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Abstract: With the increasing availability and diversity of satellite imagery, the multisensor fusion of
data can more effectively address the improved monitoring of temporary water bodies. This study
supports the attempt to apply well established methods to detect spatial and temporal changes in
ephemeral shallow lakes in lowland karst terrain, as well as to improve the understanding concerning
the dynamics of water storage and hydrological mechanisms during extreme precipitation events.
Based on the joint analysis of Copernicus Sentinel SAR and optical mission data, as well as soil
moisture and EO-based rainfall observations over the period of 2015–2020, we demonstrated the
control of the karst system on the ephemeral lake appearances in the broader area of Chalkida (Evvia,
Greece). A connection between the prolonged and extended water coverage in the ephemeral lakes
and flooding in the area is documented. Our EO-supported findings may serve as indicators for flood
alerts in future extreme precipitation events, improving responses in cases of emergencies.

Keywords: EO data fusion; ephemeral water bodies; Copernicus Sentinel; SAR backscatter; optical
radiometric indices; SMOS; soil moisture; time series analysis; karst-related flood

1. Introduction

Surface waters, either permanent or temporary, with their distinct characteristics as
rivers, lakes, reservoirs, and wetlands, are extremely dynamic entities that change over
time and influence the hydrological water cycle. Depending on the prevailing hydrological
conditions, the interactions between surface and subsurface water systems can make it
rather complicated to delineate water recharge in karst terrains [1–5]. In cases of landscapes
that periodically fill with water, as topographic depressions in karst regimes, they may be
subjected to flooding depending on prolonged rainfall and in some cases lateral flow from
adjacent catchments discharging onto the lowland karst [6,7]. Excess recharge that cannot
be accommodated by a karst aquifer due to insufficient aquifer storage or flow capacity
can cause groundwater levels to rise and inundate basins as well as the surrounding
areas [7,8]. This ephemeral flooding can pose significant risks to humans, farmland, and
infrastructures [9–11].

While the spatial distribution of surface water bodies on a global scale is adequately
available [12–16], the actual information on the location and extent of temporary water
bodies is incomplete. Despite individual limitations, existing geospatial databases are
valuable sources of information for all geographic latitudes due to satellite remote sensing
(RS) advances that provide global coverage with a high spatial resolution.

Remote sensing measurements can provide valuable information on hydrological
systems by mapping permanent or temporary water bodies and by providing the temporal
and spatial variations in the water coverage. Satellite observations are an effective way to
detect surface water over large areas with a short revisiting time, supporting operational
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monitoring and being a rapid as well as effective response to natural disasters, such as
floods [17–21].

Earth observation data from both optical and radar sensors offer the opportunity
to map and monitor the spatiotemporal changes in water cover. Data from Copernicus
Sentinel-1 (S-1) and Sentinel-2 (S-2) missions can provide significant monitoring capabil-
ities for surface water detection and mapping. Sentinel-1 radar data have been widely
used for water mapping [22–26], since radar sensors have the advantage of operating in
nearly all-weather/day–night conditions, overcoming the limitations of optical imagery. Most
available algorithms typically focus on single-image techniques and change detection ap-
proaches [27,28], while others exploit large data stacks to delineate surface water [22,29,30].
Radar backscatter is often used to distinguish water from surrounding areas, since strong
specular reflection occurs at its surface, meaning that it appears to be very dark in radar
images. For this purpose, among various techniques, thresholding approaches have been
explored in cases of large datasets [31–34].

Water mapping by radar imagery can also be associated with additional remote sensing
data, specifically multispectral optical imagery, for detecting the extent and evolution of
water. Sentinel-2 optical data offer a high spatial resolution (10–20 m) with a nominal
revisit time of 5 days, as well as monitoring in the near- and middle-infrared bands on a
global scale [35–37]. Since water shows a very low reflectance value in these ranges of the
spectrum, water indices [38–41] are widely used to identify water surfaces. In addition
to radar and optical imageries, soil moisture ocean salinity (SMOS) data can be used in
advance to provide timely estimates of soil moisture every three days, with an accuracy of
4% at a spatial resolution of 50 km [42]. Seasonal changes in soil moisture content are also
important for contributing to the forecasting of hazardous events, such as floods [43–46].

Motivated by the need to improve existing global geodatabases of inland water bodies
by fusing only remotely sensed data, as well as to build surface water data records for
smaller and/or temporary water bodies linked to flooding phenomena in karst regimes,
this paper aims (a) to compare multiple imagery sources to map and monitor, for the first
time, the spatiotemporal changes in the ephemeral lakes in Chalkida that led to temporary
inundations, (b) evaluate, with statistical analyses, the temporal and spatial dynamics of
water storage using long-term remote sensing observations, and (c) create a water variations
database that can serve as an important source of information for future water resource
regulations in this region. The ultimate goal of this study is to create a framework for
satellite-based water surface monitoring that will, in turn, provide important information
to local authorities for hydrologic analyses and flood forecasting applications.

2. Hydrogeological Setting—Flooding Events

The municipality of Chalkida was selected as a pilot case for this study as it presents a
representative example of temporary lake flooding in karst environments in proximity to
river systems. Chalkida is located in the south of Evia, with its main geomorphological
structures being the Dirfys Mt., reaching an elevation summit of 1743 m, and the Lilas River,
with a drainage basin–fan delta system of about 300 km2 flowing into the South Evoikos
Gulf (Figure 1).

