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Abstract: Machine learning algorithms are becoming very efficient in intrusion detection systems
with their real time response and adaptive learning process. A robust machine learning model can
be deployed for anomaly detection by using a comprehensive dataset with multiple attack types.
Nowadays datasets contain many attributes. Such high dimensionality of datasets poses a significant
challenge to information extraction in terms of time and space complexity. Moreover, having so many
attributes may be a hindrance towards creation of a decision boundary due to noise in the dataset.
Large scale data with redundant or insignificant features increases the computational time and often
decreases goodness of fit which is a critical issue in cybersecurity. In this research, we have proposed
and implemented an efficient feature selection algorithm to filter insignificant variables. Our proposed
Dynamic Feature Selector (DFS) uses statistical analysis and feature importance tests to reduce
model complexity and improve prediction accuracy. To evaluate DFS, we conducted experiments
on two datasets used for cybersecurity research namely Network Security Laboratory (NSL-KDD)
and University of New South Wales (UNSW-NB15). In the meta-learning stage, four algorithms
were compared namely Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Units,
Random Forest and a proposed Convolutional Neural Network and Long Short-Term Memory
(CNN-LSTM) for accuracy estimation. For NSL-KDD, experiments revealed an increment in accuracy
from 99.54% to 99.64% while reducing feature size of one-hot encoded features from 123 to 50. In
UNSW-NB15 we observed an increase in accuracy from 90.98% to 92.46% while reducing feature size
from 196 to 47. The proposed approach is thus able to achieve higher accuracy while significantly
lowering number of features required for processing.

Keywords: dynamic feature selection; meta-learner; cybersecurity; random forest; CNN; RNN; GRU;
LSTM; Bi-LSTM

1. Introduction

The ability to learn and adapt has made machine learning techniques mainstream in cybersecurity.
Training a model with a comprehensive dataset having multiple attack types is a key to improve
anomaly detection performance [1]. However, issues like high dimensionality of datasets pose a
significant threat for most of these techniques hindering real-time response and deployment on legacy
systems. Manually reducing feature size is a key solution to lower the computational complexity.
Removing insignificant features while retaining the important ones is a trade-off which can reduce
complexity but compromise predictive performance of the model to some extent. Traditional feature
selection models classified into two groups mainly wrappers and filters can be useful in feature
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filtering [2]. Wrappers generate several feature subsets and select the one which generates the best
result. Wrapper methods however require significant computation time to generate good results.
The filter method employs various informative features such as entropy or information gain to
decide which features yield the best output [3]. The drawback is the heuristic method of selecting
these features. Datasets with certain degree of non-linearity may suffer from the possibility of
reduced performance after feature filtering. In this paper, we explore a dynamic feature selector
(DFS) for processing cybersecurity datasets. We combine several measurement indicators along with a
meta-learner bagging ensemble-based approach to generate group of features that achieve the best
performance in malware detection and deliver superior accuracy across datasets pertaining to the
cybersecurity domain.

2. Machine Learning and Cybersecurity

Classification of cybersecurity datasets can be accomplished by several techniques. Two of the
most common ones used are bagging and boosting. Bagging is an ensemble learning method and
is the process of generating multiple versions of a predictor by resampling the training data and
later aggregating those predictors to get a stable predictor [4]. A bootstrap sample also known as a
bootstrap replica is generated by extracting a sample of observations from training datasets. Each
bootstrap replica is generated by the process of sampling with replacement due to which some of
the data from the training dataset may never appear in the training and some may appear multiple
times [5]. The goal of this resampling is to reduce the variation in the prediction process. Hence,
over-fitting of data is minimized by bagging. Bagging was used for the classification of NSL-KDD test
dataset by voting in [6]. The classification process used random tree and the accuracy by bagging was
highest among the other methods at the test phase. There are several research works in this domain
that used, NSL-KDD and UNSW-NB15 datasets either separately [7–11] or together for comparative
analysis [12–17]. A partial list of where these two datasets and their predecessors were used was
presented in [17]. Both these datasets provided features which enable deployment of successful
classification systems.

Boosting is also an ensemble learning method. It ensembles weak prediction models for its
prediction or classification purpose. Gradient boosting algorithm is a boosting method and Extreme
Gradient Boost or XGBoost is a type of Gradient boosting algorithm. It has fast learning speed and high
accuracy [18]. Both bagging and boosting methods were used on UNSW-NB15 dataset to demonstrate
the performance of classifier-based intrusion detection systems [19]. In this comparative analysis,
boosting method performed better than the bagging method by significantly reducing the number
of false positives. Similarly, boosting method outperformed the bagging method in improving the
classifier’s performance. In [20], both bagging and boosting methods were also used with specific
features in the NSL-KDD datasets that resembled sensor node attack of Internet of Things (IoT). Eleven
machine learning algorithms were used, and their malware detection performance were compared.
The authors reported ensemble and tree-based methods to be most accurate. XGBoost, a tree-based
ensemble method, outran all the other algorithms used in [20], with the accuracy of 97% in attack
detection while the bagging technique had a high accuracy of 96.7%.

