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Abstract: This research delves into the intricate dynamics of landslides, emphasizing their con-
sequences on transportation infrastructure, specifically highways and roadway bridges in North
Carolina. Based on a prior investigation of bridges in Puerto Rico after Hurricane Maria, we found
that bridges above water and situated in valleys can be exposed to both landslide and flooding risks.
These bridges faced heightened vulnerability to combined landslides and flooding events due to
their low depth on the water surface and the potential for raised flood heights due to upstream
landslides. Leveraging a dataset spanning more than a century and inclusive of landslide and bridge
information, we employed logistic regression (LR) and random forest (RF) models to predict landslide
susceptibility in North Carolina. The study considered conditioning factors such as elevation, aspect,
slope, rainfall, distance to faults, and distance to rivers, yielding LR and RF models with accuracy
rates of 76.3% and 82.7%, respectively. To establish that a bridge’s location is at the bottom of a valley,
data including landform, slope, and elevation difference near the bridge location were combined to
delineate a bridge in a valley. The difference between bridge height and the lowest river elevation
is established as an assumed flooding potential (AFP), which is then used to quantify the flooding
risk. Compared to traditional flood risk values, the AFP, reported in elevation differences, is more
straightforward and helps bridge engineers visualize the flood risk to a bridge. Specifically, a bridge
(NCDOT ID: 740002) is found susceptible to both landslide (92%) and flooding (AFT of 6.61 m) risks
and has been validated by field investigation, which is currently being retrofitted by North Carolina
DOT with slope reinforcements (soil nailing and grouting). This paper is the first report evaluating
the multi-hazard issue of bridges in valleys. The resulting high-fidelity risk map for North Carolina
can help bridge engineers in proactive maintenance planning. Future endeavors will extend the
analysis to incorporate actual flooding risk susceptibility analysis, thus enhancing our understanding
of multi-hazard impacts and guiding resilient mitigation strategies for transportation infrastructure.

Keywords: bridges in valleys; landslide risk; flooding risk; multi-hazards

1. Introduction

Landslides are influenced by geological, geomorphological, topographical, and hydro-
logical factors and represent a substantial natural hazard with evolving consequences for
hillslope morphology and human activities [1–3]. According to the Global Landslide Cata-
log (GLC), which presents landslide events caused only by rainfall conditions, landslides
can occur in any country [4,5]. Figure 1 shows the distribution of landslides occurring
around the world, according to the GLC. The United States has the highest occurrence of
landslides in the world. Reports from landslide-prone regions documenting substantial
economic losses have been recorded in the United States, Italy, Japan, India, China, and
Germany [6,7]. Impacts including fatalities, injuries, and extensive damage to infrastructure
and land, as seen in Europe, Ethiopia, and China, underscore the widespread and varied
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consequences of these events [6–9]. For example, landslides cause an excess of 1 billion
USD in damage and more than 25 fatalities in the United States each year [10].
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Figure 1. Number of landslide events from 2007 to 2023 by country (generated from NASA data).

A landslide can be exacerbated by factors like seismic activity and global warming-
induced rainstorms, leading to the escalating occurrence of landslides [11]. The complex
and challenging task of predicting landslides has driven the international focus on evalu-
ating landslide susceptibility, leading to the development of diverse methods, including
statistical, data mining, and soft computing-based techniques within geographic infor-
mation systems (GISs), aiming to spatially identify vulnerable areas by establishing the
connection between landslide occurrence and relevant environmental factors [3].

Landslides are typically caused by triggering mechanisms, including heavy rainfall,
snowmelt, changes in ground water levels and discharge, earthquakes, volcanic activity,
and disturbance by human activities [12]. Climate change resulted in increased magnitude
and intensity of precipitation events, increased the risk of landslides, and posed significant
hazards toward infrastructure damage, human casualties, and economic losses [3,9,13]. For
example, in 2017, elevated sea surface temperatures fueled the intensification of Hurricane
Maria, which triggered more than 40,000 landslides in Puerto Rico [14]. Figures 2 and 3
show examples of landslides triggered by Hurricane Maria.

The inspiration for the current paper is from the damaged bridges in Puerto Rico after
Hurricane Maria, as reported by FEMA [15]. Hurricane Maria’s intensity has been linked
to climate change and is indicative of current tropical storm scenarios predicted by climate
modeling, which predict fewer but more severe tropical storms with significantly increased
precipitation [16].

Figure 4 shows the torrential rain that resulted in flooding and caused the washout of
a bridge structure and the failure of river embankments in Las Marias, Puerto Rico. In this
particular case, the neighborhood near the bridge was totally cut off from the outside for
several weeks, and the villagers relied on cables suspended across the river to receive their
food and supplies.

