902964522404849739464632596646341875606194756
2985467999013006479462484696511372504488571635778058519793619288569

β

122282464059209245992171436897658189706307595059665852419459721623
575268394641485120055721728993778585098737802795637062458727992772
215791535778942916633321748296084895133564298582155097077049551048

7891461504154220362780972595368188

α√
(c1c2)

2 − β2

134384437923531027642685110944406395128150457221349204815473265992
860466317855675453545164265884545802321235838004890967990322730328
639778020385449818260083476767779296347341551505950443482805814798

593564305646242411389559844289235

c1gcd(α, β)
334780716989568987860441698482126908177047949837137685689124313889

82883793878002287614711652531743087737814467999489

c2
RSA768

c1

367460436667995904282446337996279526322791581643430876426760322838
15739666511279233373417143396810270092798736308917

In our computationally simple method, the need to square the number that is to be
factorized could be considered a constraint for large semi-primes to be attacked quickly.
An example for RSA-768 is given below, illustrating our method of squaring the number
to achieve semi-prime factorization. Future work will be devoted towards how the in-
herent mathematical constraint can be overcome by reducing the solution search space.
One method is to use low order prime multipliers congruent to 1 mod 4 (for example
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5,13,50) to increase the likelihood of finding sums of three squares (and two squares)
without the complexity of first squaring the number to be factored. An illustration of
the complexity is given below. The likelihood of finding a solution, β, is sparse and
becomes less likely for larger semi-primes, as shown below. Future work should ex-
plore reducing the search space implied by squaring of the semi-prime to be factored.

c1c2RSA768(c1c2)
2βα

√
(c1c2)

2 − β2c1gcd(α, β)c2
RSA768

c1

6. Conclusions and Future Research

In this paper, we proposed a new method for semi-prime factorization and empha-
sized its key contribution in the context of information security underpinned by the RSA
cryptosystem of the current digital world. Some new ideas have resulted in a breakthrough
of factoring the RSA-129 challenge number, but these were possible only after several years.
Our novel method follows with the proof that the sum of fours squares of a semi-prime
c1c2 has many solutions, but only one solution leads to factorization. The validation is fast,
and the method uses a binary greatest common division approach with simple arithmetic
operations to find the sum of two squares of one (or both) of the prime factors.

The sum of two squares has only two solutions and both are valid, though hard to
find. Once these are known, previous work has proved that a modified Euler factorization
can easily determine the prime factorization [1]. This paper was enhanced further by
considering the sum of three squares, which has many solutions. However, the semi-
prime must first be squared, resulting in larger numbers required to be processed. This is
offset by the abundance of suitable solutions, leading to factorization successfully without
affecting the order of computational complexity. The algorithm and the case examples
have demonstrated the simplicity of our proposed method and its enhanced solution
space, as compared to Fermat’s method. The complexity of our proposed approach was
demonstrated using numerical illustrations, including the real-time factorization of the
768-bit number RSA-768.

It is noted that for extremely large semi-primes, the search space may be constrained
with the need to square the semi-prime. One approach to address this is highlighted and
forms the key motivation for future research. In this context, one of the properties of
semi-primes that forms a motivation for future research is given as follows: once the sum
of three squares is known, the squares themselves form trees. Hence, reducing the solution
search space of these trees for such cases, using our earlier associated research work, will
be quite promising to explore.
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