A wrapper method measures how useful a feature or a combination of features are in successfully
classifying records in a dataset. The goodness of selected features is evaluated, via a learning
algorithm [21]. These features are then passed (by the wrapper method) to a predictive model
that evaluates the subset [22]. Since the wrapper method does not choose features based on correlation
or other forms of univariate statistics, they are known to create good feature sets [21] that are validated
based on performance. The wrapper method is superior than the other comparable methods in
evaluating the goodness of the selected features [21–25]. This method can also be used to select the
best subsets from the features. Wrapper method is also combined with other methods of feature
selection and feature construction for an enhanced performance [24]. Some common wrapper methods
include recursive feature selection algorithms or sequential feature selection algorithms. Wrapper
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methods have been successfully applied in cybersecurity data mining for feature selection. A wrapper
method based feature selection approach has previously been tested on National Security Laboratory
NSL-KDD dataset [26]. The authors claimed that they did not use the Third Knowledge Discovery and
Data Mining Tools Competition Dataset KDD-CUP as it is the earlier version of NSL-KDD data set and
NSL-KDD is superior to KDD-CUP dataset. The authors reduced the features present in this dataset
by a percentage close to 60%. In [13], the authors applied a Hybrid Filter-Wrapper feature selection
method to detect distributed denial-of-service (DDoS) attack. During the application of this hybrid
method, they claimed to reduce the number of features from 40 to 9 with a high accuracy of DDoS
detection. Feature selection was applied on KDD dataset, but mostly on the KDD99 version rather
NSL-KDD [27]. For example, a wrapper method’s variation was used for feature selection using both
KDD99 and UNSW-NB15 dataset [14]. To be noted, the authors used KDD99 instead of NSL-KDD.
Their proposed method reduced the number of features to 18 and 20 respectively for KDD99 and
UNSW-NB15.

Deep Learning [28,29] has also been successfully explored in this realm. A deep belief network
was used for cyber attack detection using port scanning method where the model was tested using two
security datasets UNSW-NB15 and NSL-KDD [16]. The proposed algorithm had a higher accuracy with
low false positives. The authors mentioned about using the algorithm with real time malicious packets
to verify the efficacy of these datasets and concluded that the NSL-KDD and UNSW-NB15 datasets
have similar signatures to that of actual malware packets. In [17], an intrusion detection system, based
on a random forest classifier, was developed, and tested using three datasets. Two of the datasets
were UNSW-NB15 and NSL-KDD . These datasets have also been used to verify the performance
of a network anomaly detector by analyzing network traffic in [15] using sparse-autoencoders.
For UNSW-NB15 dataset, the anomaly detector’s training phase used 206, 138 records and the testing
phase used 51, 535 records. For the NSL-KDD dataset, there were 118, 813 records for training and
29, 704 records for testing. The detector performed better on the UNSW-NB15 dataset, compared to the
NSL-KDD dataset. The authors mentioned that the reason of such performance is that UNSW-NB15
has more records.

To our knowledge there has been no significant work done on a dynamic feature selection
approach for identifying malware from packet information to strengthen cybersecurity. In our
approach, we combine different algorithms and use tuning parameters to generate feature subsets
that could provide the best performance for malware detection. We then use employ a meta-learning
approach to use the selected feature subsets and train multiple machine learning algorithms for accurate
prediction. To ensure the viability of the proposed approach, we test the model on the NSL-KDD as
well as UNSW-NB15 datasets. Experiments revealed that this new approach significantly outperforms
standard classification algorithm such as Naïve Bayes. We also determine that removal of least
important features significantly improves the prediction capability of the meta-learning algorithms
while reducing complexity.

3. Algorithms Used for Dimensionality Reduction

Feature selection methods among other benefits contribute towards increasing classification
accuracy [30]. It is helpful in reducing the number of irrelevant features that when included in the
predictive model would increase computational complexity and training time but provide negligible or
no increase in prediction accuracy [31]. A combination of methods for feature selection in this research
has been discussed in this section.

3.1. Univariate Feature Selection

To select the most relevant features, univariate feature selection method utilizes univariate
statistical tests to return a list of features which are ranked depending on the scoring function used.
This can be an effective pre-processing step to retrieve the most significant features in a dataset that
contribute to prediction accuracy significantly. To perform the feature selection process, a one-way
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ANOVA F-test was performed. Like Naïve Bayes Classifier, the one-way ANOVA (Analysis of variance)
F-test ensures that there is no relationship between the feature attributes used to accurately classify the
dependent attribute. There is higher degree of variance if the means obtained from groups of data
is different from the global mean derived from the dataset. Thus, it successfully returns the ratio of
the inter-group to intra-group variability in a sample. ANOVA was selected over the T-test to give
more stability and reduce the type 1 error while comparing population means of multiple groups.
ANOVA is very effective in determining the difference of means of two or more groups at the same
time. This also offers a significant advantage over the common T-test which conducts a repeating set
of comparison between two attributes at a time [32]. Features with a score higher than a percentile
value of 97 were considered useful in this analysis.

3.2. Correlated Feature Elimination

Another feature engineering method applied to reduce the dimensionality of the dataset was
the elimination of highly correlated features. Consider two features a and b where a = x1. . . ., xn and
b = y1. . . .,yn. The degree of similarity between these two features can be represented using a correlation
coefficient. The Pearson Correlation coefficient was used to express the correlation between features.
It was the most logical choice due to two reasons. The complexity of Pearson Correlation is linear
making it efficient [33,34]. Furthermore, the features on which Pearson Correlation was applied were
mostly binary which reduces any drawbacks of having outliers. It is obtained as shown in Equation (1).

r = ∑n
i=1(ai − a)(bi − b)√

∑n
i=1(ai − a)2(bi − b)2

. (1)

Here, a and b denotes the mean of all records in features a and b respectively. The Pearson
Correlation returns a value from−1 to 1. Values closer to 1 denote a high degree of correlation between
the two features. In this research certain features which have a degree of collinearity greater than 0.8
with several other unique features were potential candidates for being dropped.

3.3. Gradient Boosting

Gradient boosting algorithms is an ensemble technique which works by fitting additive trees
on top of existing decision trees and minimizing the line of steepest descent [35]. Gradient boosting
algorithms especially XGBoost [18] are especially useful for classification due to their efficiency and
scalability [36]. Boosting as the name suggests works by increasing the strength of weak learners.
Once a decision tree is derived from preliminary classification of a dataset, the loss function for
that tree is also calculated. This loss function is derived from the coefficients that are used to fit the
model. In subsequent iterations, the model works to decrease this loss function by increasing the
prediction accuracy for classification. For regression problems, the model tries to reduce the difference
between the observed and predicted values. In this research, XGBoost was implemented on the two
datasets. The algorithm was able to identify the features, which were highly important and contributed
significantly towards classification. The trained model also returned a set of features that provided
little or no contribution towards classification. This information was used in the later stages to exclude
less important features for downstream analysis.

