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Abstract: In some wireless networks Received Signal Strength Indicator (RSSI) based device profiling
may be the only viable approach to combating MAC-layer spoofing attacks, while in others it can
be used as a valuable complement to the existing defenses. Unfortunately, the previous research
works on the use of RSSI-based profiling as a means of detecting MAC-layer spoofing attacks are
largely theoretical and thus fall short of providing insights and result that could be applied in the
real world. Our work aims to fill this gap and examine the use of RSSI-based device profiling in
dynamic real-world environments/networks with moving objects. The main contributions of our
work and this paper are two-fold. First, we demonstrate that in dynamic real-world networks with
moving objects, RSSI readings corresponding to one fixed transmitting node are neither stationary
nor i.i.d., as generally has been assumed in the previous literature. This implies that in such networks,
building an RSSI-based profile of a wireless device using a single statistical/ML model is likely to
yield inaccurate results and, consequently, suboptimal detection performance against adversaries.
Second, we propose a novel approach to MAC-layer spoofing detection based on RSSI profiling
using multi-model Long Short-Term Memory (LSTM) autoencoder—a form of deep recurrent neural
network. Through real-world experimentation we prove the performance superiority of this approach
over some other solutions previously proposed in the literature. Furthermore, we demonstrate that a
real-world defense system using our approach has a built-in ability to self-adjust (i.e., to deal with
unpredictable changes in the environment) in an automated and adaptive manner.

Keywords: IoT security; spoofing; MAC authentication; intrusion detection system; LSTM autoen-
coders

1. Introduction

The proliferation of the Internet of Things (IoT) and Wireless Sensor Network (WSN)
networks has revived an old yet serious form of attack—MAC-layer Spoofing or also referred
to as Identity Spoofing. In MAC address spoofing attack, as the name suggests, a rouge
wireless node masquerades as another legitimate device by cloning the legitimate device’s
MAC address. Identity spoofing, in general, is a precursor for packet injection (another
well-known type of attack) and thus requires careful consideration as part of any sound
defense plan.

The most common way of defending against this form of attack is through the use of
cryptographic techniques for MAC-address authentication [1]. Unfortunately, due to the
resource limitations that are inherently present in many IoT and WSN devices (e.g., low
processing power, low memory capacity, and limited battery life), many of these devices
operate with very scaled-down (if any) versions of encryption and authentication protocols.
For example, it is discovered that due to ease-of-installation by non-technical consumers,
Philips IoT Smart Bulbs do not employ any form of encryption and authentication as
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specified by 802.15.5 protocol standard [2]. Or, in the case of a multihop WSN, the inter-
mediate relaying nodes generally do not engage in the verification of the authenticity of
the relayed data frames—authenticity verification of these frames takes place only at the
final (i.e., destination) node. Authentication by intermediate nodes is typically omitted in
order to reduce the nodes’ energy consumption as well as minimize the possibility of a
battery exhaustion attack [3] (readers should review seminal work by Nguyen et al. [4] for a
complete survey of energy depletion attacks against low power wireless networks).

It should be noted that in a number of standardized wireless protocols that are still
in use today, cryptographic authentication is simply not intended for all stages/frames
of a communication process. For example, in all variants of IEEE 802.11 preceding 802.11
w, only data frames are protected, while control and management frames are used with-
out any protection [5]. Thus, one should make provisions for extra security measures
when cryptographic authentication is not supported by protocols deployed within certain
application domains.

Clearly, in wireless systems with limited cryptographic and authentication protec-
tion, other alternative measures against MAC address spoofing are required. One such
measure—which can also be used as an added layer of security even in wireless systems
with extensive cryptographic and authentication protection—is the utilization of physical
layer (i.e., signal-level) parameters. Received Signal Strength Indicator (RSSI) is a wireless
communication variable that is directly influenced by the transmission power and the
location of the transmitter as well as different environmental variables such as obstacles.
As suggested in a number of earlier research works (e.g., [6–8]), RSSI values can be used
to create the fingerprint profile of each device in a wireless network and then deploy these
profiles to do a preliminary authenticity check against MAC spoofing attacks. Another
point that makes RSSI profiling an attractive ally against MAC spoofing attacks is that
the use of this single real-valued physical-layer variable is easy to implement, requires
no modifications to existing higher layer protocols and applications, and has a very small
processing and memory footprint.