The morphology of the area varies between the high relief of the NE as well as east
mountainous zones (Mt. Dirfys and Mt. Olympus) and the low relief to the SW, where the
Lilas River fan delta is located, a low plain area that was shown to be a shallow marine
environment during Holocene [47]. Several river channels have been activated in this area
during severe rainfalls towards the south and west coastlines, causing the progradation of
the Lilas River fan delta [47] (Figure 1). Although the climate conditions within the drainage
basin show relatively high mean annual precipitation, on 11–12 September 2009 a severe
flash flood event occurred and approximately 350 mm of rainfall was recorded in 28 h.
The event resulted in the flooding of the low-lying part of the plain, which in turn caused
extensive damage to settlements of several villages. A similar karst flood event occurred in
the area during the period of February–March 2019; several floods have also been reported
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over the past decades, but of smaller extents and intensities (Figure S1). However, during
the severe 2019 flood event, the area suffered from damage and the inundation of several
properties, leading to evacuation efforts and the declaration of a state of emergency for a
period of three months, until June 2019 [48]. At the northern margin of the floodplain, the
groundwater levels have risen, causing a higher surface run-off that was in excess of local
drainage capacity, resulting in temporary lake flooding (up to 3 m water height in Dokos),
blocking the surrounding road network (Figure S2).
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Figure 1. Simplified geological map of the Lilas River Plain showing the location of the study areas 
in Dokos and Fylla (in black rectangles). Geological formation overview (modified from [47]): 1: 
abandoned channel, 2: ephemeral coastal marsh, 3: perennial coastal marsh, 4: natural levees, 5: 
channel deposits, 6: fan delta surficial sediments, 7: alluvial deposits, 8: scree and talus cones, 9: 
terrestrial formations (red fine-grained materials with dispersed cobbles and rubbles) from the 
Pleistocene age, 10: brackish deposits (conglomerates–sandstones–marls) from the Upper Plio-
cene–Lower Pleistocene age, 11: lacustrine and fluvial deposits (conglomerates–sandstones–marls) 
from the Upper Miocene age, 12: limestone (Middle Triassic–Middle Jurassic), 13: ultrabasic rocks, 
and 14: fault. Inset maps: the location of the study area in the red rectangles, the meteorological 
Chalkida station in CS described in Section 3.3. 
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Figure 1. Simplified geological map of the Lilas River Plain showing the location of the study
areas in Dokos and Fylla (in black rectangles). Geological formation overview (modified from [47]):
1: abandoned channel, 2: ephemeral coastal marsh, 3: perennial coastal marsh, 4: natural levees,
5: channel deposits, 6: fan delta surficial sediments, 7: alluvial deposits, 8: scree and talus cones,
9: terrestrial formations (red fine-grained materials with dispersed cobbles and rubbles) from the
Pleistocene age, 10: brackish deposits (conglomerates–sandstones–marls) from the Upper Pliocene–
Lower Pleistocene age, 11: lacustrine and fluvial deposits (conglomerates–sandstones–marls) from
the Upper Miocene age, 12: limestone (Middle Triassic–Middle Jurassic), 13: ultrabasic rocks, and
14: fault. Inset maps: the location of the study area in the red rectangles, the meteorological Chalkida
station in CS described in Section 3.3.
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The drainage basin of the study area (the Lilas plain) is bordered to the NE and east
with calcareous sedimentary rocks (mainly Mesozoic limestone), which are susceptible
to a high degree of karstification. This karst landscape has developed an underground
aquifer prone to karst flooding, providing a pathway along which groundwater flow in
the lowland area causes flooding phenomena [49,50]. As a sequence, in the absence of
a surface hydrographic network, ephemeral transient lakes emerge by the combination
of high rainfall, the lateral inflow from the Lilas River catchment, and the accordingly
high groundwater levels in the karstic depressions. The recharge zones are located in a
well developed epikarst zone characterized by high permeability underlying a shallow
unconfined aquifer [51]. Examples of similar karst wetlands characterized by ephemeral
inundations have been reported in Wales, Slovenia, Spain, Italy, Greece, Ireland, and
Canada [7,52–60].

3. Materials and Methods

In principal, during rain events optical satellite imagery is not a preferable solution
for earth observation due to the presence of clouds. An alternative is often provided by
radar satellite imagery, which is unaffected by weather conditions (cloud penetration in
microwaves). Therefore, even though the Sentinel-2 multispectral imaging mission can
be suitable for monitoring surface water, it is not always applicable due to the limited
availability of low-cloud-coverage acquisitions. The systematic acquisition of Sentinel-
1 radar data, every 6 or 12 days depending on the location, allows for the detection and
mapping of temporal changes that can be associated with the variability in water bodies.
The synergistic utilization, however, of both optical and radar data, when applicable,
could lead to improved mapping capabilities that exploit the complementarity of the two
missions. On the other hand, passive microwave measurements, such as those of the SMOS
mission, can be a supplementary source of information, which together with satellite-based
precipitation observations can provide insights into the regional variability in soil moisture
and improve our understanding of the water cycle in an area.

For the needs of the current work, Sentinel-1 GRD and Sentinel-2 L1C data were
consulted via the Copernicus Open Access Hub [61]. SMOS Level 3 products were accessed
via the CATDS (Centre Aval de Traitement des Données SMOS [62]) dissemination portal
of the Centre National D’ Etudes Spatiales (CNES). The satellite data processing was
performed using the open source SNAP Toolbox [63] of the European Space Agency
(ESA), which consists of a collection of product readers and processing operators, as
well as visualization and analysis tools, that support large imagery from various satellite
missions [64].

3.1. Sentinel-1 SAR Backscatter Time Series

The availability of synthetic aperture radar (SAR) data since the ERS era, back in 1991,
has enabled the development of several methods for different surface water and flood
mapping applications [65–70]. The most commonly used SAR-based surface water mapping
techniques include simple visual interpretation, unsupervised or supervised classification,
histogram thresholding, interferometric coherence, and various multitemporal change
detection approaches. Among them, most employed thresholding techniques aim to
determine a threshold (value) of the backscatter, below which pixels are associated with
water [31–34], while most of the approaches focus on a single image that represents the
water conditions (e.g., surface water flooding) on a specific date [71,72]. Other approaches
rely on change detection techniques, which allow for the detection of changes in backscatter
intensities between two images acquired before and during a flood event [27,30,73–79]. In
particular, the decrease in the backscattering due to the different water conditions of the
two images can delimit the flooded areas. On the contrary, multitemporal data analyses can
contribute to the improvement of the reliability of flood mapping as the radar backscatter
time series can be used to derive temporal features associated with surface water presence
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along with their temporal variability, as well as to enable the more detailed extraction of
flood-related classes [80–82].

This study follows a time series analysis approach for surface water/flood mapping
with the use of SAR backscatter intensity from the Sentinel-1 image archive acquired be-
tween September 2015 and May 2020 (244 S-1A and S-1B images, descending orbit 7). A well
designed image processing chain (Figures 2 and S3) was applied to the Sentinel-1 IW GRD
datasets in order to extract geophysical information in proper map geometry. Specifically,
the initial processing steps involved the update of orbit state vectors to improve geolocation
accuracy and the radiometric calibration to sigma naught (sigma0). The calibrated sigma0
values (in dB) represent the normalized radar cross-section and describe radar reflectance
properties per pixel. The data calibration compensates for the radiometric influences of the
different incidence angles. Further steps included multilooking for speckle reduction and
terrain correction (ortho-rectification) of the results. It is worth mentioning that only the
co-polarized VV channel was considered in the analysis, as it was more appropriate for
land applications. The Shuttle Radar Topography Mission (SRTM) 1 arc-second heights [83]
were used to transform SAR images from radar geometry into a selected map projection.
The reduced spatial resolution (pixel size) of the outputs at 20 m was sufficient for the
needs of the current work.
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Figure 2. Schematic diagram showing joint optical and SAR processing for mapping surface water.

