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Abstract: In this paper, we presented the design by computational tools of novel alkyl (2-alcoxy-2-
hydroxypropanoyl)-L-tryptophanate derivatives, which can be potential inhibitors of 11β-hydroxysteroid
dehydrogenase type 1 (11β-HSD1). The molecular structure optimization of a group of 36 compounds
was performed employing DFT-B3LYP calculations at the level 6-311G(d,p). Then, molecular docking
calculations were performed using Autodock tools software, employing the Lamarckian genetic
algorithm (LGA). Four parameters (binding, intermolecular and Van Der Waals hydrogen bonding
desolvation energies, and HOMO-LUMO gap) were used to evaluate the potential as 11β-HSD1
inhibitors, which nominate L-tryptophan derivatives as the most promissory molecules. Finally, these
molecules were obtained starting from the amino acid and pyruvic acid in a convergent methodology
with moderate to low yields.

Keywords: 11β-hydroxysteroid dehydrogenase type 1; amino acids; L-tryptophan; hydroxypropanamide;
amide

1. Introduction

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a widely known enzyme,
also known as cortisone reductase, which can be highly expressed in key metabolic tissues
such as the liver, adipose tissue, and the central nervous system. Kotelevtsev [1] performed
a targeted disruption of the 11β-HSD-1 gene in mice, demonstrating that these animals
were unable to convert inert 11-dehydrocorticosterone to corticosterone in vivo. Those
mice were found to resist hyperglycemia provoked by obesity or stress, evidencing the
attenuation of hepatic 11β-HSD-1 provided a novel approach to the regulation of gluco-
neogenesis. Some studies [2–4] have suggested that 11β-HSD1 effectively amplifies the
action of glucocorticoids in the liver, adipose tissue, and brain. Rask [3] evaluated the
hypothalamic–pituitary–adrenal (HPA) axis and the activity of 11β-HSD1 in women with
moderate obesity and insulin resistance, trying to find a relationship between Cushing’s
syndrome and metabolic syndrome, evidencing that in obese women a greater reactivation
of glucocorticoids in fat contributes to the characteristics of metabolic syndrome. Tomlin-
son [4] discussed that the molecular basis of cortisone reductase deficiency, the putative
“11β-HSD1 inactivation state” in humans, is caused by intronic mutations in HSD11B1 that
decrease gene transcription together with mutations in hexose-6-phosphate dehydrogenase.

New protective effects of 11β-HSD1 deficiency on adipose function, distribution,
and gene expression in vivo in nullizygous mice (11β-HSD1 −/−) of 11β-HSD-1 were
reported [5], reporting the first in vivo evidence that adipose 11β-HSD-1 deficiency benefi-
cially alters adipose tissue distribution and function, complementing the reported effects of
liver 11β-HSD-1 deficiency or inhibition. Hermanowski-Vosatka [6] reported that the phar-
macological inhibition of 11β-HSD1 has a therapeutic effect in mouse models of metabolic
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syndrome. Its results showed that the administration of a selective and potent inhibitor of
11β-HSD1 reduced body weight, insulin, fasting glucose, triglycerides, and cholesterol in
obese mice, and also slowed the progression of plaque in a murine model of atherosclerosis.
Recently, some studies [6–11] probed other pathologies which involve 11β-HSD1, for exam-
ple, depression and the risk of suicide. Studies with phenotypes allowed concluding that
these polymorphs may be relevant biomarkers to detect genetically vulnerable subjects to a
worse antidepressant response and a higher risk of suicide attempts [10]. These antecedents
demonstrate that the inhibition of 11β-HSD1 represents a potential goal for the therapy of
several disorders in humans.