There have been many research works in the past investigating the use of RSSI profiling
for the purpose of MAC spoofing detection (some of which are surveyed in Section 2).
Most of these works implicitly assume that: (1) RSSI samples received from a non-moving
transmitting device form a stationary time-series with normally distributed variance,
and (2) RSSI values are independent and identically distributed (i.i.d.) samples from an
unknown normal distribution. Moreover, in the given works, the act of profiling a wireless
device based on its RSSI values strongly relies on these two very assumptions. However,
in our recently conducted study, the two assumptions (RSSI samples are stationary and i.i.d.)
have come under scrutiny. Namely, through our extensive real-world experimentation,
we have observed that RSSI values measured by a receiving node are highly affected by
changes (e.g., moving objects) in their operating environments. In particular, we have
observed that moving human bodies (and their absence) have a noticeable effect on RSSI
values of IoT devices deployed in a residential environment, and as a result the variance of
the RSSI time-series changes significantly when occupants are present and move around
the property—we call this effect time-series clustering [9] (refer to Figure 1 where there
are two different clusters, one with lower volatility than the other). Furthermore, it is
clear from the depicted figure that there is a correlation between neighboring RSSI values;
therefore, it would be hard to justify the claim that neighboring RSSI values are independent
(as presumed by previous works [6–8]).

Except in a few usage cases where there are no moving objects in the environment
(e.g., farmland monitoring), most real-world IoT networks deploy computing/sensing
nodes in environments with some number of movable objects. Thus, in order to account
for changes in RSSI values due to the above described clustering effect, it is necessary to
have an adaptive and/or multi-model RSSI-based profiling scheme that will be able to
improve/reduce the rates of false positives (in our previous work [10], we demonstrated
how i.i.d. assumption pertaining to RSSI values can lead to probable evasion of detection
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systems that rely on RSSI-based profiling). In this work, we have proposed and studied a
multi-classifier system to profile IoT devices based on their RSSI values under two moving
object conditions (presence vs. absence of objects in the surrounding environment). Also,
our profiling approach takes into consideration the relationship between neighboring
RSSI values in the time-series to further improve the accuracy and robustness of IoT
node profiles.

Figure 1. RSSI values of an IoT device deployed in a residential property with routine movements of
occupants in a 24 h period.

The content of this paper is organized as follows: In Section 2, we discuss some of
the notable previous works in RSSI-based MAC address spoofing detection. In Section 3,
we present the threat model and the main assumptions about the adversary’s capabilities
as pertaining to our work. In Section 4, we propose our LSTM-based (Long Short-Term
Memory) profiling scheme that has been devised to detect and classify MAC-spoofing
traffics. In Section 5, we discuss adversarial traffic generation used to test the robustness of
our approach and compare the effectiveness of our approach with the state-of-the-art RSSI
based approaches previously proposed to deal with adversarial attacks.

2. Related Works

Wireless MAC Address Spoofing Detection is a well-studied topic in the literature
on Wi-Fi and Wireless Sensor Networks. In the seminal paper [11], Faria and Cheriton
were among the first ones to propose the use of RSSI values as a fingerprinting variable to
detect MAC spoofing attacks in a WLAN environment. As part of their detection model,
it is assumed that there are multiple access points (APs) capable of receiving the wireless
signals from all clients in the network, so the RSSI values measured at each AP’s antenna
and for each transmitter are ultimately aggregated into a single profile. Consequently,
a masquerading attack is detected by comparing the aggregated RSSI values of two con-
secutive data frames with the same MAC identifier. Also, they have demonstrated that
using multi-sensing APs, and assuming constant transmitting power, a physical node can
be triangulated with an accuracy of 5 to 10 m. Unfortunately, the practical merit of these
findings is rather limited since the use of multiple overlapping APs in many WSN and IoT
networks is not always possible.