3.4. Information Gain

Information gain or mutual information refers to the probability theory of the mutual dependency
between variables. In this scenario, it represents how much information can be obtained about the
dependent feature from any of the independent features selected for evaluation. Information gain
is a metric used in decision trees to evaluate how good a split has been made in a decision tree to
classify the dataset. A higher information gain is derived when there is a pure split in a node [37].
A pure split denotes that the node is split in such a way that all the records belong to a single class. An



J. Cybersecur. Priv. 2021, 1 203

impure split denotes a node that produces a split where the records are evenly distributed among all
the classes. An impure split is not useful since it is not able to classify records with higher accuracy [38].
Although information gain is a useful metric for evaluation, it suffers from cardinality where it favors
attributes with larger number of values. To compensate for this problem, information gain ratio is
used to decide a successful split [39]. It is a ratio of the Information Gain to Split Entropy. Split entropy
is also referred to as the Intrinsic Value. Equation (2) denotes the Information Gain from X on Y. Here
H(Y) denotes the entropy of feature Y and H(Y|x) denotes the entropy of Y given the attributes of
feature x. Information gain ratio is obtained by dividing the information gain by intrinsic information.

IG(Y, x) = H(Y)−H(Y|x). (2)

3.5. Wrapper Method Application

Wrapper methods were also included in the feature selection process. There are several benefits
that wrapper methods provide in the feature selection process compared to filtering techniques offered
by ANOVA and information gain used earlier. Since it evaluates all possible combinations of the
features to determine their importance w.r.t other features, it reduces the chances of biases caused by
filter methods such as the ANOVA which treats every feature as independent from another [40].
However, since it is a greedy approach, it suffers from being computationally intensive [40].
The machine learning algorithm used in the wrapper method was random forest classifier [41,42].
It works by creating multiple decision trees. These trees individually classify the records to belong
to a certain class. However the final decision regarding which class the record belongs to is taken by
majority of the votes from the decision trees. This offers a tremendous advantage over a single decision
tree classifier, since there is a high possibility of a single decision tree to incorrectly classify a record
compared to majority of decision trees. Random forest by default uses approximately 500 decision
trees which increases its complexity. It also uses several features to see which combination of features
yields better results. The two wrapper methods used in this research were forward selection and
backward elimination. The training process can be stopped after a certain number of iterations have
been completed or if the model stops finding any substantial increase in accuracy for a set number of
iterations. Random forest also returns how important each feature is in building by computing the
GINI importance value of each feature.

In the forward selection process, the algorithm begins with a single feature among all other
features that produces the best classification result. Once that feature is selected, the algorithm goes
another iteration to locate another feature, which, when paired with the first feature, would further
increase the classification accuracy of the model [43]. This process keeps repeating for certain number
of iterations to identify the combination of features which yields the highest accuracy. The algorithm
also returns features with zero importance denoting that those features provide no contribution to
enhancing the classification power of the model and hence should be discarded. Like forward selection,
the backward elimination wrapper method also works to select a group of important features. However,
instead of selecting one feature at a time and adding features in subsequent iterations, the backward
elimination begins by selecting all the features together and then removing features one at a time with
each iteration that have little or no effect on increasing the effectiveness of the model [43]. Forward
selection does suffer from a drawback. Since the features are added incrementally to the model, there
are scenarios where a combination of features may decrease accuracy and the best possible group
may not be discovered since the combination did not include features selected by forward selection in
the early stages of iteration. A similar problem may arise with backward elimination method. Using
forward and backward selection methodology together allows us to verify if the features selected by
both these methods are consistent and reduce this drawback to some extent. We implemented both
these techniques on the two datasets to select another set of best possible features that can be used
for classification.
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4. Dataset Preprocessing

One of the two datasets used in this research is called the NSL-KDD dataset [44] and is the
successor of the KDD’99 [45] dataset. The NSL-KDD dataset was developed to address shortcomings
that were present in its predecessor [46]. The KDD’99 dataset developed on DARPA’98 Intrusion
Detection System (IDS) evaluation program contained a significant amount of synthetic data. Study
conducted on this dataset revealed that almost 78% of records were duplicated on train dataset and
75% of records were duplicated on test dataset. This redundancy introduced unnecessary bias to
records that were more widely available in the dataset compared to records that were not present
in a significant amount to provide sufficient information for the machine learning model to train
on. NSL-KDD solved this issue by not including duplicate records in both test and train datasets.
NSL-KDD consists of separate test and training datasets. The training dataset has 125,973 records and
the test dataset has 22,544 records, each having 42 attributes that could be used for prediction. There
are three categorical attributes protocol_type, service, and flag. Variables in these categorical attributes
were one-hot encoded before using them as input for training.

One-hot encoding method maps categorical values into integer format [47]. An example of
one-hot encoding method can be derived from [48] where the categorical variables are {apple, orange,
berry}. The one-hot encoding is carried out by using unit vector for each category where apple is
[1, 0, 0], orange is [0, 1, 0] and berry is [0, 0, 1]. This encoding can be written as a 3-dimensional feature
vector {[1, 0, 0], [0, 1, 0], [0, 0, 1]}. The formatted data from one-hot encoding can now be fed into a
machine learning algorithm for training. Examples of such applications are DNA sequencing [49]
where unit value in the vector can represent the position of a DNA component called nucleotide [50],
text representation as numerical matrix [50] where a text can be represented as a one-hot-encoded
matrix. Such matrix can be fed into a convolutional neural network for the text classification. This
encoding method is mostly used as a data pre-processing step. In this paper, the features are mutually
exclusive making it suitable to apply one-hot encoding [51]. Also, the data used in this paper is free
from dirty categories, which is a weakness of one-hot encoding [48].

