
Citation: Kamoto, R.; Onimura, K.;

Yamabuki, K. One-Pot Synthesis of

Stable Poly([c2]Daisy–chain

Rotaxane) with Pseudo-Stopper via

Metathesis Reaction and Thiol-Ene

Reaction. Reactions 2023, 4, 448–464.

https://doi.org/10.3390/

reactions4030027

Academic Editor: Vincent Ladmiral

Received: 12 July 2023

Revised: 3 August 2023

Accepted: 17 August 2023

Published: 23 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

reactions

Article

One-Pot Synthesis of Stable Poly([c2]Daisy–chain Rotaxane)
with Pseudo-Stopper via Metathesis Reaction and
Thiol-Ene Reaction
Risako Kamoto, Kenjiro Onimura and Kazuhiro Yamabuki *

Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai,
Ube 755-8611, Yamaguchi, Japan; onimura@yamaguchi-u.ac.jp (K.O.)
* Correspondence: yamabuki@yamaguchi-u.ac.jp

Abstract: Rotaxanes, known as supramolecular compounds, are expected to find applications in
functional materials due to their high degree of freedom. However, their synthesis requires multistep
reactions, and there is a demand for more convenient methods to synthesize rotaxane materials. In
this study, we aimed to investigate a simpler method for synthesizing highly functional rotaxane
materials and explore the diversity of molecular designs. To achieve this, we successfully synthesized
a host–guest conjugated compound that incorporates both crown ether as the host unit and secondary
ammonium salts as the guest unit within the same molecule. Subsequently, the metathesis reaction
of these compounds, which construct [c2]daisy-chain rotaxanes, enabled the one-pot synthesis of a
topological polymer called “poly([c2]daisy-chain rotaxane)” with a pseudo-stopper. This methodol-
ogy achieves the stabilization and polymerization of rotaxanes simultaneously, contributing to the
easy materialization of rotaxanes. Furthermore, the thiol-ene reaction achieved the extension of the
distance between rotaxane units and provided a useful approach to diversify the design of functional
materials with rotaxane structures.
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1. Introduction

Rotaxanes are a well-known type of supramolecular structures that exhibit organized
arrangements through interactions between molecules. A rotaxane is a general term for a
mechanically interlocked molecule where a linear molecule (known as the “axle”) threads
through the cavity of a cyclic molecule (referred to as the “wheel”), and numerous rotaxanes
have been reported to date. For instance, Harada et al. have reported a typical rotaxane
shaped like a necklace by utilizing hydrophilic cyclodextrins as a host and incorporating an
axle such as polyethylene glycol into the cavity [1–11]. These systems take advantage of the
complementary sizes and hydrophobic interactions between the host and guest molecules,
allowing for the formation of precisely controlled complexes. On the other hand, research
on rotaxanes using hydrophobic cyclic molecules, with a focus on Stoddart and Gibson
et al.’s work, has been actively reported since the 1990s [12–23]. Through cyclodextrins,
various interactions can be utilized for the synthesis of rotaxanes. For example, Stoddart
et al. successfully synthesized a rotaxane consisting of a 4,4′-bipyridinium unit and a
bisparaphenylene-34-crown-10 macrocycle, utilizing charge–transfer interactions [15]. Gib-
son et al. found that a 30-membered crown ether forms hydrogen bonds with hydroxyl
groups at the polymer chain termini, promoting rotaxane formation [21]. Furthermore,
Sauvage et al. reported the synthesis of rotaxanes using the coordination structure of Cu ion
and crown ether derivatives with phenanthroline skeleton, establishing an efficient synthe-
sis method utilizing the template effect between a metal ion and a ligand [18]. Additionally,
Takata et al. reported the synthesis of hydrophobic functional rotaxanes utilizing hydrogen
bonds and electrostatic interactions working between the secondary ammonium salt axles
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and the dibenzo-24-crown 8-ether (DB24C8) derivatives [24–26]. They demonstrated the
utilization of these rotaxanes not only in small molecules but also in functional polymer
materials. Supramolecular compounds utilizing intermolecular interactions, such as ro-
taxanes, exhibit ordered spatial arrangements and are recognized as artistic compounds.
However, in recent years, various functional rotaxane materials with excellent properties,
like slide-ring gels, have also gained significant recognition [27–35]. In slide-ring gels, the
cyclodextrins within the rotaxane form a hydrogel through intermolecular cross-linking [36].
This hydrogel structure allows the cyclodextrins to freely move along the polyethylene
glycol (PEG) axle, effectively mitigating external forces (“Pulley effect”). As a result, these
materials exhibit high mechanical strength and stretchability, offering unique functional
materials based on a novel concept that distinguishes them from both chemical gels and
physical gels. In maintaining the structure and functionality of these rotaxanes, a bulky
“stopper” is essential as a third component other than the wheel and axle (Figure 1).
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Figure 1. Conventional synthesis method of “rotaxane” and applications of functional rotaxane
materials (ex. slide-ring gel).