Using the Sentinel-1 backscatter time series (Figure 3), surface water changes were
extracted in order to document the surface water dynamics in the area. Furthermore, the
calculation of temporal statistics (minimum, maximum, average, and standard deviation),
on a pixel basis and for the entire observation period, allowed for the study of the temporal
variation in the backscatter, including seasonal or annual fluctuations related to normal
water conditions (Figure 4). The advantage of this methodology was the ability to detect
persistent surface water, as well as to identify the exact period in and extent to which the
flood occurred. It allowed for the identification of regions with a prolonged presence of
surface waters (defined time span), separating them from permanent water bodies.

Therefore, according to the time series analysis, and by evaluating the backscatter vari-
ations between flood periods and normal water level conditions, it appears that similarity
in the backscatter response provided a clear indication of the periods of flooding across the
various sites (Figure 5).
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3.2. Sentinel-2 Time Series of Radiometric Indices

For the detection of increased water content and flood traces, the Copernicus Sentinel-2
mission has dedicated spectral bands in the visible green (B03) and near-infrared (B08)
electromagnetic spectrum, with a 10 m spatial resolution, which make them suitable for
delineating a flood’s extent.

Commonly applied methods used to extract water bodies from multispectral optical
imagery are based on band indices specifically designed to enhance water content changes
in a satellite image. A well performing method is the normalized difference water index
(NDWI) developed by [38], which relies on the combination of the near-infrared (NIR) and
green spectral bands (see Equation (1)). This index has demonstrated its efficiency in water
discrimination for various environments as water features have positive values and are
enhanced, while vegetation and soil features usually have values of zero or negative ones,
and are suppressed:

NDWI = (GREEN − NIR)/(GREEN + NIR) (1)
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Figure 4. Average (a), minimum (c), and standard deviation (e) statistical properties for the multitem-
poral stack (2015–2020) of the S−1 backscatter coefficient. Average (b), maximum (d), and standard
deviation (f) statistical properties for the S−2 NDWI multitemporal stack (2015–2020). Inset maps
show the enlarged view of the Dokos (up) and Fylla (bottom) regions. The blue color indicates the
most affected inundated areas.
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Figure 5. (a–c) Temporal variations in the S−1 backscatter coefficient (dB) (in red) and S−2 NDWI (in
blue) for chosen points in Dokos (UL4, UL5) and Fylla (DL4), between 2015 and 2020. The grey bars
indicate the flood-affected period, while the vertical dashed line denotes the beginning of the intense
rainfall (mid-December 2018); (d) SMOS time series for the monitoring period of March 2015–May
2020, showing higher values during intense rainfall (December 2018–January 2019). The NDWI axis
is shown inverted, in order to serve visualization purposes.

Sentinel-2 images were obtained for the period between July 2015 and May 2020
(119 S-2A and S-2B images, descending orbit 50), in Level-1C atmospheric top reflectivity
products (top-of-atmosphere, TOA). The TOA L1C reflectance images were processed with
the Sen2Cor [84] processor algorithm using a combination of state-of-the-art techniques to
perform atmospheric corrections, creating bottom-of-atmosphere (BOA) Level 2A (L2A)
corrected reflectance images (Figures 2 and S3). Since the spatial resolution of the near-
infrared and green bands is equally 10 m, Sentinel-2 L2A images were directly stacked to
finally obtain a water index image for each input image in a 10 m resolution and then create
the long-term time series of the spectral properties (Figure 6) for the purpose of studying
the water trends, including seasonal or interannual patterns (Figure 5).
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water (positive NDWI values) is presented in blue.

From water pixel values (either spectral values or combinations of them, such as ratios
or indices) of the time series statistical parameters were calculated, such as the minimum,
maximum, mean, median, standard deviation, trend, etc. The temporal features of the
average and maximum water coverage used in this approach are shown in Figure 4. The
temporal statistics are thus used to derive alternative features based on S-2 time series data
that capture, in the best manner, the differences in the spectral behavior of the water extent
over time.



GeoHazards 2023, 4 206

3.3. SMOS- and EO-Based Precipitation

The ESA SMOS mission, launched in late 2009, determines, among other things,
the surface soil moisture over land at a global scale. Knowledge of the spatiotemporal
distribution of soil moisture is essential for various applications, such as water resource
management, flood forecasting, and groundwater recharging. Soil moisture (SM) comprises
an important hydrological and climatic parameter of the initial condition of the soil, and
when combined with rainfall can provide valuable information for flood monitoring as well
as prediction. SMOS provides soil moisture content to a depth of a few centimeters [85],
typically in the range of 0–5 cm, depending on the degree of soil wetness, and features a
2–3-day revisit time [42].

For this study, SMOS Level 3 soil moisture data from March 2015 to May 2020 were
selected with a 3-day temporal aggregation, which allows for the best estimation of SM
when several multiorbit retrievals are available at a time [86]. SMOS measurements were
acquired along the ascending pass, since the retrievals of the top 5 cm from the early
morning show better agreement with in situ measurements [87–91]. In the ascending orbits
(the early morning) the retrievals are more accurate, as the ionospheric effects are expected
to be minimal and the surface conditions are close to thermal equilibrium [86].

In addition to direct soil moisture estimates, satellite precipitation products were also
utilized. In fact, although rain gauges provide the most accurate and direct measurement
of precipitation, due to a lack of well-distributed in situ rain gauge measurements satellite
precipitation products represent a reliable alternative for providing global information and
operational facilities for rainfall estimates. Furthermore, recent studies assess how soil
moisture measurements from space-based sensors can be used to improve satellite-based
precipitation estimates [92–98].

In this study, daily and monthly precipitation data were obtained from satellite mea-
surements for the period between May 2015 and May 2020 through the Copernicus Climate
Change Service (C3S) implemented by the ECMWF (European Centre for Medium-Range
Weather Forecasts) and NASA Goddard Earth Sciences Data and Information Services
Center (GES DISC). For rainfall-accumulated precipitation (in mm), the following products
were used:

(a) GPM IMERG Final Daily Precipitation (GPM_3IMERGDF) [99].
(b) GPM IMERG Final Monthly Precipitation (GPM_3IMERGM) [100].
(c) TRMM TMPA/3B43 Monthly Rainfall Estimate [101].
(d) Rainfall observations from the local network.