Close examination of the bridge in Figure 4 shows a combination of local scour from
massive flooding and embankment slope failures that resulted in the bridge washout. (The
bridge in Figure 4a,b is a replacement bridge under construction.) With a central mountain
range (the Cordillera Central) that has a maximum elevation of 1338 m above sea level,
Puerto Rico’s landscape is characterized by steep slopes in most central parts of the island
and relatively flat coastal plains on the perimeter of the island. As a result, the landslides
triggered by Maria were complicated by the mountainous riverine network.
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Figure 2. Landslide in Puerto Rico after 2017 Hurricane Maria: surface observations indicated
rotational slope failures with debris flows. (a) coastal sand flow, (b) earth flow with high silt content,
(c) multiple slides, and (d) smoothed slide. (Bedrock is mostly volcaniclastic sandstone and siltstone
of Yauco formation, and soils are Maricao Ultisols.) (Photo credit: Shen-En Chen).

The Las Marias bridge (Figure 4) was exposed to severe flooding brought about by the
torrential rain and congested water flow from the upstream landslides, which resulted in
the bridge’s failure. The bridge is situated at the bottom of a valley or gully, which creates a
combination of flooding and landslide risks. Thus, it may be possible to estimate the risk to
a bridge by differentiating where the bridge is situated, whether at the bottom of a valley,
in the middle of a valley, or on a ridgetop.

The current study focuses on landslide impacts on highways and roadway
bridges [17,18]. When occurring near roadways, landslides can suddenly block traffic,
causing collisions and even direct loss of lives. The debris can further create unsafe road
conditions, causing accidents due to drivers encountering obstacles. Large landslides
can cause the total collapse of bridges and overpasses, directly endangering vehicles and
occupants and elevating the risk of accidents due to road closures, obstacles, and damaged
infrastructure. Therefore, landslides are critical geohazards that can undermine the struc-
tural stability of transportation infrastructure, which demands the development of effective
monitoring and new infrastructure resilience strategies [17].
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Figure 3. Landslide in Puerto Rico after 2017 Hurricane Maria: surface observations indicated failure
of rocky slopes. (Bedrock is mostly serpentinite, chert, and calcareous sandstone.) (a) debris flow
with exposed bedrock, (b) slope with rock fragments and (c) rockslide with significant fines. (Photo
credit: Shen-En Chen).

An accurate landslide risk map would be extremely helpful to regional Departments
of Transportation (DOTs) to improve maintenance planning, routing decision-making, and
future site preparation. Ultimately, the outcomes of those improvements can be lifesaving.
However, existing landslide risk analyses do not differentiate bridge locations in terms
of whether they are in valleys or on ridgetops. Hence, this paper attempts to determine
the major storm risks to the bridges in North Carolina by combining the North Carolina
landslide risk information and highway and roadway bridge locations to help identify
critical bridges that may be exposed to the damaging effects of landslides. These bridges
can be differentiated into higher-risk bridges depending on their geographical locations. As
such, we can identify bridges that are likely to experience the combined risks of flooding
and landslides.

This paper explains the mapping methodology for the bridge landslide risks by identi-
fying their geographical situations and validating them through site visits. The following
section describes the study areas and the generation of the landslide database.
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Figure 4. A new bridge under construction in Las Marias—heavy flooding resulted in localized
landslides and the washout of the original bridge. (a) bridge serving trapped residences, (b) bridge
embankment with debris from upstream landslides, (c) scoured embankment, and (d) newly repaired
bridge approach. (Photo credit: Shen-En Chen).

2. Study Area and Landslide Data

As one of the US southeastern coastal states, North Carolina is often impacted by
the same Atlantic hurricanes that hit Puerto Rico (such as the case of Hurricane Maria).
Because of the likelihood of exposure to Atlantic hurricanes, we are interested in studying
the same multi-hazard risks to bridges in North Carolina (NC).

Figure 5a shows the three physiographic regions in North Carolina. North Carolina’s
geography is composed of the eastern Coastal Plain Region (see Figure 5d), the central
Piedmont (see Figure 5c), and the western Appalachian Mountains (see Figure 5b).

The mountain area (26,572 km2) encompasses the Blue Ridge and the Great Smoky
Mountains [19]. The Eastern Continental Divide separates the rivers that flow eastward
into the Atlantic Ocean from those flowing westward toward the Tennessee and Ohio
rivers [19]. The Coastal Plain (59,363 km2) refers to the low-lying areas extending from the
sandy farmland in the east to the Outer Banks, featuring barrier islands and three capes [19].
Last, the Piedmont (43,288 km2), typically described as “the foothills”, is characterized by
rolling hills ranging from 90 to 450 m in elevation [19].

Landslides are a common hazard in the western mountains of NC. For example, the
2005 Pigeon River Gorge rockslide event had direct (e.g., road repair, stabilization costs, etc.)
and indirect (e.g., interruption of business, commerce, tourism because of lengthy detours,
etc.) costs that exceeded 15 million USD [20]. To date, no attempt has been made to discern
the probable landslide risks in North Carolina for specific roadway bridge structures.