Chen et al. [12] and Wu et al. [6] have both independently proposed the use of k-means
clustering algorithm to detect signal/frame spoofing by a rogue access point (AP). Their
work is grounded on the assumption that the sequence of last n RSSI values received from
an AP would have minimum fluctuations around the mean in the absence of another rogue
AP (i.e., an ‘Evil Twin’). Thus, when clustering the elements of a received RSSI sequence
into two clusters using k-means algorithm in the absence of an Evil Twin, the distance
between two formed centroids would be small (i.e., smaller than a threshold value). At the
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same time, a large distance between the centroids of the two formed clusters would be
indicative of the existence of an Evil Twin AP with its unique RSSI distribution. However,
since this approach does not involve any offline learning (i.e., a previously trained model
of what should be considered a legitimate distribution), the MAC address spoofer and
the legitimate node must transmit in relatively close time intervals for the detection to
actually work.

Sheng et al. [13] studied the effect of antenna diversity in 802.11 access points and their
effect on RSSI device fingerprinting as well as spoofing detection. They demonstrated that
RSSI values from a stationary receiver collected at a stationary transmitter form a mixture
of two Gaussian distributions due to antenna diversity permitted under 802.11 protocol.
As a result, they have trained a Gaussian mixture model for each wireless node and access
point pair in the network and used a log-likelihood ratio test on the sequence of latest
received RSSI at each access point from a given MAC address. A transmitting node is ruled
spoofed if the ratio test fails by more than n Gaussian mixture models—where n is smaller
than the number of available access points in the network and needs to be set empirically.
However, using available off-the-shelf hacking tools an adversary can easily manipulate its
transmission power to evade detection by this model, as discussed in later sections.

Gonzales et al. [14] have developed a novel technique known as context-leashing for
the detection of public Evil Twin access points. They have argued that publicly available
access points such as the ones available at franchise coffee shops (e.g., Starbucks) share ser-
vice set identifiers (SSID) across different locations and oftentimes lack any authentication.
This provides an opportunity for adversaries to spoof such SSIDs and trick clients into asso-
ciating with a rogue access point (e.g., after performing a dissociation attack). The defense
against the Evil Twin APs proposed in [8] assumes the use of a so-called context-leashing
engine. Upon association with a publicly available access point, the context-leashing engine
would collect a list of context Ci = {(c1, r1), . . . , (cn, rn)}, which contains the list of all
visible SSIDs (denoted by cj, j = 1, . . . , n) and their corresponding average RSSI values
(denoted by rj, j = 1, . . . , n) that is reachable at the time of association with a particular
SSID in the environment. For any future reassociation with a given SSID, a new context list
is constructed and compared to the previously stored one. If the context-list of available
neighboring SSIDs and their average RSSI values does not have a significant (empirically
defined) overlap with the historical context-list, then the associated SSID is deemed an Evil
Twin and the connection should be terminated. The main drawback of their method is the
assumption that the list of SSIDs in a given geolocation remains relatively unchanged over
time. However, with today’s tethering capabilities of cellphones, this assumption is far
from the truth.

3. Threat Model and Assumptions

In this section, we introduce the main annotation and assumptions of our work, which
are also illustrated in Figure 2. First, consider a simple setup where there are a legitimate
transmitting node (e.g., a temperature sensor) denoted by s and a legitimate receiving node
(e.g., an IoT hub) denoted by r communicating over a wireless channel. Also, we assume
that r utilizes an arbitrary approach (including what we propose in this work) to profile
s based on RSSI samples, it has received in a period absent of any adversary, and then
uses this profile at runtime to differentiate between received data frames that carry s’
MAC address (legitimate vs. spoofed ones). Finally, let α denote the adversary with the
following characteristics:

• The adversary is situated at a location from which it can observe/receive signals trans-
mitted by all legitimate senders (when sending data frames) and receivers (when send-
ing acknowledgment frames back) in the given network.

• The adversary is aware of the transmission power setting (PTx) of the legitimate
sender(s), which is not a substantial assumption as system information about most
IoT/WSN devices is publicly accessible on the Internet.
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• The adversary has no prior knowledge of the actual physical/geographic locations of
other (legitimate) nodes in the network.

• Network participants, including the adversary, are equipped with regular/common
omnidirectional antennas, and are not capable of detecting the positional angle of
the transmitting nodes. However, the adversary can move about in order to triangu-
late other nodes’ locations based on the strength of the signal received from those
nodes [10].