The precipitation data were jointly examined with SM measurements to derive the
long-term changes in the meteorological conditions for the purpose of analyzing the
2019 flood event (Figure 7). The time series of precipitation were compared with SMOS
measurements for a chosen pixel containing the monitoring sites (Figure 7). The time
series indicate temporal consistency; in particular, an increase in soil moisture is observed
following rainfall events, while maintaining lower values during spring and summer
periods. This observation is important even though the amount of precipitation and the
changes in soil moisture are not always proportional due to other controlling parameters,
including surface runoff, drainage, intensive evaporation, the presence of vegetation, and
different soil textures.
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Figure 7. Time-averaged map of the monthly precipitation rate (TRMM_3B43 v7, in mm/month [102])
for (a) December 2018, (b) January 2019, and (c) February 2019. Right: joint time series for
(d,e) monthly satellite precipitation (GPM_IMERG and TRMM) and soil moisture (SMOS), in addi-
tion to (f) monthly satellite precipitation (GPM_IMERG) and in situ rain measurements [103]. Both
GPM_IMERG and TRMM monthly data were used for validation purposes.

Furthermore, in situ observations from a single rain gauge station operating in the
area, the Chalkida station (Figure 1), located 4–8 km away from the study areas (Figure 1),
were obtained [103] in order to assess the performance of satellite data. Between December
2018 and January 2019, the Chalkida station received, on average, 200–210 mm of rain
(Figure 7a,b), while the mean annual precipitation in the area does not exceed, on average,
290 mm. The high rainfalls can be clearly seen in the monthly precipitation time series for
both the TRMM_3B43 and GPM IMERG estimates (Figure 7d,e). Considering the in situ and
satellite observations (Figure 7f), they appear to be temporally strongly correlated, revealing
that even though space-borne data have spatial resolutions of 10 km (GPM IMERG) and
25 km (TRMM_3B43), they happen to be consistent with site-specific rainfall heights.

Temporal satellite observations were able to provide supplementary, yet, as proven,
independent sources of information concerning water inputs, contrary to in situ precipi-
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tation estimates, which are not always representative for the entire area considering the
sparse monitoring stations (because of height differences, different geomorphological
conditions, etc.).

4. Results

The multitemporal investigation on the period between 2015 and 2020 (Figure 5) con-
cerning two reference lakes, the ephemeral lake in Dokos and the permanent lake in Fylla,
underlines the fact that they were inundated during the 2019 flood period. Both sites are lo-
cated in the surficial sediments of the Lilas River alluvial plain and are in close proximity to
WNW-SE-oriented outcrops of limestone (Figure 1). Consistent temporal trends in the total
estimated water area are observed between the different monitoring approaches (Figure 5);
however, the joint analysis allowed the exclusion of local outliers (mainly NDWI false posi-
tives), improving in this way the outputs and facilitating their proper interpretation. While
the time series of the NDWI and SAR backscatter are consistent during inundation events,
they may deviate for the remaining observation period (i.e., during ‘normal’ conditions),
showing a low degree of correlation. In fact, both the NDWI and SAR backscatter can be
used to detect water bodies, yet SAR observations are sensitive to variability in vegetation
growth, among other factors, which introduces differences into their temporal patterns
compared to the NDWI; however, by combining the NDWI and SAR, we obtain a more
accurate estimate of the water presence and dynamics.

The evolution of the radar backscatter over the entire monitoring period of 2015–2020
shows significant temporal variability across the lake, yet consistent low backscatter values
ranging between −15 dB and −25 dB suggest that the area was governed by water supply
during the 2019 flood event. This backscatter minimum, which is evident in all of the time
series, is comparable for the reference period, with the positive ratios of the NDWI time
series indicating that the reference lakes were only temporally inundated; the constant
presence of water is equal to 1 and the constant absence of water is equal to 0. This
observation is consistent with the occurrence of an extreme rainfall event almost three
months before the observed flooding, as recorded by satellite rainfall observations (Figure 7)
and soil moisture estimates (Figure 5d). The high level of moisture during the period of
intense rainfall indicates an increase in the water content on the land surface and further
supports the occurrence of the flood event in early 2019.

The spatiotemporal analysis of temporary surface water is chosen to be further pre-
sented for the Dokos lake in Figures 3 and 6, as this lake was entirely formed during this
flood episode. Surface water is first observed at the area on 16 January 2019, covering
only a small part of the lake, the extent of which gradually increased in the following
months, reaching its maximum coverage in March 2019. The visual interpretation with
reference photos is shown in Figure S1 [104,105]. From May 2019 the amount of water
reduced significantly, and only the part of the former lake seemed to still possess water. The
ephemeral lake progressively declined and disappeared completely in October 2019. The
evolution of the spatial variability in the S-1 backscattering coefficient and the S-2 NDWI
shows identical performance (Figure 8).

A noteworthy feature characterizes the former detection of water to the east of the
Dokos lake on 12 December 2018 (site UL1, Figure 9), around a month before the appearance
of the ephemeral lake (on 16 Jan 2019), following the WNW-SE outcrops of kastic limestone,
which could potentially be the means that controlled and supplied the karstic flood. This
phenomenon appears to be identical for the Fylla lake, suggesting for both lakes the origin
of karstic groundwater and the flow processes that caused flooding (Figure 9). As described
in Figure 9, there seems to be a gradual water flow from the east (sites UL1 and DL1) that
progressively supplies the lakes in a time window of approx. 3 months. This fact seems to
follow a dependency relation in which the recharging of the lakes continues to increase,
with the maximum extent of water in March 2019, until the water in the karstic outcrop
finally disappears. Other flooding events, limited in the karstic limestone, have been also
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recognized in the NDWI time series, indicating seasonal effects during November and
December; however, they did not result in analogous lake flooding in the area.
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Although seasonal patterns are more evident in the NDWI time series, as the SAR
backscatter is also affected by factors other than moisture content (mainly vegetation
changes), with annual minima in late spring and early summer, an important fact remains
that the reference area records the first considerable and long-lasting increase in surface
water in early 2019, during the 5-year time span. The detailed investigation of SAR
backscatter time series was therefore followed by examining their statistical properties to
determine the impact of the flood event. The results are shown in Figure 4. The standard
deviation was computed based on the time series for each pixel, with the purpose of
showing water variability. In this case, computing the standard deviation allows for the
identification of areas that show strong variability exceeding expected seasonal behavior.
Areas of such high deviations are indicative of water inundation, meaning that they were
flooded during the 2019 event (Figure 4).