To evaluate landslide risks, landslide data from 1900 to 2021 were collected from
the U.S. Geological Survey (USGS). The NC landslide-prone area is roughly 320 km2,
and approximately 99.7% of the landslides occurred in the western mountains, with only
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0.03% of the landslides occurring in the Piedmont [21]. Belair, Jones [21] developed the
US landslide database (version 2.0), and based on the confidence levels, quality of input
data, and method used for identification and mapping of each landslide, they suggested
a scale system for slope susceptibility to landslides [22]. In their database, the authors
recommended that the lowest susceptibility value (1) is for “Possible landslide in the area”
and the highest value (8) is for “High confidence in extent or nature of landslide” [22]. In
our study, landslide areas with values ranging from 5 (a confident consequential landslide
at this location) to 8 were used.
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regions. (a) North Carolina distinct physiographic region distribution, (b) Blue Ridge Mountain area,
(c) Piedmont area, and (d) Coastal Plain area.

3. Materials and Methods
3.1. Landslide and Bridge Inventory

The landslide inventory used in this study is the USGS dataset [21]. The dataset
contains 4794 landslide points and 6653 landslide polygons from 1991 to 2021 (Figure 6).
The database is collected and maintained by different agencies and institutions, such as the
National Aeronautics and Space Administration (NASA), USGS, and the North Carolina
Geological Survey (NCGS).
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Figure 6. Location of landslide points and polygons within the study area. (a) Showing closer version
in Ashe County, Watauga County, and Avery County. (b) Showing NC statewide results and closer
version location (red square) in NC.

The bridge inventory for the current study is collected from the North Carolina
Department of Transportation (NCDOT) dataset and the Federal Highway Administration
(FHWA) dataset. We used the bridge’s ID to combine the two datasets for our analysis. The
combined dataset, updated to 2023, contains 22,812 bridges (Figure 7).
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3.2. Conditioning Factors

In defining a likely landslide area, we selected several variables known to influence
the susceptibility of a slope to fail, including elevation, aspect, slope, rainfall, distance to
faults, and distance to rivers for landslides [23–27].

Elevation can significantly affect landslide occurrence; it can also interact with other
factors, and their combined effects impact the probability of occurrence [24,28,29]. Elevation
data were obtained from the Digital Elevation Model (DEM) provided by the USGS [30] at
a resolution of 1 arc-second (Figure 8a). Contour lines that contain elevation values were
used to construct a DEM layer with a cell size of 30 m × 30 m [30].
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Figure 8. Landslide conditioning factors used in this study: (a) Elevation, (b) Aspect, (c) Slope,
(d) Rainfall, (e) Distance to fault, (f) Distance to river.

Using DEM, we calculated the aspect variable with the ArcGIS Pro aspect tool
(Figure 8b) and the slope variable with the slope tool (Figure 8c). Aspect-related param-
eters such as exposure to sunlight, drying winds, and discontinuities may influence the
occurrence of landslides [25]. Following Ayalew and Yamagishi [31] and Lee and Prad-
han [26], we reclassified the aspect variable and divided the aspect into nine classes: flat
(−1◦), north (0–22.5◦ and 337.5–360◦), northeast (22.5–67.5◦), east (67.5–112.5◦), southeast
(112.5–157.5◦), south (157.5–202.5◦), southwest (202.5–247.5◦), northwest (247.5–292.5◦),
and west (292.5–337.5◦). Based on the order of the classes, we assigned aspect values from
1 to 9 to each class. Aspect value is especially critical to the landslide susceptibility of
steep slopes.



GeoHazards 2024, 5 294

High rainfall amounts typically result in high hazard index values for landslides [23].
Rainfall totals were calculated using observation data from the National Oceanic and
Atmospheric Administration (NOAA) and the Inverse Distance Weighted (IDW) tool in
ArcGIS Pro (Figure 8d).

It is important to recognize that several of the geological, geomorphological, and
hydrological factors are implied in the aspect variable [31]. As a result, the only other
major factor in triggering landslides that needs to be explicitly investigated is seismicity [9].
Therefore, the distance to faults is an important susceptibility criterion [25] (Figure 8e). We
used the Euclidean distance tool in ArcGIS Pro to generate distances to faults [32].

Slopes located closer to rivers are generally more vulnerable to landslides due to
factors such as increased water infiltration, erosion, and the destabilizing effect of flow-
ing water [33,34]. We used the Euclidean distance tool to generate the distance to the
river in ArcGIS Pro. The river data were collected from the USGS national rivers (NHD)
database [35].