• The adversary itself is an active node capable of adjusting its transmission power.
• The adversary is also capable of altering (i.e., spoofing) its MAC address value—

i.e., it can generate data frames that carry MAC addresses of other legitimate nodes
from this particular network.

Figure 2. Overview of the threat model: the goal of the receiving node is to use historical (clean) RSSI
values from the legitimate sender to learn a robust profile to use in future against identity attacks;
while the goal of the adversary is to get past the established profile by taking over s identity.

The ultimate goal of adversary α is to impersonate a particular s by transmitting
frames with s’ spoofed MAC address. The spoofed frames are specifically intended for a
particular r. Since, according to the assumptions of our work, the transmitter’s RSSI values
are registered and used by r for the purposes of MAC-spoofing detection, the adversary
first needs to discover/adjust its transmission power (PTx) such that its spoofed frames
(when received by r) get accepted as genuine with a high probability—i.e., some desired
probability of evasion is achieved by the adversary. This particular problem—of how to
discover/adjust the transmission power so as to achieve a certain evasion probability—
is closely related to the optimal adversarial evasion problem introduced by Nelson et al. [15]
and further extended by Madani and Vlajic [10] to the IoT realm.

4. Detection Approach: Deep Authentication

As demonstrated in Figure 1 (and argued in Section 1), given that RSSI time-series
values of a wireless IoT device are not i.i.d., one could incorporate dependencies among
neighboring RSSI values to build more robust and accurate predictive models for the pur-
pose of device authentication. Deep autoencoders are deep generative neural networks that
have demonstrated a strong capability of modeling latent variables in anomaly detection
and authentication datasets [16]. LSTM autoencoders [17], in particular, are known for their
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generative modeling capabilities on time-series data. In this section we present our novel
technique for authentication of legitimate IoT nodes using RSSI-based anomaly detectors
deploying LSTM autoencoders. In addition, expanding on our argument from Section 1
with respect to the time-series clustering-effect of RSSI values in dynamic environments,
we also discuss how our novel multi LSTM autoencoder architecture is able to switch
between multiple trained LSTM models at runtime. Such a multi-LSTM autoencoder
architecture would help with addressing the clustering effect of RSSI time-series.

4.1. LSTM Autoencoder Anomaly Detector

In the context of our work, let X =< x1, x2, . . . , xn > denote an ordered sequence of
n RSSI values received by node s. Then, the LSTM autoencoder is trained to learn two
functions, namely, encoder E(.) and decoder D(.) such that X ≈ D(E(X)). In other words,
as depicted in Figure 3, the LSTM autoencoder learns an encoding state that best describes
the structure of the training/input data and a decoding function that reconstruct the input
sequence given the encoding state with minimal error. In general, large reconstruction
errors occur when the input does not conform to the structure previously learned by the
LSTM autoencoder. As such, a large reconstruction error can be used as a measure of input
anomaly [16,18–20].

Figure 3. Anatomy of the LSTM autoencoder.

In order to build an RSSI profile of s (through the use of LSTM autoencoder), the re-
ceiving node r begins the process of collecting and assembling a time-series of RSSI values
extracted from the data frames transmitted by s. Then, using a rolling window of size
n, the time-series is segmented into m different overlapping sequences (where the extent
of the overlap is controlled by the shift constant of the rolling window), which are fur-
ther used to train the LSTM autoencoder. Since the LSTM autoencoder is supposed to
learn the reconstruction of the input sequences, the m training inputs are also supplied as
the expected outputs to the training algorithm with the mean squared error (MSE) as the
loss function.

At runtime (i.e., during the actual use of the trained LSTM autoencoder for the purpose
of attack/anomaly detection), n most recently observed RSSI samples are supplied into the
trained LSTM autoencoder and then the MSE of the reconstructed sequence (relative to the
provided input) is computed. Our experimental investigations (as described in Section 5)
have demonstrated that the MSEs of the training data, in the absence of attack/spoofed
instances, form a normal distribution. Therefore, our system uses Z-score to measure
deviation from the expected MSE as the decision function to differentiate between the
spoofed and the normal traffic. Specifically, for a Z-score ≥ l the system declares the
inspected RSSI window as malicious, where l can be computed experimentally and set for
the desired false positive rate.