According to the average, minimum (negative values for sigma naught in dB), and
maximum (positive NDWI values) results (Figure 4), the maximum water area change was
observed in the northern ephemeral lake, whilst still considerable changes in the margins
of the permanent southern lake were also noticed close to the flood peak date. Due to the
lowland karst terrain, the maximum inundation areas were assumed to be associated with
the storage capacity, as it is likely to hold the maximum water storage, hence lake basins.
Note that the maximum water coverage of the two water bodies demonstrated similar local
hydrological conditions that regulated inundation. The results highlight the suitability of
the methods used for each satellite sensor.
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Figure 9. Identification of the origin of the karst groundwater causing the ephemeral lake flooding.
Top: Spatial distribution of surface water in the Dokos lake (a–c) and Fylla lake (d–f) for 12 December
2018 (a,d), 16 January 2019 (b,e), and 7 March 2019 (c,f). Bottom: Time series plots of the NDWI for
the chosen points shown in the Dokos lake (left) and Fylla lake (right). Dashed lines correspond to
the time periods of frames a–f and denote the flood onset among different sites, showing the temporal
progression in karst ephemeral flooding.

5. Discussion

Data collected for approximately 5 years from different sensors with different spatial
resolutions were processed, showing that, independently of the sensors’ characteristics and
the applied processing chains, it is promising to obtain time series in qualitatively good
agreement for contributing variables such as surface water. On the basis of satellite data
(S-1 and S-2) mapping, surface water was effectively detected at a spatial resolution of
10–20 m, along with its long-term variation. Through this, it was also possible to identify
water peaks related to the 2019 flood that are primarily associated with the ephemeral
appearance of the Dokos lake to the north and the spreading of the permanent Fylla lake to
the south (Figure 9).

The multisource and multitemporal data analysis determined the extent as well as
intensity of the flooding and revealed that the reference lakes recommend flood-prone
areas that are most affected when weather-related extreme events occur without an
annual repeatability.

Diverse remotely sensed data were integrated into a GIS environment for further analy-
sis, specifically the definition and extraction of the flood-affected areas and co-interpretation
along with the morphological as well as geological features of the area (Figure 1). Both
sites show great similarity since they lie in the alluvial fan deposits of the Lilas River,
which allow rainfall to enter the karst system almost immediately. Furthermore, they are
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located next to limestone of the same WNW-SE orientation, suggesting the possibility of
hydraulic connections between them. Any presence of favorable structural controls, such as
dipping beds or folds, may also contribute to the accentuation of water flow. The limestone
formations are located on the margins of the lowland karstic system and constitute the
southern extension of the mountain masses found to the north. Coupled with the high
rainfall levels for January 2019, both lakes’ vicinities with the relatively steep limestone
hills seem to facilitate water flow between them; however, it is of great importance to
understand the nature of the connection and the hydrological processes that prevailed
between the floodplains and the water drainage system. It was shown that, during the
rainfall peak in January 2019, localized water outflow partially covered the Dokos lake,
while the time taken to reach the maximum outflow was in March 2019 (Figures 3 and 6).
This signifies that it took significantly longer to reach the maximum outflow, resulting in a
prolonged flood duration. Indeed, despite the absence of rainfall during the spring and
summer periods water levels have declined significantly, but flood waters are present. The
maximum observed outflow may represent the maximum drainage capacity of the lakes
under heavy rainfall conditions and should be considered for evaluating future extreme
scenarios. The comparison of inundation with rainfall records for the same period shows a
strong relationship between rainfall and flood dynamics, resulting in floodplains character-
ized by low-frequency and long-duration flooding. The spatially variable hydrodynamic
properties and responses within the area helped in understanding that the underground
karst flow is controlled by two discharge scenarios, the storage capacity of the lakes, and
the floodwater that enters from proximal sources.

By means of satellite remote sensing, we were able to propose a flooding mechanism for
both lakes, with the source of karst groundwater recharging initially at the east calcareous
hills and progressively supplying the lakes with water via karst conduits and not surface
runoff. Characteristically, in the case of the Dokos lake, the water seems to first discharge
on the deeper western side of the lake, while it gradually increases to fill the shallower
areas (Figure 9). It is very interesting that water gradually fills the lakes, starting from its
deeper part, almost three months following the heavy rainfalls. This delay, combined with
the local absence of runoff during the flooding, implies that the phenomenon is controlled
by a groundwater transfer mechanism. In parallel, runoff on the limestone, which appears
immediately after the rainfall event, disappears in a relatively short time without any traces.
In particular, surface runoff following the extreme rainfall is limited to the karstic limestone
and disappears relatively fast. Then, after several months, surface water starts appearing
at the deepest part of the nearby ephemeral lake, which, in time, leads to overflooding.
This flooding is maintained for approximately nine months, implying its connection to
non-surficial hydrologic processes. In karstic terrains, the subsurface flow and storage of
water can lead to delayed or prolonged responses to rainfall events.

The above observations may support our suggestion of groundwater rise and basin
inundation due to the transfer of groundwater from the karstic to free aquifer systems. The
homogeneity of the flood mechanism identified in this lowland karst area reinforced the
understanding of the local hydrological and hydrogeological processes operating during
flood conditions. An important base of knowledge has arisen from the recent extreme
flooding event due to the increasing availability of diverse remote sensing data that offered
the potential to describe flood conditions accurately, while overcoming the lack of a local
monitoring network. The methodologies adopted provide the ability to monitor the long-
term spatial and temporal changes in surface water, and consequently flood events that
could be effectively addressed for flood risk analysis purposes.

In conclusion, the Lilas plain is susceptible to flooding when water levels within
the nearby karstic aquifer rise during periods of intense or prolonged rainfall, even at
neighboring basins, forming ephemeral lakes that may last for several months; however, it
should be noted that, after the appearance of the ephemeral lake, inundated areas expand
over urban settlements, mainly along the coastal zone, leading, in turn, to damages and
sometimes the need for evacuation (Figure S1). In this case, the first indication of water
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lake outflow that insists on time (Figure 9b) could potentially signify a subsequent severe
flooding reaching nearby villages and should be considered as a precursor in order to
take measures and prevent property as well as human losses. Therefore, this multi-EO
data analysis provides a basic conceptualization of the factors controlling precipitation,
inflow, and discharge in the Lilas plain, and a valuable insight tool that should be used
for determining hazards associated with groundwater-induced flooding in Chalkida. This
inherent disaster should be explicitly acknowledged within the public authorities to permit
proper flood hazard assessments for future extreme events.