A “stopper” possesses a size larger than the cavity size of wheel and serves the
role of enclosing wheel within the rotaxane. By introducing these bulky compounds at
the end of axle, the rotaxane can stably exist without dissociating in various external
environments. Therefore, these stoppers are an essential component in the synthesis
of many rotaxanes. However, the use of stoppers increases the complexity of the ro-
taxane synthesis process and leads to lower yields. Therefore, synthesizing rotaxanes
efficiently using a simpler method holds significant industrial importance. To address
the challenge of simplifying the synthesis of rotaxanes mentioned above, our research
group focused on [c2]daisy-chain rotaxanes, which possess a unique structure among
rotaxanes [37–62]. [c2]Daisy-chain rotaxanes are constructed from a host–guest connected
compound (H-G compound) where the host component (wheel) and the guest component
(axle) are incorporated within the same molecule. In these [c2]daisy-chain rotaxanes, two
H-G compounds interact with each other, utilizing their wheel and axle components to
mutually form an inclusion complex, resulting in a highly symmetrical compound. Such
[c2]daisy-chain rotaxanes exhibit changes in the position of their internal wheels only when
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stoppers are introduced, in response to external stimuli such as light, pH, temperature,
solvent polarity, and mechanical stress. These topological changes enable the creation of
new materials with various functionalities such as stimulus responsiveness and stretcha-
bility, but there are very few reported examples of such materials [63–70]. Among them,
for example, Stoddart et al. reported the synthesis of stable [c2]daisy-chain rotaxanes by
introducing a 1,3-Diisopropylbenzene stopper containing an alkyne unit to the host–guest
inclusion complex of crown ether and ammonium salt [71]. Furthermore, the rotaxane
was successfully polymerized using Huisgen 1,3-dipolar cycloaddition, resulting in the
synthesis of a topological polymer “poly([c2]daisy-chain rotaxane)” that allows for precise
control of the position of the crown ether. However, this method involves a conventional
two-step synthetic approach, where stable rotaxanes are first synthesized and purified
using stoppers, followed by polymerization with diazides as joint components. Therefore,
a more convenient synthetic approach is desired.

Based on this background, in recent years, we have successfully achieved the
one-pot synthesis of a convenient and stable topological material using the [c2]daisy-
chain rotaxane structure without employing a third ”stopper”. In this study, we report the
one-pot synthesis of a polymer composed of continuously linked [c2]daisy-chain rotaxanes
using only monoalkene compounds that contain a 24-membered crown ether (wheel) as
the host component and a secondary ammonium salt (axle) as the guest component within
the same molecule, utilizing metathesis reactions [72–80] (Figure 2).
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The key point of our synthetic strategy is the synthesis of a rotaxane polymer using
a simple and non-dissociating inclusion structure with only a single compound. In this
strategy, the bulky [c2]daisy-chain rotaxane itself acts as a stopper (pseudo-stopper), sup-
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pressing the dissociation of another neighboring [c2]daisy-chain rotaxane unit. In other
words, the [c2]daisy-chain rotaxane plays a dual role, as an inclusion complex and a stopper,
enabling the one-pot synthesis of topological polymers with a single compound. In addi-
tion, we report the results of conducting thiol-ene reactions using dithiols to investigate the
influence of distance extension between [c2]daisy-chain rotaxane units within the polymer
backbone [81–85].

2. Results and Discussion
2.1. Design of H-G Monomer and Preparation of [c2]Daisy-chain Rotaxane

In order to achieve the one-pot synthesis of a poly[c2]daisy-chain rotaxane without
using a third stopper compound, an H-G monomer was synthesized according to Scheme 1.
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Scheme 1. Synthesis of “H-G monomer”.