Figure 9 illustrates the schematic of the workflow for our models and calculations,
which will be further explained in the following section.
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3.3. Logistic Regression Model

Logistic regression (LR) allows for estimating the relationship between a categori-
cal variable (e.g., occurrence or no occurrence of an extreme event) and its influential
factors [36,37]. It is a useful tool to calculate the probability of the occurrence of an
event [36,38,39]. Kleinbaum, Dietz [38] described the logistic model as follows:

p =
ez

1 + ez =
1

1 + e−z (1)

where p is the probability of an event occurrence (1: occurrence; 0: no occurrence). Logit z is
assumed to be a linear combination of the independent variables and is defined as follows:

z = β0 + β1x1 + β2x2 + . . . + βixi (2)

where β0 is the intercept of the model, xi is the ith variable, and βi is the coefficient of
the variable xi. We used the random forest tool in RStudio 2021.09.2+382 (open-source
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statistical software) for the LR modeling and generated the probability map of event
occurrence (Equation (1)) in NC in ArcGIS Pro 3.1.2.

The Receiver Operating Characteristic (ROC) curve is a representation of the per-
formance of a binary classification model [40]. Zhang, Lim [41] used an ROC curve to
determine the optimal discrimination threshold for predicting event occurrence. The ROC
curve is created by plotting the True Positive Rate (TPR) against the False Positive Rate
(FPR) for various threshold values of a model’s predicted probabilities [42,43]. Zhang,
Lim [41] and Milanović, Marković [43] further used Area Under Curve (AUC) values
between 0.5 and 0.7 to indicate poor precision, values between 0.7 and 0.8 to indicate
acceptable precision, values between 0.8 and 0.9 to indicate excellent precision, and values
higher than 0.9 to indicate outstanding model precision. We used R to fit the LR models
and produced the LR results, ROC curve, and AUC values. This model validation approach
is used in the current study in LR modeling. These model validation approaches will also
be used in random forest (RF) modeling, as explained in the following section.

3.4. Random Forest Model

According to Alzubi, Nayyar [44], Machine Learning (ML) is about making computers
modify their actions in order to improve the actions to attain more accuracy, where accuracy
is measured in terms of the number of times the chosen actions result in correct values. ML
can be defined as a category of artificial intelligence that enables computers to learn and
perform tasks that come naturally to humans, such as learning from past experiences [44].
ML techniques have been extensively applied in spatial statistical analyses to predict and
model extreme events [45–47].

Introduced by Breiman [48], random forest (RF) is a computationally effective ensem-
ble ML method that constructs the combination of many decision trees that can be used to
model the spatial distribution of extreme events and has been applied in geomorphologi-
cal research, susceptibility mapping, and remote sensing data modeling [47–49]. RF has
strong algorithmic advantages such as rapid processing capability, easy hyper-parameter
optimization, and success in achieving high predictive performance [47]. This technique
has been applied to spatial regression analyses to predict the likelihood of extreme events
occurring in different regions [43,49–51]. It has been combined with multiple decision trees
to improve the accuracy and robustness of the model [48].

An RF model can deal with a large amount of data, including both categorical and
numerical data, and it can account for complex interactions and validate predictions [49].
The data requirement is for data that represent both occurrence and non-occurrence ar-
eas [49]. Therefore, we assigned a value of 1 to occurrence landslide points and a value of 0
to non-occurrence landslide points in our dataset [50]. Identifying the areas and sample
conditions from GIS spatial locations is straightforward [11]. However, the accuracy of
data mining models, often considered a “black box”, should be rigorously tested due to
the challenge of defining variable relationships [49]. In our study, it involved splitting
the entire dataset into two parts, where 80% of the dataset was used for training and the
remaining 20% of the dataset was employed for validation [11,49].

A study by Kim, Lee [11] focused on landslide susceptibility mapping using ML
models, specifically RF and boosted tree models. The performance of the models was
evaluated using an ROC analysis and AUC values. The results of the study showed that
both the RF and boosted tree models performed well in predicting landslide susceptibility,
with the RF model outperforming the boosted tree model in terms of accuracy. The study
demonstrated the effectiveness of RF, boosted tree models for landslide susceptibility
mapping, and emphasized the importance of slope in landslide susceptibility analyses.
Chen et al. [6] also tested the performance of RF to quantify landslide susceptibilities and
concluded that RF can reach a 95% confidence level with high AUC values [6].

In this study, we used the RStudio 2021.09.2+382 software for the RF modeling and
produced an RF result, an out of bag (OOB) error, an accuracy value, an ROC curve, AUC
values, and, finally, a map of the probability of landslide event occurrence in NC.
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3.5. North Carolina Highway Bridges

In this study, we focused on bridges situated above water with a length greater than
6 m and excluded those bridges over pipes and culverts or those designed as ramps.
A significant number of the bridges on the NC highway system are prestressed concrete
stringer bridges and steel girder bridges, with very few other bridge types. However,
bridge construction materials are not the focus of the current study. The elevation of the
bridge plays a crucial role in determining its susceptibility to damage by streams and rivers.
Our previous investigation in Puerto Rico revealed that bridges located at the bottom of
valleys are particularly vulnerable to multi-hazard risks that include landslide and flooding
events. Hence, similar to the bridge in Las Marias (see Figure 4), the combined hazards
can lead to bridge washout. Thus, we further identified bridges likely to be affected by
landslides and selectively examined those situated in or near the bottom of valleys.