4.2. Multiclassifer and Model Switching

As discussed in Section 1, in IoT environments with moving objects (e.g., residential
or commercial premises), the RSSI time-series of a transmitting node can be divided into
two significantly different time-series with substantially different volatility (i.e., time-series
with clustering effect). Using the entirety of such a time-series (refer to Figure 1) for
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the training of our system’s LSTM autoencoder would result in a less sensitive anomaly
detection model. Thus, we propose to deploy/train two independent LSTM autoencoders—
one for the volatile period of the observed time-series when moving objects are present,
and one for the relatively calm period when the relative volatility is at its minimum.

Now, one obvious issue that would have to be adequately addressed in an anomaly
detection system with two LSTM autoencoders is the issue of their scheduling. As one
possible approach, the system operator could manually set the exact time when each of
the trained LSTM autoencoders is to be deployed according to his/her knowledge of
the environment. However, in such a system with manually determined ‘switch times’,
a number of potential problems could arise. For example, an employee of a factory
showing up earlier than usual could significantly affect the RSSI time-series of the nearby
sensors/transmitters, which as a result could trigger a false positive alert (provided the
detection model corresponding to the non-volatile conditions is still active).

One way to resolve the above challenges is by simultaneously monitoring MSE
Z-scores output by the two models at runtime, and looking for the point in time when the
Z-score of one of the models crosses another. For example, as shown in our experimentation
and depicted in Figure 4, at night where there are fewer moving objects in the environment,
the night’s LSTM autoencoder model is reconstructing the RSSI time-series perfectly as
reflected by its low Z-score, while at the same time the day’s LSTM autoencoder does a
poor job in reconstructing the same RSSI time-series. However, during the transition period
when moving objects start to appear in the environment, the night’s LSTM autoencoder per-
formance starts to decline, while the performance of the day’s LSTM autoencoder (which
is trained to cope with daytime volatility) starts to exhibit noticeable improvement with
respect to the reconstruction MSE. Thus, the moment when the two Z-score time-series
cross over each other would be the optimal point in time when the system should switch
from using the nighttime to using the day-time LSTM autoencoder model. This suggests
that by simply monitoring the output of both trained LSTM autoencoder models, it is
possible to determine the optimal ‘switch time’ in an adaptable and automated manner.

Figure 4. Starting at midnight, the Z-scores of reconstructed RSSI values corresponding to the transmitting node s using the
two trained models (for day and night) are tracked. At about dawn, when occupants started to wake up and move about,
the error rate of the night model significantly increases while the day model’s error rate drops significantly.
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5. Experiments and Results
5.1. Environment Setup

We have designed two experiments involving different forms of obstacles and moving
objects to best collect the noise and other disturbances that IoT devices may face when
attempting to profile their neighboring nodes using RSSI observations. In our experi-
ments we have used three Digi XBee 3 Series programmable modules implementing IEEE
802.15.4. [21] (as depicted in Figures 5 and 6), where one device acts as the legitimate tem-
perature reading sensor (denoted by s) transmitting its reading to the legitimate receiver
(denoted by r) and the adversary (denoted by a) who spoofs the s’ MAC address in the
hope of providing false temperature readings to r.

In the first experiment (refer to Figures 6 and 7), s is situated in a waterproof container
on the lawn outside the house, while r is situated in the second-floor bedroom. Aside
from 5 occupants living on the property that move about the house during the day, outside
pedestrians and moving vehicles affect s’ RSSI values observed by r. The adversary is
free to move about, both inside the property and outside, to carry out its spoofing attack
(this is a very generous assumption to highlight a worst case scenario and superiority of
our approach. In most settings, there is some degree of physical security that constrains
adversaries in their physical positioning). This is an ideal experiment for resembling
scenarios where IoT devices are separated by exterior walls and experience some degree of
moving objects during the course of their daily operations.

Figure 5. The legitimate transmitter is situated in the first floor family room while the legitimate
receiver is situated in the second floor’s bedroom separated by interior walls and an interior floor.
The 5 occupants in the property are considered to be the influencing moving objects.

