Implementation of Artificial Intelligence in Agriculture: An Editorial Note
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Kaleem, A.; Hussain, S.; Aqib, M.; Cheema, M.J.M.; Saleem, S.R.; Farooq, U. Development challenges of fruit-harvesting robotic arms: A critical review. AgriEngineering 2023, 5, 2216–2237.
- Antora, S.S.; Chang, Y.K.; Nguyen-Quang, T.; Heung, B. Development and Assessment of a Field-Programmable Gate Array (FPGA)-Based Image Processing (FIP) System for Agricultural Field Monitoring Applications. AgriEngineering 2023, 5, 886–904.
- Bist, R.B.; Subedi, S.; Yang, X.; Chai, L. A novel YOLOv6 object detector for monitoring piling behavior of cage-free laying hens. AgriEngineering 2023, 5, 905–923.
- Bilotta, G.; Genovese, E.; Citroni, R.; Cotroneo, F.; Meduri, G.M.; Barrile, V. Integration of an innovative atmospheric forecasting simulator and remote sensing data into a geographical information system in the frame of agriculture 4.0 concept. AgriEngineering 2023, 5, 1280–1301.
- Quintero, D.; Andrade, M.A.; Cholula, U.; Solomon, J.K. A machine learning approach for the estimation of alfalfa hay crop yield in Northern Nevada. AgriEngineering 2023, 5, 1943–1954.
- Hayajneh, A.M.; Batayneh, S.; Alzoubi, E.; Alwedyan, M. Tinyml olive fruit variety classification by means of convolutional neural networks on iot edge devices. AgriEngineering 2023, 5, 2266–2283.
- de Lima Silva, Y.K.; Furlani, C.E.A.; Canata, T.F. AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture. AgriEngineering 2024, 6, 361–374.
- Giang, T.T.H.; Ryoo, Y.J. Sweet Pepper Leaf Area Estimation Using Semantic 3D Point Clouds Based on Semantic Segmentation Neural Network. AgriEngineering 2024, 6, 645–656.
- Barač, Ž.; Radočaj, D.; Plaščak, I.; Jurišić, M.; Marković, M. Prediction of noise levels according to some exploitation parameters of an agricultural tractor: A machine learning approach. AgriEngineering 2024, 6, 995–1007.
- Herrera, D.; Escudero-Villa, P.; Cárdenas, E.; Ortiz, M.; Varela-Aldás, J. Combining image classification and unmanned aerial vehicles to estimate the state of explorer roses. AgriEngineering 2024, 6, 1008–1021.
- Martelli, S.; Mocera, F.; Somà, A. Autonomous Driving Strategy for a Specialized Four-Wheel Differential-Drive Agricultural Rover. AgriEngineering 2024, 6, 1937–1958.
- Liu, L.; Ma, X. Prediction of Soil Field Capacity and Permanent Wilting Point Using Accessible Parameters by Machine Learning. AgriEngineering 2024, 6, 2592–2611.
- Kashongwe, O.; Kabelitz, T.; Ammon, C.; Minogue, L.; Doherr, M.; Silva Boloña, P.; Amon, T.; Amon, B. Influence of Preprocessing Methods of Automated Milking Systems Data on Prediction of Mastitis with Machine Learning Models. AgriEngineering 2024, 6, 3427–3442.
- Gookyi, D.A.N.; Wulnye, F.A.; Wilson, M.; Danquah, P.; Danso, S.A.; Gariba, A.A. Enabling intelligence on the edge: Leveraging Edge Impulse to deploy multiple deep learning models on edge devices for tomato leaf disease detection. AgriEngineering 2024, 6, 3563–3585.
- Santana, J.S.; Valente, D.S.; Queiroz, D.M.; Coelho, A.L.; Barbosa, I.A.; Momin, A. Automated Detection of Young Eucalyptus Plants for Optimized Irrigation Management in Forest Plantations. AgriEngineering 2024, 6, 3752.
- Mahmoud, N.T.A.; Virro, I.; Zaman, A.G.M.; Lillerand, T.; Chan, W.T.; Liivapuu, O.; Roy, K.; Olt, J. Robust object detection under smooth perturbations in precision agriculture. AgriEngineering 2024, 6, 4570–4584.
- Talero-Sarmiento, L.; Roa-Prada, S.; Caicedo-Chacon, L.; Gavanzo-Cardenas, O. A data-driven approach to improve cocoa crop establishment in Colombia: Insights and agricultural practice recommendations from an ensemble machine learning model. AgriEngineering 2024, 7, 6.
- Yang, D.; Ju, C. Performance Comparison of Cherry Tomato Ripeness Detection Using Multiple YOLO Models. AgriEngineering 2024, 7, 8.
- Anwar, H.; Muhammad, H.; Ghaffar, M.M.; Afridi, M.A.; Khan, M.J.; Weis, C.; Wehn, N.; Shafait, F. Segmentation of wheat rust disease using co-salient feature extraction. AgriEngineering 2025, 7, 23.
- Aksoy, S.; Demircioglu, P.; Bogrekci, I. Web-Based AI System for Detecting Apple Leaf and Fruit Diseases. AgriEngineering 2025, 7, 51.