Following the similar concept, one-hot encoding was applied to the categorical variables in
the NSL-KDD dataset. For example, the feature protocol_type contains TCP (Transmission Control
Protocol), UDP (User Datagram Protocol), and ICMP (Internet Control Message Protocol). which, when
one-hot-encoded, can be represented as [1, 0, 0], [0, 1, 0] and [0, 0, 1] respectively. Features protocol_type,
service, and flag each comprised of 3, 70 and 11 variables respectively in the training dataset which
were one-hot-encoded prior to training. Previous work also used one-hot-encoding on this dataset.
where protocol type, flag and service were transformed into numerical values [52]. One-hot-encoding
assumes that both training and test datasets contain equal number of variables in a feature column.
However, this was not true for the feature service since the number of variables in test and training data
were different. In the test dataset, there were 64 variables while the training dataset had 70. To address
this issue, artificial records were created in the test dataset with the missing variables before applying
one-hot-encoding. The application of one-hot-encoding on categorical variables mentioned above
along with the existing continuous attributes now yielded 123 training features from the previously
existing 42 features.

The UNSW-NB15 [53] dataset was also used to verify the usefulness of this feature engineering
methodology. The dataset was generated in the Cyber Range Lab of the Australian Centre for Cyber
Security using the IXIA PerfectStorm tool. The 100 Gb of raw traffic data captured by the tcpdump tool
had 49 attributes used to identify 9 different types of attacks. The attributes were collected by the lab
using Argus, Bro-IDS and a collection of 12 models developed specifically for extracting these features.
In this research the training dataset that consisted of 82,332 records and testing dataset having 175,341
records were merged. This was followed by an 80–20 split where 80% of the records selected at random
were used for training and 20% used for testing. This additional step was carried out to give the
proposed feature engineering model more information for training. Implementing one-hot-encoding
on the categorical variables generated 196 trainable features. Finally, the prediction class label was



J. Cybersecur. Priv. 2021, 1 205

converted to a binary class label where 0 represented a normal packet and 1 represented that the packet
was malicious.

5. Experimental Analysis

In this section, we test the efficacy of the proposed feature engineering model on the two
datasets. The overall diagram of the entire process is summarized in Figure 1. In the first stage,
features are selected independently by four algorithms used for dimensionality reduction. In stage 2,
a meta-learning approach uses a group of selected features from the first stage to train five separate
machine learning algorithms. These algorithms include a hybrid of Convolutional Neural Network
(CNN) and Long Short term Memory (LSTM) proposed in [54], Bidirectional Long Short Term Memory
(BiLSTM), Gated recurrent units (GRU), Decision Tree and Random Forest. Prediction accuracies were
compared before and after application of the feature engineering steps on the datasets to validate the
importance of this approach.

Figure 1. Illustration of the entire approach.

5.1. Univariate Feature Selection

Univariate feature selection was applied by using one way ANOVA F-test with the second
percentile method on both NSL-KDD and UNSW NB-15 datasets. Out of the 123 input features
generated by one-hot encoding of categorical attributes and adding continuous attributes of the
NSL-KDD dataset, ANOVA F-test suggested only 13 features. From the 196 continuous and one-hot
encoded categorical features in the UNSWNB-15 dataset, the ANOVA F-test suggested a list of only
20 features as being very important. These features are listed in Table 1.
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Table 1. Important features from ANOVA test.

UNSW NB-15 Features NSL KDD Features

rate sttl count logged_in

dload swin srv_serror_rate serror_rate

stcpb dtcpb dst_host_srv_count same_srv_rate

dwin dmean dst_host_serror_rate dst_host_same_srv_rate

ct_srv_src ct_state_ttl service_http dst_host_srv_serror_rate

ct_src_dport_ltm ct_dst_sport_ltm flag_S0 service_private

ct_dst_src_ltm ct_src_ltm flag_SF

ct_srv_dst proto_tcp

service_dns state_CON

state_FIN state_INT

5.2. Correlated Feature Elimination

Based on the linear complexity, Pearson correlation was chosen for feature elimination process. We
performed Karl Pearson Correlation test on both NSL-KDD and UNSW-NB15 datasets. The correlation
threshold limit was set to 80 percentile. Features which have correlation value more than the set
threshold were listed as highly correlated features and shown in Table 2. Several features appeared
multiple times which enabled us to remove highly correlated features and reduce the model complexity.

Table 2. Pearson Correlation values.

UNSW NB-15 Dataset NSL-KDD Dataset

Feature Corr. Feature Corr. Feature Corr. Feature Corr.

sbytes spkts 0.964 num_root num_compromised 0.998

dbytes dpkts 0.973 is_guest_login hot 0.860
sloss spkts 0.972 srv_serror_rate serror_rate 0.993

sloss sbytes 0.996 srv_rerror_rate rerror_rate 0.989

dloss dpkts 0.979 dst_host_same_srv_rate dst_host_srv_count 0.897

dloss dbytes 0.997 dst_host_serror_rate serror_rate 0.979

dwin swin 0.981 dst_host_serror_rate srv_serror_rate 0.978

synack tcprtt 0.946 dst_host_srv_serror_rate serror_rate 0.981

ackdat tcprtt 0.919 dst_host_srv_serror_rate srv_serror_rate 0.986

ct_dst_ltm ct_srv_src 0.841 dst_host_srv_serror_rate dst_host_serror_rate 0.985

ct_src_dport_ltm ct_srv_src 0.862 dst_host_rerror_rate rerror_rate 0.927

ct_src_dport_ltm ct_dst_ltm 0.961 dst_host_rerror_rate srv_rerror_rate 0.918

ct_dst_sport_ltm ct_srv_src 0.815 dst_host_srv_rerror_rate rerror_rate 0.964

ct_dst_sport_ltm ct_dst_ltm 0.871 dst_host_srv_rerror_rate srv_rerror_rate 0.970

ct_dst_sport_ltm ct_src_dport_ltm 0.908 dst_host_srv_rerror_rate dst_host_rerror_rate 0.925