Throughout this research, we employed various tools in ArcGIS Pro to automatically
calculate the bridge’s assumed flooding potential (AFP) based on their geographical lo-
cations. These tools included the buffer tool, zonal statistics tool, extract multi-values to
points tool, split line to points tool, and bearing distance to line tool. We utilized these
tools to generate elevation data for both the banks of a bridge and the elevation of the river.
Subsequently, these elevation data were incorporated into the bridge’s AFP calculation,
defined by the following equation:

Bi =
E1i + E2i

2
− ELi (3)

where Bi represents the bridge’s AFP, i denotes the bridge’s ID, E1i and E2i correspond to the
elevations of the two sides of the bridge, and ELi represents the elevation of the river. AFP is
different from bridge clearance as it is physically the approximate bridge height (averaged
from the two banks) minus the river elevation from DEM at the location of the bridge.
Hence, AFP is not the exact bridge height to the water level but the approximate bridge
height to the DEM elevation. Ignored are the actual heights from the bridge bottom to the
bridge deck surface. We utilized ArcGIS Pro tools to compute the AFP results (Equation (3)
and identified bridge locations within valleys in NC.

To identify bridge locations within a valley, we used several criteria, such as AFP
value, landform, slope, and elevation difference. The landforms were classified using the
“Geomorphon Landforms” tool in ArcGIS Pro, which categorizes calculated geomorphons
into common landform types [52]. Jasiewicz and Stepinski [53] studied the classification and
mapping of landform elements and described geomorphon as the landscape representation
based on elevation differences around a target cell. Comprising 498 geomorphons, their
dataset encompassed all conceivable morphological terrain types, encompassing both
common landscape elements and rare, unconventional forms found infrequently on natural
terrestrial surfaces [53]. The data were then classified into ten common landform types:
flat, peak, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit [52,53].

In the current study, the slope values were determined based on the maximum slope
degrees (see Section 3.2) within a 30 m search area around the bridge. The elevation
differences were calculated from the maximum elevation within the same 30 m search area
around the bridge compared to the bridge’s elevation.

4. Results and Discussion

We utilized 9794 sample points for the LR and RF modeling (4794 for historical
landslide occurrences and 5000 for no landslide occurrences). In our dataset, we used a
random points tool in ArcGIS Pro to generate 5000 points that had no landslide occurrences.

4.1. Statistical Results

The variables of elevation, aspect, slope, rainfall, distance to faults, and distance to
rivers were used in our analysis. The results for the LR model are shown in Table 1. We used
the slope interaction with the elevation model to analyze the landside sample points. The
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results for the LR model show that the elevation, aspect, rainfall, slope, aspect 2 to aspect
6, and the distance to rivers are considered positive and significant variables. This means
that the landslides would occur more frequently in areas where the elevation is higher,
the slope is steeper, the rainfall is larger, the location is far away from a river, and the
facing slope is north (aspect 2), northeast (aspect 3), east (aspect 4), southeast (aspect 5),
or south (aspect 6). On the other hand, distances to faults and slope interaction elevation
are negative and significant, meaning that the high occurrence of landslides in the area is
closer to the fault lines. In this case, negative slope interaction means that when the slope is
steeper, the elevation will be lower. Furthermore, aspect 7 and aspect 8 are both identified
as negative, but only aspect 8 is significant. The interpretation is that landslides will not
frequently occur where the facing slope is westward (aspect 8). Finally, it is not conclusive
if landslides will likely occur on southwest-facing (aspect 7) slopes.

Table 1. Coefficient values for LR in the case of each predictor variable in a landslide.

Variable Unit Aspect (Reclass) Interact Slope Significance 1

Elevation * m 2.264 × 10−3 ***
Slope Degree 6.346 × 10−1 ***

Rainfall mm/year 3.399 × 10−3 ***
Distance to faults m −1.069 × 10−5 ***
Distance to rivers m 1.515 × 10−4 **

Aspect 2 5.706 × 10−1 ***
Aspect 3 1.175 × 100 ***
Aspect 4 1.362 × 100 ***
Aspect 5 9.241 × 10−1 ***
Aspect 6 5.366 × 10−1 ***
Aspect 7 −1.296 × 10−1 †
Aspect 8 −2.987 × 10−1 *

Slope: Elevation −3.752 × 10−4 ***
Intercept −5.523 × 100 ***

1 Significance codes: *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05; † p ≤ 1.

4.2. Validation and Comparison of Models

In Table 2, the LR model predicts a percentage of 76.3%, which is a measure of how
well the model predicts the correct outcome. Further, in a sensitivity analysis, the model
identified an accuracy of 77.4%, indicating the percentage of positive model identification.
In the case of AIC (Akaike information criteria) values, a lower AIC value indicates a better
model fit. In our case, the 8116.8 value is considered high. (Typical reported AIC values
are in the range of 200 [54] to 1,000,000 [55].) As mentioned in Section 3.4, the ROC curve
and AUC value have been widely used to validate the performance of the RF and LR
models [56]. A higher AUC value indicates better model performance, as it can distinguish
between positive and negative cases. In our model, the AUC has a reported accuracy of
84.3%, indicating acceptable model performance.