The continuous research of novel bioactive molecules corresponds to one useful and
versatile alternative to improve this goal. Wan [12] assessed piperazine sulfonamide deriva-
tives, which showed high effectiveness and showed a significant reduction in fasting and
food insulin and glucose levels when they were dosed orally in diet-induced obese mice.
Structurally, this kind of molecule is of interest since it presents a hydroxypropanamide
fragment and both sulfonamide and amide pharmacophores (Figure 1), to which several
authors attributed its biological activity [13–21]. For example, Kamiński [14] synthesized
some N-phenyl-2-(4-phenylpiperazin-1-yl)acetamide derivatives, which showed promis-
ing anticonvulsant activity in animal models of epilepsy. Tang [15] designed a series of
new 2-hydroxyphenyl substituted aminoacetamides, which showed excellent antifungal
activities against S. sclerotiorum and P. capsici. Shao [16] synthesized a new series of (sulfon-
amido)propanamides, which were evaluated against cell lines of hepatocellular carcinoma
(HepG2), fibrosarcoma (HT-1080), epidermal carcinoma of the mouth (KB), and breast
adenocarcinoma (MCF-7). Guo [17] developed a class of new dual-site tRNA-amino acid in-
hibitors versus threonyl-tRNA synthetase (ThrRS). Ibrahim [18] prepared unique flavopiri-
dol analogs that contain thiosa sugars, amino acids, and heterocyclic residues anchored
to flavopiridol through thioether and amine bonds mainly in its C ring, which demon-
strated high cytotoxic activity in vitro against up to seven cancer cell lines. Zaręba [19]
designed, synthesized, and evaluated new inhibitors of the uptake of γ-aminobutyric acid
(GABA), membrane transport proteins that participate in the pathophysiology of several
neurological disorders. Wasfy [20] synthesized phthalazine derivatives linked to amino
acid derivatives with high yields. Phthalylamino acid derivatives showed potent antioxi-
dant activity compared to standard drugs, and Wang [21] developed MET receptor kinase
inhibitors of the type 5-((4-((2-amino-3-chloropyridin-4-yl)oxy)-3-fluorophenyl)amino)-3-
(4-fluorophenyl)-1,6-naphthyridine-4(1H)-ones.
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Recently, Gregory [8] published a review discussing the use of 11β-HSD1 inhibitors in
diseases associated with abnormalities in the function of the hypothalamic–pituitary–adrenal
(HPA) axis. They identified around 1925 articles, proving to be a growing research field.
Chuanxin [9] discussed the structural characteristics of the 11β-HSD1 inhibitors, the bind-
ing modes, the structure–activity relationships (SAR), and the biological evaluations of
each inhibitor. These two reviews opened a paradigm regarding the development of new
11β-HSD1 inhibitors, especially regarding the need for rational design of new drugs based
on computational strategies such as quantum mechanics calculations [22] and molecular
docking [23] to predict the activity of new chemicals within its domain of applicability.
Based on these tools, we performed the molecular design of 36 compounds with a hydrox-
ypropanamide skeleton, which could be obtained from the conventional 2-aminoacids:
L-tryptophane, L-alanine and L-phenylalanine, and pyruvic acid derivatives (Figure 2).
These precursors were chosen knowing the multitarget use of pyruvic acid derivatives, such
as DNA preservation by scavenging of the excess free radicals, antibiotic, anti-inflammatory,
antioxidant, immunomodulatory, and anti-tumoral agents on many types of tumors, includ-
ing pancreatic, prostate, liver, and gastric cancers [24–30]. The molecular docking results
and the chemical synthesis of representative compounds are presented and discussed in
this manuscript.
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2. Materials and Methods
2.1. General Information

All reagents and chemicals were commercially acquired (Merck KGaA (Darmstadt,
Germany) and/or Sigma-Aldrich (St. Louis, MO, USA)) and were employed without
additional refinement. The products’ progression of reactions and purifications were
monitored by thin-layer chromatography (TLC) on silica gel 60 F254 plates (Merck KGaA)
under detection at 254 nm. Nuclear magnetic resonance (NMR) experiments were collected
using a Bruker Avance AV-400 MHz spectrometer. TMS was used as a reference to give
chemical shifts in δ (ppm). Typical splitting patterns were implemented to define the signal
multiplicity (i.e., s, singlet; d, doublet; t, triplet; m, multiplet). Liquid chromatography-
mass spectrometry (LC/MS) experiments were performed on an LCMS 2020 spectrometer
(Shimadzu, Columbia, MD, USA), comprising a Prominence high-performance liquid
chromatography (HPLC) system coupled to a single quadrupole analyzer with electrospray
ionization (ESI). A Synergi column (150 × 4.6 mm, 4.0 µm) was used for analysis at
0.6 mL/min using mixtures of acetonitrile (A) and 1% formic acid (B) in gradient elution.
The ESI was operated simultaneously in positive and negative ion modes (100–2000 m/z
sweep), a desolvation line temperature of 250 ◦C, nitrogen as a nebulizer gas at 1.5 L/min,
a drying at 8 L/min, and a detector voltage at 1.4 kV. High-resolution MS (HRMS) recorded
accurate mass data on a microOTOF-Q II mass spectrometer (Bruker, Billerica, MA). The ESI
was also operated in positive and negative ion modes (100–2000 m/z sweep), a desolvation
line temperature of 250 ◦C, nitrogen as a nebulizer gas at 1.5 L/min, a drying at 8 L/min,
quadrupole energy at 7.0 eV, and collision energy at 14 eV. The chemical reactions were
carried out in a Discover System microwave reactor model 908005 series DY1030 in a closed
vessel controlling the temperature.