ct_dst_src_ltm ct_srv_src 0.954 service_ftp is_guest_login 0.820

ct_dst_src_ltm ct_dst_ltm 0.857 flag_REJ rerror_rate 0.835

ct_dst_src_ltm ct_src_dport_ltm 0.872 flag_REJ srv_rerror_rate 0.841

ct_dst_src_ltm ct_dst_sport_ltm 0.836 flag_REJ dst_host_rerror_rate 0.813

ct_ftp_cmd is_ftp_login 0.999 flag_REJ dst_host_srv_rerror_rate 0.829

ct_src_ltm ct_dst_ltm 0.901
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5.3. Gradient Boosting

A benefit of using gradient boosting tree is retrieving importance scores for each attributes in a
relatively straight forward manner when the boosted tree is constructed. Importance for every single
decision tree is calculated by the amount that each attribute split improves the performance of the
model. For both datasets, the cut-off was set by the cumulative feature importance of the features as
99%. The cumulative feature importance is the weighted average of individual feature importance.
It is the mean of all the importance values evaluated by the decision trees within the model. Out of
the 123 features obtained from one-hot-encoding of the NSL-KDD dataset, the XGBoost classifier
suggested 51 very important features. It also assigned 72 features as having zero importance. Out of
the 196 features in the UNSW-NB15 dataset after one hot encoding, the XGBoost classifier returned
47 features as important and 149 features as having zero importance. The graphs shown in Figure 2a,b
highlight these important features.

(a) (b)

Figure 2. Gradient Boosting importance values. (a) NSL-KDD dataset. (b) UNSW dataset.

5.4. Information Gain

Information gain mostly calculates the entropy reduction from transforming dataset. Besides
being used in decision tree classifiers to define the best split ratio, it is also used to evaluate every
feature in the training dataset in the context of a target variable. We calculated both information
gain and gain ratio to check for any imbalance dependency between features. For both datasets, we
limited our information gain output list size to same as the important feature list size as discussed
above. Hence, the top 51 information gain feature list for NSL-KDD dataset and 47 feature list for the
UNSW-NB15 dataset were recorded.

5.5. Wrapper Method Application

Wrapper method employs a greedy approach, which works by evaluating multiple subsets of
features with a machine learning algorithm. This algorithm employs a search strategy to find the space
of possible feature subsets and evaluates the performance by multiple iterations. In this experiment,
random forest classifier was used to evaluate the performance for the feature subsets. We performed
both forward sequential feature selection process and backward sequential feature elimination process
to select the most important features. The output size was limited to 47 features for the UNSW-NB15
and 50 features for the NSL-KDD dataset based on Area Under the Curve (AUC) score. The features
returned by the wrapper method are shown in Table 3.

5.6. Dynamic Feature Selection Using a Meta-Learning Approach

Algorithm 1 explains how features were selected for meta-learning. We begin by storing the
output from each of the feature selection processes in six initial lists labelled L1 to L6. For lists L3
and L5 we begin by selecting all features that are common among Information Gain and Information
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Gain Ratio. In the next phase, we begin by removing all features from L1, L2, L3 and L6 that had no
importance as reported by list L4 from XGBoost. This step allows us to eliminate any features that do
not contribute towards enhancing the performance of the classification model prior to feeding them to
the meta-learner.

In the final stage, the results from these four lists are evaluated to find the common features.
These common features will serve as input for our meta-learner. While common features are being
selected, we have also analyzed this common feature list L and removed features that appear to have a
high correlation with other features and appear multiple times as reported by the output of correlated
feature elimination processed and stored in D[ ]. Finally the list L[ ] is sorted based on the XGBoost
importance values to ensure that the most relevant features are selected earlier in the training process.
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Algorithm 1 Prepare Datasets for Meta-Learners.
# Step 1: Initialize the arrays by running the following methods.
L1[ ]← ANOVA F-test
L2[ ]← XG-Boost Most Important Features
L2[ f eature : score]← Dictionary with XG-Boost Importance values and scores
L3[ ]← Information Gain
L4[ ]← XG-Boost Zero Importance
L5[ ]← Information Gain Ratio
L6[ ]←Wrapper Method Output
# Step 2: Remove Zero Importance Features from L1, L2, L3, L6
if L3 == L5 then

Return L3
else

L3← L3∪ L5
end
ZeroF[]← [L1,L2,L3,L6]
j← 0
while j < len(ZeroF) do

TempList← ZeroF[j]
for (i = 0, i < len(L4), i++) do

k← 0
while k < len(TempList) do

if (L4[i] == TempList[k] then
Remove TempList[k];

end
k++;

end
end
j ++

end
# Step 3: Combine output and remove correlated features
D[ ]← Correlated Features
L← L1

⋂
L2

⋂
L3

⋂
L6

for (i = 0, i < len(D), i++) do
k← 0
while k < len(L) do

if (L[k] == D[i] then
Remove L[k];

end
k++;

end
end
Sort List L[ ] by XGBoost importance values from L2[ f eature : score]
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Table 3. Important features from Wrapper Method.