The OOB error estimate with lower values indicates better model performance, sug-
gesting that the model can generalize new data well. The two a priori hyper-parameters
can be optimized: the number of trees in the forest (ntree) and the number of variables
tested at each node (mtry), with the optimization aimed at minimizing the OOB error and
achieving good model performance [50].

In our RF model, the optimized values were 500 for ntree and 3 for mtry, resulting in an
OOB error of 16.5%. Our RF model correctly predicted outcomes with an accuracy of 82.7%,
meaning that the model accurately predicted the outcomes. In a sensitivity test, the model
correctly identified 86%, a measure of how well it identifies true positive cases. A higher
AUC value indicated better model performance, with an accuracy of 90.9%, signifying
outstanding model performance.
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Table 2. Summary of model performances for the LR model and the RF model for landslides.

Models Evaluation Value

Logistic Regression

AIC 1 8116.8
Accuracy 0.763
Sensitivity 0.7736

AUC 0.8431

Random Forest

OOB 16.52%
Accuracy 0.8269
Sensitivity 0.8592

AUC 0.9092
1 AIC: Akaike information criterion.

In our research, we compare the LR model and the RF model to select the best-
performing model. The choice of the best model often depends on the specific characteristics
of the problem and the data at hand [54]. Based on the accuracy value, AUC value, and
ROC curve (see Figure 10), the RF model demonstrated superior performance in predicting
landslide occurrence. Consequently, we chose the random forest model to generate the
probability of a landslide occurrence map.
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4.3. Predicted Probabilities and Susceptibility Map

In order to compare with the LR model, we used the trained RF model to generate
the probability of a landslide occurrence map and a susceptibility map. We trained the RF
model using R to map the predicted probability of landslide occurrence. Figure 11 shows
that the red color represents a higher probability of landslide occurrence, yellow indicates a
medium probability, and green signifies a low probability. Figure 12 reveals that 47 bridges
will likely experience over 50% of the landslide occurrences in the NC mountain region.
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Landslides are predicted to occur in over 80% of the area around Watauga County, Jackson
County, Henderson County, and Polk County.
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Figure 12. Bridges with a landslide risk map in NC’s mountain area. Showing the bridges with a 50%
or greater probability of being impacted by a landslide.

4.4. Bridge in a Valley

After bridge data were retrieved from NCDOT and the FHWA databases, 9462 bridges
were identified in North Carolina.
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Several of the bridges (see Figures 13–17) were visited in September 2023.
Figures 13 and 14 showcase bridges situated on ridgetops. Figures 13a,b and 14a,b depict
the bridge structure, while Figures 13c,d and 14d illustrate the river bedding. Figure 14c
provides a representation of the situation next to the bridge. Despite a high landslide risk
(95%), these bridges, built at higher elevations, exhibit a lower susceptibility to landslide
impacts. Figures 15a,b, 16a,c, and 17a show the bridge structure, while Figures 15c, 16b,d,
and 17b illustrate the circumstances of the river bed. Figure 15 illustrates a bridge con-
structed at an elevation high above a valley, presenting a 60% probability of landslide
occurrence. Figures 16a,b and 17 depict a specific area where several landslides occurred.
These two bridges are considered to be bridges at the bottom of valleys in our study. One of
these bridges (Bridge ID: 740002) (see Figure 17) has experienced landslides in its vicinity,
and slope repair works using soil nails were ongoing during the field visit (see Figure 17c,d).
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side face, (b) Bridge’s girder, (c) Riverbed, and (d) Riverbank. (Photo credit: Shen-En Chen and
Sophia Lin).
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Figure 14. Example of a bridge sufficiently higher than the valley region (Bridge ID: 740031, a pre-
stressed concrete stringer bridge). (a) Bridge’s side face, (b) Bridge’s surface, (c) Riverbank, and (d)
Riverbed. (Photo credit: Shen-En Chen and Sophia Lin).

To establish whether a bridge is in a valley or on a ridge, several criteria were estab-
lished, including landform (e.g., valley and pit) data, slope (e.g., above 9 degrees), elevation
difference (e.g., above 15 m), and AFP value (e.g., under 7 m). The results showed that
21 bridges were in a valley-bottom setting (see Figure 18). It should be noted that AFP
can be a misnomer because it does not exactly project the flooding level. Instead, in the
current study, AFP is used by assuming that the flooding will reach its full value. Hence, to
assess the number of bridges that may be exposed to flooding danger, AFP up to 30 m was
applied to the bridge data (see Figure 19).
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Figure 15. Example of bridges in valleys (Bridge ID: 740027, a steel girder bridge). (a) Bridge’s side
face, (b) Bridge’s girder, and (c) Riverbed. (Photo credit: Shen-En Chen and Sophia Lin).