Figure 6. The legitimate transmitter is situated outdoors on the lawn transmitting temperature
readings and the receiver is situated in the bedroom of the second floor separated by exterior building
walls. The pedestrians and motor vehicles in the nearby residential area as well as the 5 occupants in
the property are considered to be the influencing moving objects.
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In the second experiment both r and s are situated in the property separated by a
floor/ceiling and interior walls (depicted in Figure 6) while the adversary is allowed to
move about inside and outside of the property. Similar to the first experiment the house
occupants have their routine daily schedule of moving around the property during the day
and resting (i.e., minimal movement) at night.

In the second experiment both r and s are situated in the property separated by a
floor/ceiling and interior walls (depicted in Figure 5) while the adversary is allowed to
move about inside and outside of the property. Similar to the first experiment, the house
occupants have their routine daily schedule of moving around the property during the day
and resting (i.e., minimal movement) at night.

Figure 7. Digi XBee 3 Series programmable module implementing IEEE 802.15.4. in a weatherproof
secure enclosure protecting the devices from the elements when deployed.

In both experimental setups, r starts its training phase by collecting RSSI samples
from s (refer to Figures 8 and 9) both during hours of minimal and significant movements
(24 h of capture of RSSI at the sample rate of 1 frame/s)—where these hours are assumed
to be empty of any adversarial presence to perturb the training dataset. Once the training
stage is completed, r starts using its two trained LSTM autoencoder models to authenticate
received signals and detect MAC-spoofed frames (each LSTM autoencoder has 2 LSTM
layers with 20 nodes each and a final dense lake of size 1 and using Adam [22] optimizer
for training).

Figure 8. s’ RSSI stream received by r during s’ deployment outside of the property.
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Figure 9. s’ RSSI stream as received by r during s’ deployment inside of the property.

5.2. Note on Special Spoofed Traffic Mix

All the surveyed works in Section 2 that use a rolling window on collected RSSI
stream(s) for the purposes of signal classification (i.e., authentication) have implicitly
assumed that each window of length n may fully consist of RSSI values from either an
attacker or a legitimate device. However, this is not a realistic assumption given the
unknown motivation and capabilities of adversaries. Moreover, many modern-day IoT
devices (e.g., especially those used in home automation) are not battery operated and/or
are not much concerned with energy preservation and as a result may be in frequent
communication with other nearby devices. Consequently, in any given window of length n
(used by the classification engine) there may exist some mix of the legitimate node’s and
the adversary’s RSSI values as depicted in Figure 10.

(a) (b)
Figure 10. (a) Case where the adversary starts transmitting right after the legitimate node terminated
its transmission; (b) The adversary gains access to the channel while the legitimate node has not
finished transmitting all of its frames.

5.3. Model Classification Performance

We have evaluated our novel spoofing detection approach against the Support Vector
Machine (SVM) one-class anomaly detection technique described in [23] (as a baseline
detection model) and the state-of-the-art Log-likelihood ratio test approach proposed in [13].
We have evaluated all three approaches against two real-world datasets (refer to Section 5.1)
using 10-fold cross validation. The average classification/detection performance is reported
in Table 2.

We have trained two classifiers for our autoencoder as well as each of the other
two approaches (SVM [23] and Log-likelihood [13]): one for the period of high volatility
(e.g., environmental moving objects—daytime) and another for the period of low volatil-
ity (e.g., minimal environmental moving objects—nighttime) as reported in Table 1. All
three classifiers perform relatively better during the low volatility period (i.e., night-
time) than the high volatility period—with our approach performing the best in both
categories significantly.
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Table 1. Summary of Related Works.

Methodology Shortcomings

Faria and Cheriton [11]

Using multiple access point recording
RSSI values of individual nodes in the
network and compare them with
historical records and vote on authenticity
of the given transmission.

The assumption of the existence
of multiple APs is not realistic in
many IoT and WSN applications.
Using their approach a single
AP can be easily evaded as
discussed in Madani and Valjic [10].
Also, they did not entertain the
existence of variable noises as a result
of moving objects in the environment
during different time periods.

Chen et al. [12]
Using k-means clustering and comparing
cluster centroids distance to find
existence of anomalies in RSSI values.

Treating a sequence of RSSI as
identically distributed and
independent observations.
In Sections 1 and 5.2 we have
discussed in detail why such
assumptions are wrong and can
be advantageous to the adversary.