NSL KDD Features UNSW NB-15 Features

duration src_bytes dpkts dur

wrong_fragment num_failed_logins rate sbytes

logged_in root_shell dload dttl

count dst_host_count swin sloss

dst_host_srv_count dst_host_same_srv_rate ackdat tcprtt

dst_host_diff_srv_rate dst_host_same_src_port_rate response_body_len trans_depth

dst_host_srv_diff_host_rate dst_host_serror_rate ct_state_ttl ct_srv_src

dst_host_rerror_rate diffic ct_src_dport_ltm ct_dst_ltm

Protocol_type_icmp Protocol_type_tcp ct_ftp_cmd ct_dst_sport_ltm

service_IRC service_echo ct_src_ltm ct_flw_http_mthd

service_eco_i service_efs proto_any proto_3pc

service_exec service_ftp proto_ax.25 proto_aris

service_ftp_data service_gopher proto_ddp proto_br-sat-mon

service_http service_http_2784 proto_i-nlsp proto_fc

service_http_8001 service_ldap proto_idrp proto_idpr

service_login service_netbios_ns proto_igp proto_ifmp

service_nnsp service_ntp_u proto_ipv6-frag proto_ipcv

service_pm_dump service_red_i proto_netblt proto_iso-tp4

service_remote_job service_supdup proto_pvp proto_pgm

service_telnet service_tftp_u proto_sdrp proto_scps

service_uucp service_uucp_path proto_tlsp proto_secure-vmtp

service_vmnet service_whois proto_trunk-2 proto_tp++

flag_REJ flag_RSTO proto_vines proto_ttp

flag_RSTR flag_S1 proto_wb-mon

flag_S3 flag_SF

5.7. Meta-Learner

Meta-learning, which is inspired by cognitive psychology is a proven effective method for machine
learning techniques to excel at mastering predictive skills [55,56]. When a meta-learner is applied to
the machine learning algorithm, it uses prior experience to change certain aspects of the algorithm.
In simple terms, a meta-learner can be defined as a way that enables learning algorithms to learn
themselves [57]. Machine learning algorithms are getting better over time, but still lack the versatility.
This can be achieved by intelligent amalgamation of meta-learning along with similar techniques such
as reinforcement learning, transfer learning and active learning [58,59]. Researchers also focus on using
meta-learning for hyper-parameter tuning, neural network optimization and specifying best network
architecture. In this research, we have used the meta-learner to optimize hyper-parameters through
a bagging ensemble process [60]. The algorithm attempts to find the best features after carefully
investigating the performance and robustness of the predictive model. This dynamic feature selector
takes the output of ANOVA F-test, Pearson Correlation, Gradient Boosting, Information Gain and
Wrapper Method to find out the best feature subset. What makes it dynamic is the nature of the
meta-learner in this approach. The meta-learner processes feature that have been deemed as important
by various feature selection processes. It then selects a subset of these best features and trains several
machine learning models. The bagging ensemble process uses five different algorithms as mentioned
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earlier, namely, a hybrid of CNN+LSTM proposed in [54], BiLSTM, GRU, Decision Tree and Random
Forest. Based on how accuracy increases with every instance, the meta-learner dynamically adds
and adapts its training to include new features to the already existing features used for prediction.
Hence the meta-learner dynamically determines on per-instance training results as to what features
are important for generating a high prediction accuracy.

5.7.1. CNN-LSTM

The hybrid of CNN and LSTM was developed in two steps namely, feature extraction based on
CNN followed by a feature fusion part based on LSTM. This specific hybrid approach proved effective
on NSL-KDD dataset without any feature reduction [54]. CNN is used since it has a proven track record
for accurate classification in several domains such as image classification and prediction on multivariate
datasets. Using LSTM modules enabled us to incorporate Recurrent Neural Network (RNN). An RNN
is able to perform sequence modelling. Unlike a CNN, an RNN can help to create interaction between
input sequences. To predict the next element of a series or a batch, RNN uses the previous features or
elements thereby creating a loop which helps to keep track of this information [61–65]. This makes
RNN extremely suitable for finding patterns in time series datasets [66], especially in the case of
network intrusions since the datasets have multiple features like sessions.

The first part of this approach is feature extraction based on CNN. This is followed by a feature
fusion part based on LSTM as shown in Figure 3. In the first stage, the forward propagation process is
applied as it assumes the l layer is a convolution layer and the l − 1 layer is a pooling layer or another
input layer for the next extraction process. The entire process can be represented using Equation (3).
The f here denotes the activation function, b represents the offset, k represents the convolution kernel,
Mj represents the input feature map from the previous layer and variable xji represents the jth feature
map of the lth layer. The summation represents the total result obtained from a convolution operation
of all the feature maps in l − 1 layer and the jth convolutional kernel of layer l.

xji = f (∑ iεMjxil−1 × kijl + bjl). (3)

Figure 3. Illustration of the Hybrid Convolutional Neural Network (CNN) and Long Short term
Memory (LSTM) architecture.

In a CNN, information may get lost as the network gets deeper due to the vanishing gradient
problem. This is referred to as having a short term memory. LSTM modules is comprised of gates
and a cell state. The cell state can be designated as a highway of information where features from a
certain layer can be directly passed down several layers without any modification. The gates behave
like neural networks and are responsible for knowledge discovery during training. These two features
overcome the drawbacks of short term memory found in a CNN.

In the feature extraction stages, the sequential CNN model was comprised to 4 convolution
layers with a max-pooling layer of size 2 placed after every 2 convolution layers. Relu was used as
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an activation function for both convolutions. For the first convolution and pooling layer, there were
48 convolutional kernels with with a size of 3. The feature fusion consisting of LSTM was used where
the output size of the LSTM part as 100. Finally, the classification results of the attack types were
obtained through the Softmax function for better stochastic gradient descent. Number of epochs was
set to 10. To prevent over-fitting issue, we used dropout as 0.1.

5.7.2. GRU

A gated recurrent unit (GRU) is a newer version of RNN and shares similar features with an
LSTM. In a GRU, the cell state has been replaced by a hidden state to transmit information. Two new
gates called reset and update are present in a GRU. The reset gate decides how much information
needs to be forgotten from the previous layers, while the update gate decides what new information is
required to be included in the LSTM. GRUs also offer faster training due to less operations. The GRU
model was built using 2 GRU layers added sequentially. Each of these layers had 100 units. The final
layer used a Softmax activation like before and trained for 10 epochs.