Finally, we combine the bridge-in-valley data with the probability of landslide occur-
rence, indicating a bridge’s landslide and flooding risk (see Figures 18 and 19). According to
Figure 18, the results showed that three bridges have a lower than 10% chance of landslide
occurrence; 12 bridges have a 10% to 20% chance of landslide occurrence; and 5 bridges
have a 24% to 32% chance of landslide occurrence. One bridge (ID: 740002) has a 92%
chance of landslide occurrence (see Figure 18, red square symbol). Bridge 740002 is a steel
stringer/multiple girder bridge with a concrete deck. This bridge was built in 2010, and the
last routine inspection of the structure was in September 2021. According to the inspection
results, the deck, superstructure, and substructure were still in good condition in 2021.
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Figure 16. Examples of bridges in valleys (Bridge ID: 100653, a steel girder bridge). (a) Bridge’s
side face, (b) Riverbed, (c) Bridge’s side face, and (d) Riverbed. (Photo credit: Shen-En Chen and
Sophia Lin).

The risks posed to Bridge 740002 are likely landslides near the bridge foundations
as well as upstream and downstream, which may result in increased flood heights from
congestion of the channel stream flow during torrential rains. Such multi-hazard analysis
has not been previously attempted and should be included in the evaluation of bridges in
similar geographical settings. This is especially important in addressing climate extremes,
where unprecedented storms are projected for the Carolinas.
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Figure 17. Example of a valley bridge near a landslide with visible debris flow and rockslide (Bridge
ID: 740002, a prestressed concrete stringer bridge). (a) Bridge’s side face, (b) Riverbed, (c) Riverbank
infrastructure, and (d) Landslide around bridge. (Photo credit: Shen-En Chen and Sophia Lin).

Further research was conducted on bridge data in valleys, combined with the proba-
bility of landslide occurrence and AFP (see Figure 19 and Appendix A). In Figure 19, the
bridges with AFP below 10 m indicate that 23 bridges have a 10% to 20% chance of landslide
occurrence, 6 bridges have a 20% to 50% chance of landslide occurrence, and 1 bridge has a
50% to 100% chance of landslide occurrence. Appendix A shows the details of the bridge
information, including bridge ID, longitude, latitude, AFP, our assessment (using four
criteria for classification), extra observations (confirming the classification method), and the
probability of landslide occurrence. When considering AFP, additional field observations
were made (see Appendix A), which indicates that bridges with AFP above 7 m and below
30 m are not necessarily located at the bottom of a valley. As observed in Figures 13 and 14,
these bridges may be better classified as either bridges at the mid-height of a valley or on a
ridgetop. The field observations were used to validate the bridges in valleys in Appendix A,
where only Bridge 020021 does not fit our criteria for a bridge in a valley (AFP of less than
7 m). The classification method used in the current study achieved a 97% accuracy rate in
the bridge-in-valley selection.
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5. Conclusions

The 2018 Hurricane Maria resulted in more than 40,000 landslides and damaged
388 bridges in Puerto Rico. A close examination of several of the damaged bridges revealed
the danger of multi-hazard risks (landslide + flooding) for bridges in valleys. North
Carolina, on the east coast of the U.S., is also exposed to the impacts of seasonal Atlantic
hurricanes. Hence, to investigate similar risks to bridges in North Carolina, a landslide risk
susceptibility analysis has been conducted. In this study, we identified that the majority
of landslides occur in the mountainous region of North Carolina, thus posing a potential
threat to numerous bridges in that region.

Using logistic regression (LR) and random forest (RF) modeling, a landslide risk
susceptibility map was created. Conditioning factors included in the current study are
aspect variables and seismicity (distance to faults). The geomorphic, geological, and
hydrological considerations are inclusive of the aspect variables of the conditioning factors.
The results from the two models have accuracy rates of 76.3% and 82.7% for the LR and
RF models, respectively. Using the ROC curves, the RF model is also shown to be more
sensitive than the LR model in predicting landslide risks. Combining highway and roadway
bridge data, bridges with high landslide risk are then identified.

Further analysis using landform data and bridge assumed flooding potential (AFP)
helped identify bridges in valleys. The results showed 37 bridges exposed to both landslide
and flooding risks. One particular bridge (ID: 740002) has been found to be exposed to
high landslide and flooding risks. Observations from a field visit indicated that ongoing
construction efforts have been carried out to address localized landslides near the bridge
location. This confirmed our analysis result (see Figure 18, red square symbol), and the
observations on Bridge 740002 (see Figure 17) align with our findings, indicating the
potential exposure to multi-hazard (landslide with flooding) dangers. This observation
reinforced our confidence that the landslide risk map is accurate and can serve as a valuable
tool for managers and decision-makers, enabling proactive measures to prevent potential
bridge damage in the future.