2.2. Structural Optimization of the Proposed Compounds 1–36

Optimization of all the compounds 1–36 was performed using the DFT-B3LYP method
at the level 6-31G(d,p) [31,32]. Total energy and HOMO-LUMO gap were calculated and
used as reactivity and stability descriptors. The crystal structure of 11β-HSD1 from an
established structure (PDB ID: 1Y5M) file was downloaded from the protein data bank
(www.rcsb.org accessed on 5 December 2022), previously reported by Zhang, obtaining the
enzyme crystal using by the vapor diffusion method using hanging drops. The crystals
structure belongs to space group P4122 with two molecules in the asymmetric unit. The
ternary complex was obtained by soaking 0.05 mM corticosterone and 1 mM NADPH into
the crystal [33].

2.3. Calculation of Molecular Docking and Bond-Free Energy

The boxes or grids were prepared using the Protein Grid Generation module, defining
the box volume as 40 × 40 × 40 Å for all enzymes, to include all binding sites. Employing
the active site of 11β-HSD1 reported by Thomas and Potter [34], the ligand–enzyme
complexes were prepared and evaluated by molecular docking using the Lamarckian
genetic algorithm (LGA) in the AutoDock v4.2.6 tools software [31].

2.4. Synthesis of Alkyl (2-Ethoxy-2-Hydroxypropanoyl)-L-Tryptophanate

A mixture of precursors 37 (1 eq) and 38 (1.1 eq) in the respective alcohol were heated at
150 ◦C for 15 min in the presence of triethylamine (TEA, 2 eq) in a microwave reactor in the
open vessel mode. Then, the mixture was maintained overnight at room temperature until
evaporation of the solvent. The product was purified using classic column chromatography
using silica gel as sorbent for hexane: ethyl acetate mixtures as a mobile phase.

Methyl (2-methoxy-2-hydroxypropanoyl)-L-tryptophanate 1. Yield: 35%, yellow oil.
1H NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 7.52 (s, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.21 (s, 1H),
7.12 (s, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 4.01–3.89 (m, 1H), 3.12 (dd, J = 15.2, 4.0 Hz, 1H),
2.83 (dd, J = 15.2, 4.0 Hz, 1H), 1.78 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 172.0, 171.8, 136.8,
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133.0, 126.8, 122.7, 119.9, 118.8, 111.4, 109.7, 62.2, 61.8, 59.2, 39.6, 35.3. ESI-MS in positive
mode m/z: [M + H]+: 321.34.

Ethyl (2-ethoxy-2-hydroxypropanoyl)-L-tryptophanate 2. Yield: 57%, orange oil. 1H
NMR (400 MHz, CDCl3) δ 8.19 (s, 1H), 7.51 (s, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.21 (s, 1H), 7.12
(s, 1H), 4.36–4.22 (m, 3H), 4.15 (dq, J = 10.8, 7.1 Hz, 1H), 3.95–3.86 (m, 1H), 3.14 (dd, J = 15.2,
4.0 Hz, 1H), 2.83 (dd, J = 15.2, 11.3 Hz, 1H), 1.75 (s, 3H), 1.63 (s, 1H), 1.36 (t, J = 7.1 Hz, 3H),
1.29 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 174.0, 172.8, 136.8, 133.0, 126.8, 122.7,
120.0, 118.8, 111.4, 109.8, 62.7, 62.2, 61.6, 59.4, 54.4, 27.7, 25.6, 14.5. ESI-MS in positive mode
m/z: [M + H]+: 349.15.

Methyl (3-methoxy-3-hydroxybutanoyl)-L-tryptophanate 5. Yield: 49%, yellow oil. 1H
NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.49 (s, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.17 (s, 1H),
7.13 (s, 1H), 5.50 (s, 1H), 4.97 (s, 1H), 4.77–4.73 (m, 3H), 4.36–4.31 (m, 4H), 4.22 (s, 1H), 2.91
(s, 1H), 2.51 (s, 1H), 2.34 (s, 1H), 2.01–1.99 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 173.8,
172.9, 136.7, 133.0, 126.8, 122.7, 119.9, 118.8, 111.4, 109.8, 62.7, 62.2, 61.8, 59.4, 39.6, 37.38,
16.7. ESI-MS in positive mode m/z: [M + H]+: 335.37.