6. Conclusions

Hydrological processes are dynamic phenomena acting at different timescales; there-
fore, a proper monitoring scheme is required for the effective identification of changes in
surface water conditions. Following the 2019 flood event at the broader area of Chalkida,
the spatial distribution of and temporal variability in surface water were analyzed and
interpreted over the years of 2015–2020. It was demonstrated that EO data can play a sig-
nificant role in improving our capacity for mapping temporary water bodies and provide
key hydrological mechanisms.

The accuracy of ephemeral surface water delineation, including flood-affected areas,
was significantly improved through the joint assimilation of multitemporal satellite data
(i.e., S-1 SAR and S-2 optical), rather than using individual satellite observations. By
additionally integrating near-surface soil moisture from SMOS- and EO-based rainfall
observations, more accurate estimates were achieved concerning the variability in surface
water and the prevailing flooding mechanism that appears to be strongly controlled by the
karst system.

Based on the joint analysis of diverse EO time series, the area has experienced a single
noteworthy flood episode during the five-year monitoring period. The findings verify the
primary appearance of water runoff along the karstic landscape with the onset of intense
rainfall. As expected by the local geology, surface water runoff is quickly channeled through
the underground karst system to the neighboring free aquifers on which ephemeral lakes
develop. Whether heavy rainfall will lead to a flood event is highly associated with the
prolonged and extended appearance of surface water in those ephemeral lakes.

Remote sensing from multiple satellite sensors offers a unique synoptic tool that is
often unattainable by traditional local gauging networks. Our EO-supported findings
may serve as indicators for flood alerts in future extreme precipitation events, supporting
decision making and minimizing response times in cases of emergencies.
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https://www.mdpi.com/article/10.3390/geohazards4020012/s1, Figure S1: Photographs show-
ing the 2019 flooding event that hit Dokos [104,105]; Figure S2: Past water fluctuations in Dokos
from Google Earth; Figure S3: Schematic diagram showing SAR and optical processing adopted for
Sentinel-1 GRD and Sentinel-2 L1C data.

Author Contributions: Conceptualization, E.P. and M.F.; methodology, E.P. and M.F.; software, M.F.;
validation, E.P.; formal analysis, M.F.; investigation, E.P.; writing—original draft preparation, E.P.;
writing—review and editing, E.P., M.F. and A.M.; visualization, E.P. and M.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to express our sincere appreciation to the anonymous reviewers
for their insightful comments and suggestions, which greatly improved the quality of this manuscript.
We also extend our gratitude to the Academic Editor for the careful editing and support throughout
the review process.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/geohazards4020012/s1


GeoHazards 2023, 4 213

References
1. Coxon, C.E.; Drew, D.P. Interaction of surface water and groundwater in Irish karst areas: Implications for water resource

management. In Gambling with Groundwater—Physical, Chemical and Biological Aspects of Aquifer–Stream Relations; Brahana, J.V.,
Eckstein, Y., Ongley, L.K., Schneider, R., Moore, J.E., Eds.; American Institute of Hydrology: St. Paul, MN, USA, 1998; pp. 161–168.

2. Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley: Chichester, UK, 2007; p. 562. [CrossRef]
3. Drew, D.P. Hydrogeology of lowland karst in Ireland. Q. J. Eng. Geol. Hydrogeol. 2008, 41, 61–72. [CrossRef]
4. Klove, B.; Ala-aho, P.; Bertrand, G.; Boukalova, Z.; Erturk, A.; Goldscheider, N.; Ilmonen, I.; Karakaya, N.; Kupfersberger, H.;

Kvoerner, J.; et al. Groundwater dependent ecosystems. Part 1: Hydroecological status and trends. Environ. Sci. Policy 2011,
14, 770–781. [CrossRef]

5. Bonacci, O. Poljes, ponors and their catchments. In Treatise on Geomorphology, Vol 6: Karst Geomorphology; Shroder, J., Frumkin, A.,
Eds.; Academic: San Diego, CA, USA, 2013; pp. 112–120. [CrossRef]

6. Upton, K.A.; Jackson, C.R. Simulation of the spatio-temporal extent of groundwater flooding using statistical methods of
hydrograph classification and lumped parameter models. Hydrol. Process. 2011, 25, 1949–1963. [CrossRef]

7. Naughton, O.; Johnston, P.M.; Gill, L.W. Groundwater flooding in Irish karst: The hydrological characterization of ephemeral
lakes (turloughs). J. Hydrol. 2012, 470–471, 82–97. [CrossRef]

8. Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T. Karst flash floods: An example from the Dinaric karst (Croatia). Nat. Hazards Earth
Syst. Sci. 2006, 6, 195–203. [CrossRef]

9. Najib, K.; Jourde, H.; Pistre, S. A methodology for extreme groundwater surge predetermination in carbonate aquifers: Ground-
water flood frequency analysis. J. Hydrol. 2008, 352, 1–15. [CrossRef]

10. Diakakis, M.; Foumelis, M.; Gouliotis, G.; Lekkas, E. Preliminary flood hazard and risk assessment in Western Athens Metro-
politan Area. In Advances in the Research of Aquatic Environment; Lambrakis, N., Stournaras, G., Katsanou, K., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 1, pp. 147–154. [CrossRef]

11. Tsitroulis, I.; Voudouris, K.; Vasileiou, A.; Mattas, C.; Sapountzis, M.; Maris, F. Flood hazard assessment and delimitation of the
likely flood hazard zones of the upper part in Gallikos river basin. Bull. Geol. Soc. Greece 2016, 50, 995–1005. [CrossRef]

12. Copernicus Water & Wetness (WAW). Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/
water-wetness (accessed on 20 February 2023).