The development of a landslide risk prediction model poses a challenge if we take
into consideration the complex nature of geo-environments, encompassing factors such
as geology, hydrology, topography, and human activities (land use) [4]. The current study
covered a large area and only considered the aspect variable and seismicity; hence, future
work aiming for increased precision can delve into additional factors such as geology and
lithology.

The current study used bridge AFP as an indicator of the potential for combined
landslide and flooding risks. If the flooding level reaches AFP, then the uplift forces
from the rapid channel flow may lift the bridge deck and result in a bridge washout.
Future work will extend the analysis of flooding risk and the connection to landslides,
which can further predict the scour potential that poses an additional threat to bridges.
The addition of flooding risks would provide managers and decision-makers with more
complete information to act preemptively to prevent damage to bridges.
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Appendix A

Table A1. Bridges identified with landslide and flooding combined risks.

No Bridge ID Longitude Latitude AFP GIS Classification Extra Observation
Probability of

Landslide
Occurrence

1 860024 −83.31964644 35.47677134 1.02 Valley Bridge Valley Bridge 0.25

2 990034 −82.37624068 35.95286913 1.05 Valley Bridge Valley Bridge 0.27

3 860020 −83.41412095 35.43162131 1.73 Valley Bridge Valley Bridge 0.19

4 430010 −82.82258403 35.39932611 1.79 Valley Bridge Valley Bridge 0.19

5 600084 −82.27706725 36.08360385 1.89 Valley Bridge Valley Bridge 0.18

6 440161 −82.55773367 35.1673545 2.59 Valley Bridge Valley Bridge 0.24

7 580017 −81.97599594 35.57528782 2.62 Valley Bridge Valley Bridge 0.03

8 550229 −83.6553343 35.25717623 2.82 Valley Bridge Valley Bridge 0.16

9 860137 −83.51710646 35.39425632 2.85 Valley Bridge Valley Bridge 0.13

10 550228 −83.6690064 35.26770495 3.00 Valley Bridge Valley Bridge 0.17

11 490080 −83.10854232 35.29399205 3.40 Valley Bridge Valley Bridge 0.25

12 210057 −83.91391948 34.9993788 3.90 Valley Bridge Valley Bridge 0.17

13 860104 −83.51851741 35.39461143 3.92 Valley Bridge Valley Bridge 0.08

14 550230 −83.65351494 35.24695009 4.24 Valley Bridge Valley Bridge 0.32

15 560138 −82.77026923 35.83929582 4.62 Valley Bridge Valley Bridge 0.19

16 600026 −82.22878565 36.04036643 5.28 Valley Bridge Valley Bridge 0.10

17 020021 −81.02105795 36.54282685 6.20 Valley Bridge Not Valley Bridge 0.14

18 190159 −84.06817913 35.11164097 6.23 Valley Bridge Valley Bridge 0.16

19 740002 −82.34673092 35.21555685 6.61 Valley Bridge Valley Bridge 0.92

20 040045 −81.57578897 36.44914354 6.73 Valley Bridge Valley Bridge 0.10

21 560122 −82.8361671 35.87993609 6.74 Valley Bridge Valley Bridge 0.16

22 190271 −84.00223354 35.070788 7.94 Not Valley Bridge Not Valley Bridge 0.03

23 100249 −82.62422335 35.71781996 9.14 Not Valley Bridge Not Valley Bridge 0.13

24 040039 −81.3365605 36.47373934 10.74 Not Valley Bridge Not Valley Bridge 0.08

25 040032 −81.49664884 36.55558414 11.18 Not Valley Bridge Not Valley Bridge 0.40

26 370033 −83.93801605 35.44444511 11.37 Not Valley Bridge Not Valley Bridge 0.08

27 190270 −84.02028287 35.07271993 11.42 Not Valley Bridge Not Valley Bridge 0.19

28 050026 −82.01580245 35.98178364 11.91 Not Valley Bridge Not Valley Bridge 0.06

29 100494 −82.30741992 35.61896287 12.44 Not Valley Bridge Not Valley Bridge 0.16

30 560547 −82.55788273 35.91704369 12.55 Not Valley Bridge Not Valley Bridge 0.40

31 600247 −82.08616795 35.9228022 15.85 Not Valley Bridge Not Valley Bridge 0.07

32 430098 −82.94589996 35.58069908 16.11 Not Valley Bridge Not Valley Bridge 0.11

33 580304 −82.21520267 35.63570163 22.58 Not Valley Bridge Not Valley Bridge 0.13

34 980035 −80.43227182 36.21614972 23.48 Not Valley Bridge Not Valley Bridge 0.00

35 430207 −82.9947526 35.66607999 24.49 Not Valley Bridge Not Valley Bridge 0.43

36 850392 −80.86723297 36.25986437 24.55 Not Valley Bridge Not Valley Bridge 0.02

37 850391 −80.867459 36.259959 25.31 Not Valley Bridge Not Valley Bridge 0.00
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