Ethyl (3-ethoxy-3-hydroxybutanoyl)-L-tryptophanate 6. Yield: 55%, yellow oil. 1H
NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 7.50 (s, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.17 (s, 1H),
7.12 (s, 1H), 5.55 (s, 1H), 5.09 (m, 1H), 3.80–3.76 (m, 3H), 3.36–3.35 (m, 3H), 3.12 (s, 1H), 2.99
(s, 1H), 2.20 (s, 1H), 1.60–1.54 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 172.9, 171.6, 138.3,
128.0, 123.4, 121.7, 120.1, 119.5, 111.6, 108.5, 66.5, 61.8, 58.9, 52.5, 29.6, 28.2, 16.6, 14.7, 10.7.
ESI-MS in positive mode m/z: [M + H]+: 363.42.

Propan-2-yl (2-oxopropanoyl)-L-tryptophanate 39. Yield: 71%, yellow oil. 1H NMR
(400 MHz, CDCl3) δ 7.40 (s, 1H), 7.24–7.17 (m, 4H), 7.05 (s, 1H), 5.91 (m, 1H), 4.97 (d, J = 15.4 Hz,
2H), 3.32 (s, 1H), 2.88 (s, 1H), 2.31–2.27 (m, 3H), 1.43–1.31 (m, 6H). 13C NMR (101 MHz,
CDCl3) δ 193.1, 172.9, 163.6, 136.5, 128.3, 124.4, 121.7, 120.1, 119.5, 111.6, 108.5, 71.2, 52.8,
30.6, 25.1, 22.6. ESI-MS in positive mode m/z: [M + H]+: 349.15. HRMS in positive mode
m/z: [M + H]+: experimental: 317.1496, calculated: 317.1503.

Propan-2-yl (3-oxobutanoyl)-L-tryptophanate 40. Yield: 65%, yellow oil. 1H NMR
(400 MHz, CDCl3) δ 7.41 (s, 1H), 7.24–7.17 (m, 4H), 7.06 (s, 1H), 5.95 (m, 1H), 4.88 (d, J = 15.1 Hz,
2H), 3.31 (s, 1H), 3.11–2.97 (m, 2H), 2.89 (s, 1H), 1.43–1.31 (m, 6H), 1.19–1.15 (m, 3H). 13C
NMR (101 MHz, CDCl3) δ 193.8, 172.9, 160.8, 136.5, 128.3, 124.4, 121.7, 120.1, 119.6, 111.6,
108.5, 71.2, 52.8, 30.5, 26.4, 22.6, 10.6. ESI-MS in positive mode m/z: [M + H]+: 349.15.
HRMS in positive mode m/z: [M + H]+: experimental: 331.1652, calculated: 331.1658.

3. Results and Discussion

The binding energy, intermolecular energy, and Van Der Waals hydrogen bonding
desolvation energy were used as parameters for evaluation of the potential behavior of
compounds 1–36 as 11β-HSD1 inhibitors. The results showed that the compounds derived
from L-tryptophan have the lowest values for binding energy (−8.82 to −9.97 kcal/mol),
suggesting that this amino acid could be considered the primary precursor of protein
inhibitors (Table 1). This can be explained considering the presence of the indole group that
facilitates the interaction with the active site, which is not present in the other molecules
evaluated. Furthermore, regarding the HOMO-LUMO gap parameter, it can be seen
that this class of molecules also presents the lowest values, indicating that they can be
chemically active, facilitating both nucleophilic and electrophilic reactions in the active site
of the enzyme. However, these values may also suggest lower stability of these derivatives
than the compounds designed from the amino acids L-alanine and L-phenylalanine (13–36).
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Table 1. Molecular docking and DFT-B3LYP calculated parameters for protein 11β-HSD1-ligands
1–36 complexes and single ligands.

Ligand Binding Energy
(kcal/mol)

Intermolecular
Energy (kcal/mol)

Vdw Hb Desolvation
Energy (kcal/mol)

HOMO-LUMO
Gap (kcal/mol)

1 −8.82 −11.29 −11.11 4.87
2 −8.92 −11.93 −11.85 4.86
3 −8.83 −13.22 −13.15 4.89
4 −9.65 −12.94 −12.87 4.89
5 −8.87 −12.71 −12.63 4.88
6 −9.17 −13.29 −13.15 4.89
7 −9.04 −11.78 −11.58 4.89
8 −9.97 −13.49 −13.57 4.90
9 −9.52 −12.54 −12.37 4.88