Wu et al. [6]
Using k-means clustering and comparing
cluster centroids distance to find
existence of anomalies in RSSI values.

Treating a sequence of RSSI as
identically distributed and
independent observations.
In Sections 1 and 5.2 we have
discussed in detail why such
assumptions are wrong and can
be advantageous to the adversary.

Sheng et al. [13]
Uses Gaussian mixture models to model
observed RSSI from a given node and
create a normal/expected RSSI profile.

Capturing diversity caused by
antenna diversity implemented
by wireless nodes. Although did not
entertain the existence of variable
noises as a result of moving objects
in the environment during different
time periods.

Gonzales et al. [14]

Uses available/neighboring SSIDs and
their average RSSI values as observed
by a given wireless node to establish
expected/normal environment for
initiating connection with a given
access point.

A valid approach for verifying the
validity of an SSID before connecting
a mobile wireless node to it.
However, this approach cannot
guarantee the absence of spoofing once
the connection is established and is not
useful in settings where no other
SSID is available in the environment.

We have also evaluated the classification performance of the three models against an
adversarial traffic mix (as explained in Section 5.2). We can observe in Table 2 (also refer to
Figures 11 and 12, that our approach slightly loses classification accuracy (by 1%) when 20%
of RSSI values in a given window is generated by an adversary while the performance of
the other two classifiers deteriorates significantly. This can partly be explained by the fact
that our LSTM (Long Short-Term Memory) autoencoder approach takes into consideration
the order in which RSSI samples appear (i.e., are collected), while the other two approaches
treat RSSI values in a window as independent data points. It is clear from the obtained
results that our approach is well equipped to deal with an active adversary that transmits
during the transmission period of the legitimate node while such overlap of traffic is not
well protected using existing approaches.
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Table 2. Passive Adversary, who assumes a single spot in the environment and does not adjust its transmission power.
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Normal 1.0 0.95 0.97 1.0 0.99 0.99 1.0 0.93 0.97 1.0 0.99 0.99 1.0 0.93 0.97 1.0 0.99 0.99Multi Model
LSTM Autoencoder* Spoofed 0.97 1.0 0.98 0.99 1.0 0.99 0.93 1.0 0.96 0.98 1.0 0.99 0.93 1.0 0.96 0.98 1.0 0.99

Normal 0.66 0.52 0.58 0.73 0.42 0.53 0.56 0.52 0.54 0.60 0.48 0.53 0.58 0.52 0.55 0.59 0.48 0.53One-Class
SVM [23] (baseline) Spoofed 0.69 0.80 0.74 0.50 0.79 0.61 0.48 0.52 0.50 0.37 0.49 0.42 0.50 0.56 0.53 0.36 0.47 0.41

Normal 0.85 0.92 0.88 0.83 0.89 0.86 0.75 0.89 0.81 0.73 0.78 0.75 0.77 0.91 0.83 0.81 0.89 0.85Log-likelihood
ratio [13] Spoofed 0.87 0.90 0.88 0.92 0.95 0.93 0.76 0.81 0.78 0.84 0.83 0.83 0.80 0.83 0.81 0.85 0.92 0.88
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Figure 11. Comparison of ‘Normal Classification’ of our novel detection method with two
other [13,23] state-of-the-art approaches proposed in the literature.

Figure 12. Comparison of ‘Spoofed Classification’ of our novel detection method with two
other [13,23] state-of-the-art approaches proposed in the literature.

5.4. Model Switching at Runtime

In Section 4.2 we have explained the need for a bi-modal LSTM autoencoder classifier,
and we have proposed a fully automated and adaptive approach to switching between
the two train models/classifiers at runtime. Using the collected real-world datasets we
have put this idea to test by continuously monitoring the reconstruction error of the two
train models at runtime. As depicted in Figure 13, at night when the RSSI stream had
relatively lower volatility, the night model (the blue line) resulted in low reconstruction
error while the day model (the orange line) resulted in high reconstruction error—as to
be expected. However, at the point in time when the volatility was about to pick up,
we can observe a sudden jump in the night model’s reconstruction error accompanied by
significant improvement in the day model’s reconstruction error, ultimately resulting in a
crossover between the two error lines (orange and blue). This is a clear indication that the
night model could be retired, and the day model could be activated for detection. Clearly,
this demonstrates the viability of the crossover indicator to facilitate an automated and
adaptive switching schedule between the two trained LSTM autoencoder models.
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Figure 13. Tracking reconstruction error of two trained models during an entire day. The crossover point between the two reconstruction error lines (orange and blue) coincide with
increase in volatility of RSSI stream (the red line)—a clear indicator to be used to switch between trained models.
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6. Discussions and Conclusions