13. Copernicus Water Bodies Global. Available online: https://land.copernicus.eu/global/products/wb (accessed on 20 February 2023).
14. Global Lakes and Wetlands Database (GLWD). Available online: https://www.worldwildlife.org/pages/global-lakes-and-

wetlands-database (accessed on 20 February 2023).
15. HydroSHEDS. Available online: https://www.hydrosheds.org/ (accessed on 20 February 2023).
16. Global Reservoirs and Lakes Monitor (G-REALM). G-REALM—Home. Available online: https://www.usda.gov/ (accessed on

20 February 2023).
17. Hoet, P.H.M.; Geys, J.; Nemmar, A.; Nemery, B. NATO Science for Peace and Security Series C, Environmental Security; Korgan, F.,

Powell, A., Fedorov, O., Eds.; Springer: New York, NY, USA, 2011.
18. Klemas, V. Remote Sensing of Floods and Flood-Prone Areas: An Overview. J. Coast. Res. 2015, 31, 1005–1013. [CrossRef]
19. Mouratidis, A.; Sarti, F. Flash-Flood Monitoring and Damage Assessment with SAR Data: Issues and Future Challenges for Earth

Observation from Space Sustained by Case Studies from the Balkans and Eastern Europe. In Earth Observation of Global Changes;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 125–136. [CrossRef]

20. Chini, M.; Giustarini, L.; Matgen, P.; Hostache, R.; Pappenberger, F.; Bally, F. Flood hazard mapping combining high resolution
multi-temporal SAR data and coarse resolution global hydrodynamic modelling. In Proceedings of the 2014 IEEE Geoscience and
Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2394–2396.

21. Parcharidis, I.; Lekkas, E.; Vassilakis, E. SIR-C/X Space Shuttle Images Contribution in Assessment of Flood Risk: The Case of
Athens Basin. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the
Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, HI, USA, 24–28 July 2000; pp. 328–330.

22. Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood detection from multi-temporal SAR data using harmonic analysis and
change detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. [CrossRef]

23. Vickers, H.; Malnes, E.; Høgda, K.-A. Long-Term Water Surface Area Monitoring and Derived Water Level Using Synthetic
Aperture Radar (SAR) at Altevatn, a Medium-Sized Arctic Lake. Remote Sens. 2019, 11, 2780. [CrossRef]

24. Ruzza, G.; Guerriero, L.; Grelle, G.; Guadagno, F.M.; Revellino, P. Multi-Method Tracking of Monsoon Floods Using Sentinel-1
Imagery. Water 2019, 11, 2289. [CrossRef]

25. Ogilvie, A.; Poussin, J.-C.; Bader, J.-C.; Bayo, F.; Bodian, A.; Dacosta, H.; Dia, D.; Diop, L.; Martin, D.; Sambou, S. Combining
Multi-Sensor Satellite Imagery to Improve Long-Term Monitoring of Temporary Surface Water Bodies in the Senegal River
Floodplain. Remote Sens. 2020, 12, 3157. [CrossRef]

26. Doña, C.; Morant, D.; Picazo, A.; Rochera, C.; Sánchez, J.M.; Camacho, A. Estimation of Water Coverage in Permanent and
Temporary Shallow Lakes and Wetlands by Combining Remote Sensing Techniques and Genetic Programming: Application to
the Mediterranean Basin of the Iberian Peninsula. Remote Sens. 2021, 13, 652. [CrossRef]

27. Hostache, R.; Matgen, P.; Wagner, W. Change detection approaches for flood extent mapping: How to select the most adequate
reference image from online archives? Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 205–213. [CrossRef]

https://doi.org/10.1002/9781118684986
https://doi.org/10.1144/1470-9236/07-027
https://doi.org/10.1016/j.envsci.2011.04.002
https://doi.org/10.1016/B978-0-12-374739-6.00103-2
https://doi.org/10.1002/hyp.7951
https://doi.org/10.1016/j.jhydrol.2012.08.012
https://doi.org/10.5194/nhess-6-195-2006
https://doi.org/10.1016/j.jhydrol.2007.11.035
https://doi.org/10.1007/978-3-642-19902-8_16
https://doi.org/10.12681/bgsg.11804
https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness
https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness
https://land.copernicus.eu/global/products/wb
https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database
https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database
https://www.hydrosheds.org/
https://www.usda.gov/
https://doi.org/10.2112/JCOASTRES-D-14-00160.1
https://doi.org/10.1007/978-3-642-32714-8_8
https://doi.org/10.1016/j.jag.2014.12.001
https://doi.org/10.3390/rs11232780
https://doi.org/10.3390/w11112289
https://doi.org/10.3390/rs12193157
https://doi.org/10.3390/rs13040652
https://doi.org/10.1016/j.jag.2012.05.003


GeoHazards 2023, 4 214

28. Clement, M.A.; Kilsby, C.G.; Moore, P. Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood
Risk Manag. 2017, 11, 152–168. [CrossRef]

29. Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood Extent Mapping for Namibia using Change Detection and Thresholding with SAR.
Environ. Res. Lett. 2014, 9, 3. [CrossRef]

30. Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR Data for Detecting Floodwater in Urban and Agricultural Areas: The
Role of the Interferometric Coherence. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1532–1544. [CrossRef]

31. Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an automated SAR-based flood
monitoring system: Lessons learned from two case studies. Phys. Chem. Earth 2011, 36, 241–252. [CrossRef]

32. Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An algorithm for operational flood mapping from Synthetic Aperture Radar
(SAR) data using fuzzy logic. Nat. Hazards Earth Syst. Sci. 2011, 11, 529–540. [CrossRef]

33. Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1 based flood mapping: A fully automated processing chain. Int. J. Remote Sens.
2016, 37, 2990–3004. [CrossRef]

34. Chini, M.; Giustarini, L.; Hostache, R.; Matgen, P. A hierarchical split-based approach for parametric thresholding of SAR images:
Flood Inundation as a Test Case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [CrossRef]

35. Pekel, J.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and its Long-Term Changes.
Nature 2016, 540, 418–422. [CrossRef]

36. Aires, F.; Miolane, L.; Prigent, C.; Pham, B.; Fluet-Chouinard, E.; Lehner, B.; Papa, F. A Global Dynamic Long-Term Inundation
Extent Dataset at High Spatial Resolution Derived through Downscaling of Satellite Observations. J. Hydrometeorol. 2017, 18,
1305–1325. [CrossRef]

37. Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal.
Sensors 2018, 18, 2580. [CrossRef] [PubMed]

38. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

39. Gao, B.C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

40. Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery.
Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

41. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water
Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [CrossRef]

42. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.M.; Font, J.; Berger, M. Soil moisture retrieval from space: The soil moisture
and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [CrossRef]