There are two key features in the molecular design here. The first is the length of
the alkyl chain connecting the DB24C8 and ammonium salt units. To efficiently form the
[c2]daisy-chain structure between the two molecules, it is most preferable to have a length
of a methylene (-CH2-) for the alkyl chain, as reported for the quantitative formation of
[c2]daisy-chain rotaxanes, benefiting from both the size complementarity and the π–π
interactions between the benzene rings of DB24C8 [29–33,35,36]. The second feature is
the incorporation of a low-radical-polymerizable terminal alkene. Long-chain alkenes
without an electron-withdrawing group introduced on the adjacent carbon of the double
bond easily undergo reactions involving metal coordination due to the presence of highly
electron-dense double bonds while also providing high solubility in organic solvents to the
entire compound. Additionally, this molecular design can easily achieve polymerization of
[c2]daisy-chain rotaxane using only one compound (H-G monomer) through metathesis
reactions that enable the exchange of double bonds between molecules.

The H-G monomer was successfully synthesized from 3,4-Dioxa-1,8-octanediol,
two 1,2-dihydroxybenzene derivatives, and 10-undecene-1-amine in a total of 7 steps.
Its structure was identified through NMR and MS measurements.

Figure 3 shows the 1H NMR spectra of H-G monomer in DMSO-d6 and CDCl3. No-
ticeable differences were observed between the two deuterated solvents, clearly indicating
the presence or absence of inclusion complexes.
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In highly polar solvents such as DMSO (Figure 3A), where hydrogen bonding and
electrostatic interactions between the ammonium salt and crown ether are hindered, a
spectrum similar to that of the original H-G monomer was observed. Consequently, the
peaks corresponding to the methylene protons a–c derived from the ethylene oxide of the
crown ether, located at 4.2–3.5 ppm, and the methylene proton units d and e adjacent to the
ammonium salt, became sharper and were attributed in detail.

In contrast, in the less polar solvent chloroform (Figure 3B), the assigned regions
mentioned above exhibited complex splitting patterns. This is a typical peak splitting
behavior observed in [c2]daisy-chain rotaxane structures, indicating the complex con-
tribution of peak shifts and conformational changes of the DB24C8 units due to the
inclusion [41]. Furthermore, even when the concentration of H-G monomer was diluted
100-fold (0.001 M), no change in the spectral shape was observed, suggesting the quan-
titative and stable formation of the [c2]daisy-chain rotaxane structure in chloroform (see
Figure S1 in Supplementary Materials).

2.2. One-Pot Synthesis of Poly([c2]Daisy-chain Rotaxane) by Using Metathesis Reaction of
H-G Monomer

Next, metathesis reactions of the H-G monomer in chloroform as a low-polarity
solvent were conducted (Scheme 2). Metathesis reactions are known as powerful tools for
the rearrangement of double bonds and are widely used in various molecular designs.
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Scheme 2. One-pot synthesis of poly([c2]daisy-chain rotaxane) by using metathesis reaction.

In this reaction, the simultaneous formation of inclusion complexes and their polymer-
ization allows for the synthesis of stable rotaxane materials consisting of the wheel and axle
components. However, a small amount of products that do not dissolve in chloroform or
other organic solvents was also present. The 1H NMR spectrum of the chloroform-soluble
part obtained through metathesis reactions is shown in Figure 4. The spectrum of the
product in CDCl3 (Figure 4A) exhibited complex splitting peaks at 4.2–3.5 ppm, similar
to those of the spectrum of the [c2]daisy-chain rotaxane before the reaction (Figure 3A).
Furthermore, a significant decrease in the proton peaks f and g derived from terminal
double bonds at 5.8 and 5.2 ppm, respectively, and the appearance of a new proton peak h
attributed to an internal double bond were observed. These observations suggest that the
metathesis reaction of H-G monomer was carried out while maintaining the [c2]daisy-chain
rotaxane structure. In the spectrum of the products in DMSO-d6 (Figure 4B), the complex
peak splitting observed in CDCl3 changed to three distinct peaks a–c. This indicates a
conformational change in the [c2]daisy-chain rotaxane, where the polar solvent DMSO
strongly solvates the secondary ammonium salt unit in the rotaxane, causing the wheels
to adopt a conformation that expands their distance to avoid steric hindrance without
dissociating the rotaxane.
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Figure 4. 1H NMR spectra of poly([c2]daisy-chain rotaxane) in (A) CDCl3 and (B) DMSO-d6.

The molecular weight of the obtained products was estimated using GPC measure-
ments (Figure 5). As a result, a trimodal peak was observed at significantly different
retention times from that of H-G monomer (Mn = 670). The average molecular weights
of the trimodal peak were determined to be Mn = 4700 and Mw = 5730, with the highest
molecular weight region (the filled peak area) calculated as max. Mn = 8020 and max.
Mw = 8830. This indicates that the resulting products were polymers of different lengths
with multiple connected [c2]daisy-chain rotaxane units, and these polymers exist stably
without dissociation.