5.7.3. Bi-LSTM

Bi-LSTM or Bi-directional Long Short Term Memory is another variant of RNN which was tested
in this meta-learning approach. In a traditional LSTM or RNN, the information propagates sequentially
and in forward direction only, enabling future predictions based on past events. Bi-LSTM overcomes
this unidirectional problem by training the model in both forward and reverse directions. BiLSTM
usually brings together two independent RNNs which enable running input in two directions as
future and past [67,68]. Our goal to using Bi-LSTM was to extract contextual information from every
time interval in features like sessions to observe if the accuracy could be increased. The meta-learner
included 2 Bi-LSTM layers, each having 50 LSTM units for training with Softmax activation. The
Bi-LSTM was trained for 10 epochs.

5.7.4. Decision Trees and Random Forest

Tree based algorithms sometime outperform neural networks because they approach problems
in a similar way by deconstructing them piece-by-piece, instead of finding one complex decision
boundary that can separate the entire dataset like Support Vector Machine (SVM) or Logistic Regression.
Tree-based methods progressively split the feature space along various features to optimize the total
gain where as neurons of neural networks computes the probability of specific section of feature space
with various overlapping. To compare the performance of neural networks we also introduced two
tree-based algorithms; Decision Tree and Random Forest to get deterministic view.

Random Forest constructs multiple decision trees and then uses a voting mechanism to identify
a record in a particular category based on the majority of votes that it received. Random Forest has
been proven to generate a higher prediction accuracy since it uses results from multiple decision trees
to make a prediction. The only drawback of Random Forest has to do with memory allocation for
multiple decision trees. GINI index for used to identify feature importance for both decision trees and
random forest.

5.7.5. Algorithm

Algorithm 2 highlights the entire process. We begin by using L which consists of the list of
selected features from Algorithm 1. The meta-learner uses a subset of these features to begin training.
We selected this subset to have the same feature size as the ANOVA F-Test list L1. Hence, 13 features
from NSL-KDD and 20 features from UNSW datasets were selected to begin with. The meta-learner
trains on this subset L′ and records the accuracy in a list P. If the accuracy of previous iteration is less
than the accuracy of current iteration, we add two subsequent features from L to the feature subset L′.
However, if it is observed that the accuracy starts decreasing over two subsequent iterations, we stop
the meta-learner and record the highest accuracy. The meta-learner also stops if it has added all the
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features from L to L′ and records the final accuracy. Tables 4 and 5 shows the list of features that were
considered most important in the dynamic feature selection process by the meta-learner after feature
selection algorithms were used. These features were selected by the meta-learner from the 123 one-hot
encoded input features in the NSL-KDD dataset and the 196 trainable features on UNSW-NB15 dataset.
In Figure 4a,c we demonstrate the accuracy of the NSL-KDD and UNSW datasets respectively which
are generated from the training datasets using the selected features in Tables 4 and 5 by sequential
CNN-LSTM, GRU and Bi-LSTM models. In Figure 4b,d we demonstrate the training loss of the
NSL-KDD and UNSW datasets respectively using those selected features.

Algorithm 2 Meta-Learners.

Data: L[ ]; // List of selected features L from Algorithm 1
Data: len(L1[ ]); // Length of ANOVA feature list from Algorithm 1
Result: L′; // Final Feature List
Result: P[ ]; // Accuracy List derived from Meta Learner
# Begin Meta-Learner Approach
Initialize L′[ ];
for (i = 0, i < len(L1), i++) do

L′[i]← L[i] ; // Copy initial features to L’
end
A← len(L1);
j← 0;
while True do

P[i]←Meta-Learner (CNN-LSTM, GRU, Bi-LSTM, DT, RF) on L′[ ];
if A < len(L) then

break; // Stop Meta Learner since no more features to add
end
if i > 2 then

if (P[i] < P[i-1] and P[i] < P[i-2] then
break; // Stop Meta Learner since accuracy is decreasing

else
L′ ← L′ + L[A] + L[A+1] ; // Add two more features from L
A← A + 2;

end
end
j ++;

end
print(P[j]); // Print highest accuracy
print(MetaLearnerStats);



J. Cybersecur. Priv. 2021, 1 214

Table 4. Importance of final selected featues of NSL-KDD.

Features XGBoost
Imp. Inf. Gain Features XGBoost

Imp. Inf. Gain

dst_host_srv_count 383.4 0.4179 count 275.3 0.4164

diffic 1223.5 0.2612 dst_host_count 309.4 0.2089

dst_host_diff_srv_rate 306.4 0.4518 dst_host_rerror_rate 269 0.0979

dst_host_same_src_port_rate 206.1 0.2358 dst_host_same_srv_rate 336.4 0.4004

dst_host_serror_rate 273.2 0.3986 dst_host_srv_diff_host_rate 309 0.2614

duration 196.3 0.0647 flag_SF 58.4 0.4892

logged_in 123.9 0.3063 root_shell 176.5 0.0018

service_http 98.4 0.0011 src_bytes 1321.7 0.7202

(a) (b)

(c) (d)
Figure 4. Accuracy and Loss values generated from final feature list selected by meta-learner.
(a) NSL-KDD Accuracy. (b) NSL-KDD Loss. (c) UNSW Accuracy. (d) UNSW Loss.
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Table 5. Importance of final selected featues of UNSW.