10 −9.33 −13.63 −13.63 4.88
11 −9.92 −14.02 −13.93 4.88
12 −9.68 −12.71 −12.62 6.30
13 −8.65 −11.67 −11.65 6.26
14 −8.62 −11.92 −11.74 6.33
15 −7.72 −9.91 −9.83 6.48
16 −8.59 −12.98 −12.98 6.36
17 −8.16 −10.91 −10.82 6.22
18 −8.50 −11.25 −11.18 6.41
19 −7.84 −10.58 −10.50 6.39
20 −8.80 −12.10 −12.00 6.33
21 −8.38 −11.46 −11.38 6.22
22 −8.35 −10.82 −10.67 6.24
23 −7.83 −10.30 −10.24 6.26
24 −7.50 −11.07 −11.00 6.34
25 −7.46 −10.75 −10.60 6.05
26 −9.02 −12.04 −11.95 6.09
27 −7.33 −9.79 −9.61 6.13
28 −7.09 −9.56 −9.49 6.10
29 −6.93 −9.12 −9.15 6.01
30 −6.87 −10.44 −10.41 6.11
31 −6.72 −9.19 −9.03 6.12
32 −6.34 −8.54 −8.39 6.07
33 −6.23 −8.15 −8.03 6.00
34 −6.18 −8.65 −8.49 6.06
35 −6.09 −7.73 −7.64 6.07
36 −5.65 −7.57 −7.43 6.00

Molecular docking calculations allowed to obtain both ligand-target 2D and 3D dia-
grams (Figure 3), which showed the best fit for the molecule 8 and its interactions with
different amino acid residues of the protein 11β-HSD1. The indolyl group of 8 approached
a hydrophobic pocket surrounded by residual amino acids, Ile121, Ile46, and Asn119, al-
though the latter was bonded through a conventional hydrogen bond. The alkyl hemiacetal
fragment was surrounded by Tyr183, Leu126, and Ile227, forming the stable hydrophobic
binding pattern. Moreover, a hydrogen bond interaction was established between the
N-H amide group and the residual amino acid Tyr183. All these interactions supported
compound 8 in the binding site of the 11β-HSD1.
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amino acid residues of the protein 11β-HSD1 in the active site.

Understanding that L-tryptophan derivatives 1–12 were the objective molecules ac-
cording to the in silico results, we set out to establish a synthesis method for these molecules.
The synthesis of these compounds usually employs a sequence of hydrolysis and Passerini
reactions under ultrasound irradiation, using trifluoroacetophenones and isonitriles in
acetic acid as starting reagents [35]. However, this synthetic method is not practical using
2-aminoacids as substrates. We performed an alternative synthesis method which is pre-
sented using this type of starting reagents. In this article, we presented the synthesis of 2 as
model of the reaction, which was prepared by a convergent synthesis from precursor 37 and
38. Precursor 37 was obtained via esterification of L-tryptophan [36] using SiMe3Cl. Several
preliminary amidation reaction experiments were carried out to obtain the optimized vari-
ables such as temperature, time, stoichiometric ratio, and influence of the substituents. The
reaction between these precursors only occurs in basic medium, under temperatures close
to 150 ◦ C under microwave irradiation (Scheme 1). The desired hydroxypropanamide
compounds (1–2, 5–6) were obtained using low molecular weight alcohols such as methanol
and ethanol as the reaction medium. However, when the reaction was carried out in higher
molecular weight alcohols, such as isopropanol, the major products were 39 and 40 with
a moderate to high yield. In alcohols of higher molecular weight, no compounds other
than the precursors were detected. These results suggest that the amidation reaction is
kinetically favored under microwave irradiation conditions and that, subsequently, the
presence of small alcohols (such as methanol and ethanol) leads to a subsequent reaction, in
which the formation of a compound of the hemiacetal type takes place. When isopropanol
is used, a transesterification and subsequent amidation initially occur, but the attack on the
carbonyl group is not favored, so the hemiacetal described above is not formed.
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4. Conclusions

In conclusion, based on computational calculations using quantum mechanics and molec-
ular docking, we have designed, postulated, and synthesized (2-alcoxy-2-hydroxypropanoyl)-
L-tryptophanate and alkyl (2-oxopropanoyl)-L-tryptophanate derivatives from L-tryptophan
and pyruvic acid analogs, which can be considered as potential 11β-HSD1 inhibitors. The
proposed synthetic method depends to a large extent on the precursor alcohol. In such
a way, using low molecular weight alcohols, it was possible to obtain derivatives of the
hemiacetal type, while high molecular weight alcohols favor the synthesis of the respective
carbonyl compounds. In both cases, amidation is carried out, which is relevant since the
presence of the amide group favors the potential behavior as an inhibitor of the protein.
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