Reactions 2023, 4, FOR PEER REVIEW 8 

Figure 5. GPC chart of poly([c2]daisy-chain rotaxane) (eluent: CHCl3). 

These results demonstrate that in the metathesis reaction of H-G monomer using
chloroform as the reaction solvent, both the inclusion and the polymerization reactions
occur simultaneously, resulting in the formation of a high-molecular-weight polymer. In 
this process, adjacent [c2]daisy-chain rotaxane units act as bulky stoppers, affording the
polymer to be maintained without dissociation.

2.3. One-Pot Synthesis of Poly([c2]Daisy-chain Rotaxane) by Using Thiol-Ene Reaction of H-G 
Monomer 

In the polymerization of [c2]daisy-chain rotaxane through metathesis reaction, the
obtained product showed low solubility in chloroform and a small amount of insoluble 
material was observed, indicating the high crystallinity of the polymer. Therefore, we
investigated the change in molecular weight when introducing 3,6-dioxa-1,8-dithiol
(DODT), a low-crystalline dithiol molecule, as a spacer component between [c2]daisy-
chain rotaxane units (Scheme 3). H-G monomer, DODT, and benzophenone were 
dissolved in chloroform, and upon UV irradiation, a light-yellow solid product, 
poly([c2]daisy-chain rotaxane)-SH, was obtained. 

Figure 5. GPC chart of poly([c2]daisy-chain rotaxane) (eluent: CHCl3).



Reactions 2023, 4 455

These results demonstrate that in the metathesis reaction of H-G monomer using
chloroform as the reaction solvent, both the inclusion and the polymerization reactions
occur simultaneously, resulting in the formation of a high-molecular-weight polymer. In
this process, adjacent [c2]daisy-chain rotaxane units act as bulky stoppers, affording the
polymer to be maintained without dissociation.

2.3. One-Pot Synthesis of Poly([c2]Daisy-chain Rotaxane) by Using Thiol-Ene Reaction of
H-G Monomer

In the polymerization of [c2]daisy-chain rotaxane through metathesis reaction, the
obtained product showed low solubility in chloroform and a small amount of insoluble
material was observed, indicating the high crystallinity of the polymer. Therefore, we in-
vestigated the change in molecular weight when introducing 3,6-dioxa-1,8-dithiol (DODT),
a low-crystalline dithiol molecule, as a spacer component between [c2]daisy-chain rotaxane
units (Scheme 3). H-G monomer, DODT, and benzophenone were dissolved in chloroform,
and upon UV irradiation, a light-yellow solid product, poly([c2]daisy-chain rotaxane)-SH,
was obtained.
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Scheme 3. One-pot synthesis of poly([c2]daisy-chain rotaxane)-SH by using thiol-ene reaction.

The 1H NMR spectrum of poly([c2]daisy-chain rotaxane)-SH exhibited a significant
decrease in the proton peaks f and g originating from double bonds, as well as the same com-
plex splitting peaks observed in poly([c2]daisy-chain rotaxane), suggesting the progression
of the thiol-ene reaction during the formation of the inclusion complex (Figure 6).
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Figure 6. 1H NMR spectrum of poly([c2]daisy-chain rotaxane)-SH in CDCl3.

Figure 7 shows the GPC chart of the obtained product. The chart displayed a trimodal
peak, and the overall average molecular weight was Mn = 4700, Mw = 5730. Furthermore,
the peak corresponding to the high-molecular-weight region (the filled peak area) was
calculated as max. Mn = 11,680, max. Mw = 16,660.
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These results indicate that the thiol-ene reaction system can achieve both the forma-
tion of [c2]daisy-chain rotaxane and the suppression of dissociation through the connec-
tion of rotaxanes mediated by the dithiol, resulting in a molecular weight approximately
1.5 times higher than that obtained via a metathesis reaction. This suggests that the in-
troduction of liquid DODT components into the polymer backbone decreases the overall
crystallinity and improves solubility in organic solvents. Additionally, the DSC measure-
ment of poly([c2]daisy-chain rotaxane)-SH determined a glass transition temperature (Tg)
of 43 ◦C, while no corresponding endothermic peak was observed in the temperature
range of 20–100 ◦C for the polymer obtained via a metathesis reaction (see Figure S2 in
Supplementary Materials).