43. Lievens, H.; De Lannoy, G.J.M.; Al Bitar, A.; Drusch, M.; Dumedah, G.; Hendricks Franssen, H.-J.; Kerr, Y.H.; Tomer, S.K.; Martens,
B.; Merlin, O.; et al. Assimilation of SMOS soil moisture and brightness temperature products into a land surface model. Remote
Sens. Environ. 2016, 180, 292–304. [CrossRef]

44. Seo, D.; Lakhankar, T.; Cosgrove, B.; Khanbilvardi, R.; Zhan, X. Applying SMOS soil moisture data into the National Weather
Service (NWS)’s Research Distributed Hydrologic Model (HL-RDHM) for flash flood guidance application. Remote Sens. Appl.
Soc. Environ. 2017, 8, 182–192. [CrossRef]

45. Usowicz, B.; Lipiec, J.; Lukowski, M. Evaluation of Soil Moisture Variability in Poland from SMOS Satellite Observations. Remote
Sens. 2019, 11, 1280. [CrossRef]

46. Baugh, C.; de Rosnay, P.; Lawrence, H.; Jurlina, T.; Drusch, M.; Zsoter, E.; Prudhomme, C. The Impact of SMOS Soil Moisture Data
Assimilation within the Operational Global Flood Awareness System (GloFAS). Remote Sens. 2020, 12, 1490. [CrossRef]

47. Karymbalis, E.; Valkanou, K.; Tsodoulos, I.; Iliopoulos, G.; Tsanakas, K.; Batzakis, V.; Tsironis, G.; Gallousi, C.; Stamoulis, K.;
Ioannides, K. Geomorphic Evolution of the Lilas River Fan Delta (Central Evia Island, Greece). Geosciences 2018, 8, 361. [CrossRef]

48. CNN Greece. Available online: https://www.cnn.gr/ellada/story/168049/se-katastasi-ektaktis-anagkis-i-xalkida-egkataleipoyn-
ta-plimmyrismena-spitia-toys-oi-katoikoi (accessed on 20 February 2023).

49. Zorapas, M.; Sampatakaki, P.; Nikolaou, N. Preliminary Technical Report on Direct Demonstruction Projects of the Chalkida Area and the
Municipality of Evia; Institute of Geology and Mineral Exploration (IGME), Address Hydrogeology: Athens, Greece, 2019.

50. Golubovic-Deligianni, M.; Poulos, S.; Kotinas, V.; Panagou, T.; Alexopoulos, J. Investigation of the Causes of the Flooding in the
Karst Areas of the Municipality of Halkida, Prefecture of Evia (Greece). In Proceedings of the 12th International Conference of
Hellenic Geographical Society, Athens, Greece, 1–4 November 2019; Volume 1.

51. Argyraki, A.; Pyrgaki, K. Technical Report on the Initial Conceptualisation and Characterisation of the Studied water Bodies in Greece;
Faculty of Geology and Geoenvironment, National and Kapodistrian University of Greece: Zografou, Greece, 2018; 37p.

52. Blackstock, T.H.; Duigan, C.A.; Stevens, D.P.; Yeo, M.J.M. Vegetation zonation and invertebrate fauna in Pant-y-Llyn, an unusual
seasonal lake in South Wales, UK. Aquat. Conserv. Mar. Freshw. Ecosyst. 1993, 3, 253–268. [CrossRef]

53. Ganoulis, J.; Vafiadis, M.M. Urban Flood Control in Karst Areas: The Case of Rethymnon (Greece). In Defence from Floods and
Floodplain Management; NATO ASI Series; Gardiner, J., Starosolszky, Ö., Yevjevich, V., Eds.; Springer: Dordrecht, The Netherlands,
1995; Volume 299. [CrossRef]

54. Hardwick, P.; Gunn, J. Landform–groundwater interactions in the Gwenlais karst, South Wales. In Geomorphology and Groundwater;
Brown, A.G., Ed.; John Wiley: New York, NY, USA, 1995; pp. 75–91.

https://doi.org/10.1111/jfr3.12303
https://doi.org/10.1088/1748-9326/9/3/035002
https://doi.org/10.1109/TGRS.2015.2482001
https://doi.org/10.1016/j.pce.2010.12.009
https://doi.org/10.5194/nhess-11-529-2011
https://doi.org/10.1080/01431161.2016.1192304
https://doi.org/10.1109/TGRS.2017.2737664
https://doi.org/10.1038/nature20584
https://doi.org/10.1175/JHM-D-16-0155.1
https://doi.org/10.3390/s18082580
https://www.ncbi.nlm.nih.gov/pubmed/30087264
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1016/j.rse.2013.08.029
https://doi.org/10.1109/36.942551
https://doi.org/10.1016/j.rse.2015.10.033
https://doi.org/10.1016/j.rsase.2017.09.002
https://doi.org/10.3390/rs11111280
https://doi.org/10.3390/rs12091490
https://doi.org/10.3390/geosciences8100361
https://www.cnn.gr/ellada/story/168049/se-katastasi-ektaktis-anagkis-i-xalkida-egkataleipoyn-ta-plimmyrismena-spitia-toys-oi-katoikoi
https://www.cnn.gr/ellada/story/168049/se-katastasi-ektaktis-anagkis-i-xalkida-egkataleipoyn-ta-plimmyrismena-spitia-toys-oi-katoikoi
https://doi.org/10.1002/aqc.3270030309
https://doi.org/10.1007/978-94-011-0401-2_10


GeoHazards 2023, 4 215

55. López-Chicano, M.; Calvache, M.L.; Martín-Rosales, W.; Gisbert, J. Conditioning factors in flooding of karstic poljes: The case of
the Zafarraya Polje (South Spain). Catena 2002, 49, 331–352. [CrossRef]

56. Goodwillie, R.; Reynolds, J.D. Turloughs. In Wetlands of Ireland: Distribution, Ecology, Uses and Economic Value; Otte, M.L., Ed.;
University College Dublin Press: Dublin, UK, 2003; pp. 130–134.

57. Sheehy Skeffington, M.; Scott, N.E. Do turloughs occur in Slovenia? Acta Carsol. 2008, 37, 236–291. [CrossRef]
58. Parise, M. Karst geo-hazards: Causal factors and management issues. Acta Carsolog. 2015, 44, 401–414. [CrossRef]
59. Sarchani, S.; Tsanis, I. Analysis of a Flash Flood in a Small Basin in Crete. Water 2019, 11, 2253. [CrossRef]
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