In this work we have proposed a novel RSSI-based MAC spoofing detection approach
using a multi model LSTM autoencoder classifier. The advantages of our approach over
earlier works in this field are twofold. First, our approach is capable of coping with periodic
environmental (i.e., signal) disturbances caused by moving objects. Second, our approach
can tolerate and detect presence of an adversary that transmits in close time intervals to
legitimate network devices.

As part of this research, we have also studied the variability of RSSI streams in a
real-world residential area, and (from the collected measurements) we have confirmed the
existence of two very distinct periods in the observed RSSI streams (i.e., day vs night). These
observations provide real-world justification for the use of a bi-modal LSTM autoencoder,
with one autoencoder being trained for each variability period. In addition, we have
proposed an automated and adaptive technique for determining the optimal point in time
to switch between the two train models.

It may be worth clarifying that one of the key assumptions of our work is that the IoT
network utilizing our solution is composed of a large number of sensing nodes (which are in
charge of collecting and transmitting sensory readings from their immediate environment)
and one or a few sink nodes (which are in charge of receiving and/or aggregating the
sensory readings received from multiple sensor nodes). Furthermore, we assume that the
sink nodes are generally more powerful (e.g., have better energy and processing capacity)
compared to the sensing nodes.

Now, given the inherently ‘one-way’ nature of the assumed application and the
respective communication patterns (i.e., sensors transmit while sinks receive), the most
likely targets of an adversary existing in this environment (i.e., most likely recipients of
spoofed packets) would be the sink nodes, and very rarely the ‘ordinary’ sensing nodes.
Consequently, it is reasonable to assume that the proposed solution would have to be
primarily, if not exclusively, implemented on the sink nodes in order help verify the
authenticity of received sensor readings. As previously clarified, sink nodes are generally
assumed to have reasonable energy and processing capabilities.

It is also worth pointing out that our proposed LSTM autoencoder approach is utilizing
one-dimensional data (i.e., RSSI readings) as inputs, which makes the training of our
model(s) extremely energy-inexpensive and fast, even for Zigbee IoT nodes as used in our
experiments. Furthermore, using the trained LSTM autoencoders at runtime relies on very
simple matrix multiplications, which are of similar complexity to SVM, linear regressions,
or Gaussian models previously proposed in the literature, and which are well within the
capabilities, even of IoT nodes, with limited energy and computational characteristics.

Given that most IoT networks have multiple participants, it is natural to wonder
how our proposed method could be further expanded should participating nodes be
capable and/or willing to cooperate with each other in order to detect an ongoing MAC
spoofing attack. Although such an idea could likely enhance the overall detection and
network performance, it also requires careful consideration and engineering in order to
ensure robustness against (e.g.) potential byzantine nodes. We are planning an in-depth
investigation of such a cooperative multi-node approach as one of the future research
directions of our work.

In our previous work [10], we proposed an RSSI-based randomization technique
for protection against an active adversary capable of modifying its transmission power
and its location in the target/victim environment. Of course, such randomization could
positively affect our novel proposed method but the classification performance might
change drastically under a randomized schema. Finally, in this work we have assumed
that the system operator is in charge of detecting low vs high volatility periods in the
training RSSI time-series and divided the training set into two subsets for training the
proposed bi-modal LSTM autoencoders. However, one could argue that due to variability
in RSSI during the presence vs absence of moving objects, it is possible to detect two
periods (for separating the training datasets for building the multi-model classifiers) using



J. Cybersecur. Priv. 2021, 1 468

unsupervised clustering approaches such as k-means instead of relying on the judgment of
a system operator for creating such separation. This is certainly an interesting future work
that can further enhance our proposed crossover model switching indicator.
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