As the final experiment of this report, we carried out a deionization (neutralization)
reaction of the highly soluble poly([c2]daisy-chain rotaxane)-SH (Scheme 4). The purpose
of the neutralization reaction was to chemically remove the interaction between the am-
monium salt and the crown ether that affects the [c2]daisy-chain rotaxane structure. We
intentionally created an environment where the [c2]daisy-chain rotaxane could not be
maintained and examined whether the polymer would disassembly.
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Scheme 4. Neutralization of poly([c2]daisy-chain rotaxane)-SH with acetic anhydride.

The neutralization reaction was performed using acetic anhydride, and through IR
measurements, typical absorption peaks related to the decrease in PF6 anions and the
appearance of amide bonds confirmed the partial progression of the neutralization reaction
(see Figure S3 in Supplementary Materials). In the 1H NMR spectrum of the neutralized
poly([c2]daisy-chain rotaxane)-SH, three distinct peaks a–c attributed to the crown ether
were observed in the range of 4.2 to 3.6 ppm in CDCl3 (Figure 8).
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Figure 8. 1H NMR spectrum of neutralized poly([c2]daisy-chain rotaxane)-SH in CDCl3.

This showed a similar chemical shift as the inclusion part in DMSO in Figure 3B, sug-
gesting a topological change in [c2]daisy-chain rotaxane. Furthermore, the GPC measure-
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ment of the obtained product showed that the average molecular weight was comparable
to the molecular weight before neutralization, as Mn = 4970 (see Figure S4 in Supplemen-
tary Materials). In addition, the glass transition temperature of the neutralized polymer
reached 3 ◦C, causing a further decrease in crystallinity compared to before neutralization
(see Figure S5 in Supplementary Materials). This decrease suggested the involvement of
the removal of interactions occurring between the secondary ammonium salt and crown
ether within the [c2]daisy-chain rotaxane units. These results strongly demonstrated that
the [c2]daisy-chain rotaxane significantly contributes to the structural stabilization of the
polymer as a stopper.

3. Conclusions

In summary, we designed an H-G monomer in which a dibenzo-24-crown-8-ether
unit and a secondary ammonium salt unit were introduced within the same molecule. We
successfully achieved the one-pot synthesis of a topological polymer that remains stable
without dissociation by utilizing the [c2]daisy-chain rotaxane structure. These one-pot
syntheses involved the utilization of a metathesis reaction and a thiol-ene reaction. The
former provided a stable polymer consisting of interconnected [c2]daisy-chain rotaxanes
using only a single molecule (H-G monomer). Furthermore, the latter suggested the easy
control of the solubility and crystallinity of the resulting polymer by introducing dithiol
units between [c2]daisy-chain rotaxanes. Moreover, even in environments where the
rotaxane structure cannot be maintained, such as polar solvents like DMSO or during
neutralization processes, the resulting polymer maintained its inclusion structure without
dissociation. This suggests that even when the interaction between the ammonium salt and
crown ether is inhibited, the adjacent neutralized [c2]daisy-chain rotaxane functions well as
a stopper and prevents the complete dissociation of their inclusion polymers. By employing
this synthetic strategy, it becomes possible to conveniently synthesize various functional
materials with [c2]daisy-chain rotaxane structures, contributing to a wide range of fields
such as stretchable materials, stimuli-responsive materials, and self-healing materials.
Currently, our focus is on material design tailored to specific applications, and we are
proceeding with synthesis and evaluation.

4. Experimental Section
4.1. Materials and Instruments

Reagent-grade solvents (hexane, dichloromethane, chloroform, tetrahydrofuran (THF),
acetone, methanol (MeOH), ethyl acetate (EtOAc), and dimethylformamide (DMF)) and
other chemicals were used without further purification. Thin-layer chromatography was
performed using MERCK (Darmstadt, Germany) 60 F254, and MERCK 60 (0.063–0.200 mm)
was used as silica gel.