Features XGBoost
Imp. Inf. Gain Features XGBoost

Imp. Inf. Gain

sbytes 2423.9 0.4722 dtcpb 1575.6 0.3811

ct_srv_src 1572.6 0.0827 stcpb 1519.7 0.3813

ackdat 1311.9 0.3401 ct_srv_dst 1215.6 0.0974

tcprtt 1098.5 0.3599 dur 1033.7 0.5392

ct_src_ltm 911 0.0745 dload 891.1 0.4938

ct_dst_ltm 712.2 0.0833 rate 664.1 0.5397

dmean 663.9 0.2837 response_body_len 506.2 0.0359

ct_src_dport_ltm 462.9 0.0941 ct_dst_sport_ltm 379.1 0.1502

sloss 321.8 0.1098 ct_state_ttl 281.1 0.3137

dwin 231.4 0.0582 dpkts 177.1 0.2427

ct_flw_http_mthd 152.8 0.0009 is_ftp_login 115.6 0.0001

service_dns 102.3 0.0368 trans_depth 92.3 0.0001

service_http 91.9 0.00006 proto_tcp 79.5 0.0677

state_CON 49 0.0616 state_FIN 25.4 0.0479

state_INT 22.2 0.1473

6. Discussion

Table 6 shows the prediction results before and after the application of dynamic feature selection
on NSL-KDD datasets. The accuracy, precision, F1-score and the Area Under Curve (AUC) in
every experiment resulted in consistent performance improvement using the Dynamic Feature
Selection algorithm. We did observe the random forest algorithm provide the best performance in the
meta-learner. Accuracy while using random forest jumped from 99.54% to 99.64% while reducing the
feature size from 123 to 50.

Table 7 represents the output of Dynamic Feature Selector algorithm of UNSW-NB15 dataset.
The UNSW-NB15 dataset also showed consistent performance increase using the best algorithm as
random forest from 90.98% to 92.46% while reducing the feature size from 196 to 47. GRU produced a
better precision, but the meta-learner selected random forest algorithm to produce output based on
the overall performance metrics such as F1 score, accuracy and AUC. Accuracy is the most intuitive
performance measure and a simple way to observe prediction, but it is often misleading due to
specificity and sensitivity [69]. Also, since the class distribution is uneven, F1 score is a better indicator
to select robustness of the model. For both datasets, dynamic feature selector shows an increment of
F1 score and accuracy which clearly states that, this method reduces the feature size effectively with
increment in performance as well.

We also applied Naive Bayes algorithm on the NSL-KDD and UNSW-NB15 datasets directly
without using feature selection and a meta-learner to validate if our proposed approach enhances
prediction accuracy. An accuracy of 53.32% was observed on NSL-KDD and 73.58% on the UNSW-NB15
test datasets after fitting the model on training datasets. These results further reveal the significance of
our proposed approach.
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Table 6. NSL-KDD Performance Metrics.

NSL-
KDD

Performance without Dynamic Feature Selector Performance with Dynamic Feature Selector

CNN+
LSTM GRU Bi-

LSTM
Decision

Trees
Random

Forest
CNN+
LSTM GRU Bi-

LSTM
Decision

Trees
Random

Forest

Accuracy 98.96 97.04 95.47 97.94 99.37 99.1 99.04 95.15 99.63 99.65

F1 98.21 98.43 93.50 98.01 99.33 99.15 99 95.05 99.62 99.63

Precision 96.92 97.74 95.70 98.79 99.63 99.35 98.74 96.6 99.78 99.84

AUC 98.93 98.72 96.45 97.13 99.54 99.17 99.05 95.15 99.63 99.64

Table 7. UNSW-NB15 Performance Metrics.

UNSW-
NB15

Performance without Dynamic Feature Selector Performance with Dynamic Feature Selector

CNN+
LSTM GRU Bi-

LSTM
Decision

Trees
Random

Forest
CNN+
LSTM GRU Bi-

LSTM
Decision

Trees
Random

Forest

Accuracy 91 90.12 88.93 85.31 90.98 91.91 90.75 89.28 86.8 92.76

F1 92.07 91.24 90.32 88.96 93.35 93.7 93.08 91.53 89.5 94.44

Precision 91.4 97.84 91.89 87.99 95.96 94.23 97.35 90.61 88.01 96.11

AUC 91 90.87 88.43 84.91 91.74 91.38 91.78 88.2 85.49 92.73

7. Conclusions

Network security has become an essential issue in any distributed system. Although a lot
of machine learning algorithms have been experimented with to increase the efficacy of intrusion
detection, it is still a major challenge for existing intrusion detection algorithms to achieve good
performance. In this research we have dealt with two high dimensional network traffic datasets
and proposed a novel Dynamic Feature Selector (DFS) algorithm which is based on feature selection
and meta-learning technique. Our approach combined five prominent algorithms to process two
well established datasets NSL-KDD and UNSW-NB15. Primarily, we conducted multiple feature
engineering steps using statistical analysis like univariate test and Pearson coefficient test along with
XGBoost importance, wrapper technique and information gain ratio to reduce feature dimensionality.
The outputs generated from these algorithms were documented and used as input for a novel bagging
ensemble technique known as the meta-learner. This meta-learner is used as an optimizer for feature
selection and ranking from multiple feature subsets. The output of different feature selection process
and algorithms are filtered in a stochastic process with the help of the meta-learner which consisted
of five state of art classification techniques to increase the performance of the model. With the usage
of DFS, we were able to reduce the number of features by more than 50% and increase the predictive
performance significantly. DFS also suggested the best algorithms out of the five machine learning
algorithms which is reproducible and deployment ready.

Future research will include the extension of the DFS algorithm for reinforcement learning to
prevent the intrusion in network. Self-learning techniques will enhance the performance of DFS
and extend its application to datasets from other domains to produce a robust machine learning
model. DFS will also be implemented on live network traffic to document its performance and adjust
hyper-parameters of meta-learner to enhance cybersecurity.
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Abbreviations

The following abbreviations are used in this manuscript:

RNN Recurrent Neural Network
CNN Convolutional Nueral Network
LSTM Long Short Term Memory
Bi-LSTM Bidirectional Long Short Term Memory
GRU Gated Recurrent Units
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