1H NMR (500 MHz) and 13C NMR (270 MHz) spectra were recorded on a JEOL JNM-
ECA500 instrument using CDCl3 or DMSO-d6 as the deuterated solvent and tetramethyl
silane (TMS) as the internal standard. Molecular weights and molecular weight distribu-
tions were estimated via gel permeation chromatography (GPC) experiments conducted on
a SHIMADZU SPD-20A instrument equipped with an ultraviolet (UV) detector (257 nm)
and a Shodex GPC KF-804L column (internal diameter, 8.0 mm; length, 30 cm; gel particle
diameter, 7 µm; theoretical plate number >18,000). Tetrahydrofuran (CDCl3) was used as an
eluent at a flow rate of 1.0 mL/min. Molecular weights were calibrated against polystyrene
standards. Accurate mass measurements with electrospray ionization time-of-flight (ESI-
TOF) mass were performed using a Waters Xevo(TM) G2-XS QTof. Fourier-transform
infrared (FT-IR) spectra were recorded using a JASCO FTIR-6600, as well as a spectrome-
ter. The glass transition temperature was measured using a highly sensitive differential
scanning calorimeter Hitachi High-Tech Science DSC 7020.
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4.2. Synthesis of Compound 1

A THF solution (200 mL) containing 3,4-Dioxa-1,8-octanediol (90.2 g, 0.599 mol), tri-
ethylamine (12.1 g, 0.120 mol), and 4-dimethylaminopyridine (DMAP) (0.146 g,
1.20 mmol) was slowly added dropwise to a THF solution (100 mL) of p-toluenesulfonic
chloride (TsCl) (45.8 g, 0.240 mol). The resulting mixture was stirred at room temperature
for 24 h. Subsequently, the solution was treated with saturated sodium bicarbonate solution
(50 mL) and then diluted with EtOAc (300 mL). It was washed three times with water
(100 mL). The organic layer obtained was dried over anhydrous magnesium sulfate and
concentrated under reduced pressure. The residue was purified via column chromatog-
raphy using silica gel and an eluent of EtOAc. Compound 1, a colorless and transparent
oil, was obtained (9.36 g, 81.9% yield). 1H NMR (500 MHz, CDCl3) δ (ppm from TMS):
7.91–7.89 (d, 2H, Ph), 7.39–7.33 (d, 2H, Ph), 4.20–4.17 (t, 2H, Ts–OCH2–), 3.80–3.58 (m,
10H, Ts–OCH2CH2–OCH2CH2–OCH2CH2–OH), 2.42 (s, 3H, CH3–Ph) (see Figure S6 in
Supplementary Materials) [86].

4.3. Synthesis of Compound 2

Pyrocatechol (1.35 g, 0.0123 mol) was added to a suspension of cesium carbonate
(8.01 g, 0.0246 mol) in acetonitrile (100 mL) and refluxed for 1 h. Then, the acetonitrile
solution (50 mL) containing compound 1 (9.36 g, 0.0307 mol) was slowly added dropwise
and refluxed for 24 h. After cooling to 25 ◦C, the suspension was filtered, and the filtrate
was concentrated under reduced pressure. The residue was purified via column chromatog-
raphy using silica gel and an eluent of EtOAc/MeOH (4/1, v/v). Compound 2, a yellow
viscous oil, was obtained (9.43 g, 82.4% yield). 1H NMR (500 MHz, CDCl3) δ (ppm from
TMS): 6.92 (s, 4H, Ph), 4.20–4.15 (t, 4H, Ph–OCH2–), 3.88–3.60 (m, 20H, Ph–OCH2CH2–
OCH2CH2–OCH2CH2–OH) (see Figure S7 in Supplementary Materials) [87].

4.4. Synthesis of Compound 3

A THF solution (30 mL) containing compound 2 (5.88 g, 0.0175 mol), triethylamine
(7.08 g, 0.0471 mol), and DMAP (0.0405 g, 0.314 mmol) was slowly added dropwise to a
THF solution (20 mL) of TsCl (8.97 g, 0.0471 mol), and the mixture was stirred at 25 ◦C for
12 h. Then, the solution was treated with saturated sodium bicarbonate solution (50 mL)
and diluted with ethyl acetate (200 mL), followed by three washes with water (100 mL).
The organic layer obtained was dried over anhydrous magnesium sulfate and concentrated
under reduced pressure. The residue was purified via column chromatography using silica
gel and an eluent of ethyl acetate/hexane (2/1, v/v). Compound 3, a yellow viscous oil, was
obtained (5.76 g, 97.9% yield). 1H NMR (500 MHz, CDCl3) δ (ppm from TMS): 7.80–7.75
(d, 4H, Ph (Ts)), 7.38–7.29 (d, 4H, Ph (Ts)), 6.90 (s, 4H, Ph), 4.18–4.11 (t, 4H, Ph–OCH2–),
3.88–3.59 (m, 20H, Ph–OCH2CH2–OCH2CH2–OCH2CH2–OH), 2.44 (s, 6H, CH3–Ph) (see
Figure S8 in Supplementary Materials) [87].

4.5. Synthesis of Compound 4

Compound 3 was added to a THF suspension (300 mL) of potassium carbonate (8.15 g,
25.4 mmol) and refluxed for one hour. Then, a THF solution (100 mL) of
3,4-dihydroxybenzaldehyde (0.696 g, 5.45 mmol) was added dropwise to the solution,
and the mixture was refluxed for 24 h. After quenching with 1 M HCl aqueous solution, the
mixture was diluted with dichloromethane (200 mL) and washed with saturated sodium
chloride solution (100 mL). The organic layer was dried over anhydrous magnesium sul-
fate and concentrated under reduced pressure. The resulting concentrate was purified
via column chromatography using silica gel and an eluent of ethyl acetate/methanol
(10/1, v/v). Mono-formylated DB24C8 (compound 4), a white solid, was obtained (1.77 g,
52.9% yield). 1H NMR (500 MHz, CDCl3) δ (ppm from TMS): 9.83–9.81 (s, 1H, Ph–CHO),
7.81–7.75 (m, 5H, Ph), 7.35–7.29 (d, 2H, Ph), 4.23–4.08 (m, 24H, –CH2CH2O–) (see Figure S8
in Supplementary Materials) [87].
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4.6. Synthesis of Compound 5

A THF solution (10 mL) of compound 4 was slowly added dropwise to a THF solution
(10 mL) of 10-undecen-1-amine (0.720 g, 4.25 mmol), and the resulting mixture was stirred
at 25 ◦C for 8 h. The solvent was removed under reduced pressure, yielding compound
5 with reduced formyl groups as a yellow solid (crude product, 1.31 g). It was used without
further purification in the subsequent reaction. 1H NMR (500 MHz, CDCl3, crude sample)
δ (ppm from TMS): 8.11–8.09 (s, 1H, Ph–CH=N), 6.88–6,80 (m, 7H, Ph), 5.82–5.73 (m, 2H,
CH2=CH–), 4.98–4.87 (m, 1H, CH2=CH–), 4.21–3.78 (m, 24H, –CH2CH2O–), 3.61–3.50 (m,
2H, CH=N–CH2–), 2.03–1.90 (m, 2H, CH2=CH–CH2–), 1.73–1.67 (m, 2H, =N–CH2–CH2–),
1.37–1.20 (m, 12H, CH2=CH–(CH2)6–) (see Figure S9 in Supplementary Materials).

4.7. Synthesis of H-G Monomer

Compound 5 (1.80 g, 2.86 mmol) was dissolved in methanol (2 mL), and 1 M HCl
aqueous solution (2 mL) was added dropwise. The resulting mixture was stirred at
25 ◦C for 1 h. MeOH was removed under reduced pressure, and the residue was di-
luted with dichloromethane (20 mL). The solution was washed with saturated NH4PF6
aqueous solution (10 mL × 2 times). The organic layer was concentrated under reduced
pressure, and the obtained residue was washed with ethyl acetate, resulting in the white
solid H-G monomer (1.00 g, 66% yield). 1H NMR (500 MHz, DMSO-d6) δ (ppm from
TMS): 7.02–6.84 (m, 7H, Ph), 5.83–5.74 (m, 1H, CH2=CH–), 5.02–4.91 (m, 2H, CH2=CH–),
4.10–4.01 (m, 10H, –Ph–CH2–NH2

+–, –PhO-CH2CH2O–), 3.81–3.75 (m, 8H, –PhO-CH2CH2O–),
3.66–3.63 (m, 8H, –PhO-CH2CH2O–CH2CH2O–), 2.87–2.82 (m, –Ph–CH2–NH2

+–CH2–),
2.04–1.99 (m, 2H, CH2=CH–CH2–), 1.38–1.20 (m, 14H, CH2=CH–CH2–(CH2)6–). 13C NMR
(270 MHz, DMSO-d6) δ (ppm from TMS): 148.96, 139.34, 125.06, 123.44, 121.69, 115.22, 70.97,
69.21, 50.36, 46.77, 40.06, 33.77, 29.06, 26.52, 19.15, 29.07 (see Figure S10 in Supplementary
Materials). ESI-TOF-MS: m/z calculated for C72H110N2O16Na [M + Na]+ 652.3827; found.

4.8. Synthesis of Poly([c2]Daisy-chain Rotaxane)

To a solution of H-G monomer (0.306 g, 0.193 mmol) in chloroform (15 mL), benzylidene-
bis(tricyclohexylphosphine)dichlororuthenium (Grubbs 1st, 1.00 mg, 1.22 nmol) was added;
the mixed solution was stirred at 50 ◦C for 24 h, and then the solvent was removed
under reduced pressure, followed by washing with MeOH to give a light purple solid
product (0.300 g, crude product). 1H NMR (500 MHz, CDCl3, CHCl3-soluble part) δ (ppm
from TMS): 6.98–6.55 (m, 14H, Ph), 5.41–5.35 (m, 2H, CH2=CH–), 4.50–4.21 (m, 4H, –Ph–
CH2–NH2

+–), 4.21–3.63 (m, 48H, –CH2CH2O–), 3.50–3.30 (m, 4H, –Ph–CH2–NH2
+–CH2–),

2.06–1.99 (m, 4H, CH2=CH–CH2–), 1.40–1.16 (m, 28H, CH2=CH–CH2–(CH2)7–).

4.9. Synthesis of Poly([c2]Daisy-chain Rotaxane)-SH

A solution of H-G monomer (0.300 g, 0.193 mmol), 3,6-dioxa-1,8-dithiol (Dithiol)
(0.0364 g, 0.199 mmol), and benzophenone (0.0035 g, 0.0193 mmol) in acetonitrile (2 mL)
was subjected to UV irradiation, and the resulting mixture was reprecipitated with methanol
to obtain a light-yellow solid product (0.313 g yield, crude product). 1H NMR (500 MHz,
CDCl3) δ (ppm from TMS): 6.90–6.60 (m, 14H, Ph), 4.50–4.20 (d, 4H, Ph–CH2–NH2

+–),
4.20–3.65 (m, 52H, –CH2CH2O–, –S–CH2–CH2–), 3.65–3.58 (d, 8H, S–CH2–CH2–O–CH2–
CH2–O, CH2–CH2–S–), 3.53–3.29 (d, 4H, –Ph–CH2–NH2

+–CH2–), 2.76–2.68 (m, 2H,
–(CH2)10–CH2–S–), 2.58–2.36 (m, 4H, –O–CH2–CH2–S–), 1.98–1.51 (m, 2H, –O–CH2–CH2–S–
CH2–CH2–), 1.40–1.15 (m, 36H, –(CH2)9–).

4.10. Synthesis of Neutralized Poly([c2]Daisy-chain Rotaxane)-SH

Poly([c2]daisy-chain rotaxane) 2 (0.107 g, 68.8 nmol) was dissolved in DMF (1 mL),
and acetic anhydride (1.30 g, 12.7 mmol) was added. The mixture was stirred at 90 ◦C for
24 h. The resulting product was obtained as a reddish-brown oil through reprecipitation
using methanol (0.0460 g yield, crude product). 1H NMR (500 MHz, CDCl3) δ (ppm from
TMS): 6.90–6.55 (m, 14H, Ph), 4.50–4.30 (m, 4H, Ph–CH2–N(OCH3)–), 4.20–4.10 (m, 8H, Ph–
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O–CH2–CH2–O–CH2–), 3.90–3.70 (d, 16H, Ph–O–CH2–CH2–O–CH2–), 3.65–3.50 (m, 8H,
–CH2–S–CH2–CH2–O–CH2–CH2–O–, CH2–CH2–S–), 3.18–3.01 (s, 4H, Ph–CH2–N(OCH3)–
CH2–), 2.76–2.68 (m, 4H, –(CH2)10–CH2–S–), 2.58–2.36 (m, 4H, –O–CH2–CH2–S–), 2.03–1.98
(m, 6H, Ph–CH2–N(OCH3)–), 1.50–1.10 (m, 36H, –(CH2)10–).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/reactions4030027/s1, Figure S1: 1H NMR spectra of H-G monomer
at (A) conc. 0.1 M, (B) 0.01, and (C) 0.001 M in CDCl3; Figure S2: DSC charts of poly([c2]daisy-
chain rotaxane) and poly([c2]daisy-chain rotaxane)-SH; Figure S3: IR spectra of poly([c2]daisy-chain
rotaxane)-SH and neutralized poly([c2]daisy-chain rotaxane)-SH; Figure S4: GPC chart of neutralized
poly([c2]Daisy-chain rotaxane (eluent: CHCl3); Figure S5: DSC charts of neutralized poly([c2]Daisy-
chain rotaxane); Figures S6–S9: 1H NMR spectra of compound 1–4 in CDCl3; Figure S10: 13C NMR
spectra of H-G monomer in CDCl3.
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