- Canato, V.; Bonini Neto, A.; Montagnani, J.C.R.; de Mello, J.M.; Fávaro, V.F.D.S.; Souza, A.V.D. Artificial Neural Network and Mathematical Modeling to Estimate Losses in the Concentration of Bioactive Compounds in Different Tomato Varieties During Cooking. AgriEngineering 2025, 7, 130.
- Atesoglu, F.; Bingol, H. The Detection and Classification of Grape Leaf Diseases with an Improved Hybrid Model Based on Feature Engineering and AI. AgriEngineering 2025, 7, 228.
- EM., S; Chandy, D.A.; PM., S; Poulose, A. A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset. AgriEngineering 2025, 7, 243.
- Tuenpusa, P.; Sangpradit, K.; Suwannakam, M.; Langkapin, J.; Tanomtong, A.; Samseemoung, G. Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields. AgriEngineering 2025, 7, 249.
- Wang, Z.; Xiao, S.; Wang, J.; Parab, A.; Patel, S. Reinforcement Learning-Based Agricultural Fertilization and Irrigation Considering N2O Emissions and Uncertain Climate Variability. AgriEngineering 2025, 7, 252.
- Pasache, H.; Tuesta, C.; Inga, C. Design of an Automated System for Classifying Maturation Stages of Erythrina edulis Beans Using Computer Vision and Convolutional Neural Networks. AgriEngineering 2025, 7, 277.
- Gómez-Meneses, L.M.; Pérez, A.; Sajona, A.; Patiño, L.F.; Herrera-Ramírez, J.; Carrasquilla, J.; Quijano, J.C. Leveraging Transfer Learning for Determining Germination Percentages in Gray Mold Disease (Botrytis cinerea). AgriEngineering 2025, 7, 303.
- Alikhanov, J.; Georgieva, T.; Nedelcheva, E.; Moldazhanov, A.; Kulmakhambetova, A.; Zinchenko, D.; Nurtuleuov, A.; Shynybay, Z.; Daskalov, P. Deep Learning-Based Identification of Kazakhstan Apple Varieties Using Pre-Trained CNN Models. AgriEngineering 2025, 7, 331.
References
- Habib, M.; Singh, S.; Jan, S.; Jan, K.; Bashir, K. The Future of the Future Foods: Understandings from the Past towards SDG-2. npj Sci. Food 2025, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Hussain, S.; Awais, M.; Tahir, M.N.; Saleem, S.R.; Al-Yarimi, F.A.; Ashurov, M.; Saidani, O.; Khan, M.I.; Wu, J. Climate-Resilient Water Management: Leveraging IoT and AI for Sustainable Agriculture. Egypt. Inform. J. 2025, 30, 100691. [Google Scholar] [CrossRef]
- Waqas, M.S.; Bayabil, H.K.; Hailegnaw, N.S.; Hussain, S.; Tariq, A.; Abubakar, S. Drought Mitigation and Livelihood Improvement Options through Rainwater Harvesting Structures in a Rainfed Agricultural System. Agric. Syst. 2025, 230, 104469. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the Potential Applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Saki, S.; Soori, M. Artificial Intelligence, Machine Learning and Deep Learning in Advanced Transportation Systems, A Review. Multimodal Transp. 2025, 5, 100242. [Google Scholar] [CrossRef]
- Ye, Y.; Pandey, A.; Bawden, C.; Sumsuzzman, D.M.; Rajput, R.; Shoukat, A.; Singer, B.H.; Moghadas, S.M.; Galvani, A.P. Integrating Artificial Intelligence with Mechanistic Epidemiological Modeling: A Scoping Review of Opportunities and Challenges. Nat. Commun. 2025, 16, 581. [Google Scholar] [CrossRef]
- Aziz, D.; Rafiq, S.; Saini, P.; Ahad, I.; Gonal, B.; Rehman, S.A.; Rashid, S.; Saini, P.; Rohela, G.K.; Aalum, K. Remote Sensing and Artificial Intelligence: Revolutionizing Pest Management in Agriculture. Front. Sustain. Food Syst. 2025, 9, 1551460. [Google Scholar] [CrossRef]
- Rashid, A.B.; Kausik, A.K.; Khandoker, A.; Siddque, S.N. Integration of Artificial Intelligence and IoT with UAVs for Precision Agriculture. Hybrid Adv. 2025, 10, 100458. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Li, G.; Qi, Z. Integration of Remote Sensing and Machine Learning for Precision Agriculture: A Comprehensive Perspective on Applications. Agronomy 2024, 14, 1975. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-Based Multispectral Remote Sensing for Precision Agriculture: A Comparison between Different Cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Inoue, Y. Satellite- and Drone-Based Remote Sensing of Crops and Soils for Smart Farming—A Review. Soil Sci. Plant Nutr. 2020, 66, 798–810. [Google Scholar] [CrossRef]
- Obi Reddy, G.P.; Dwivedi, B.S.; Ravindra Chary, G. Applications of Geospatial and Big Data Technologies in Smart Farming. In Smart Agriculture for Developing Nations; Pakeerathan, K., Ed.; Advanced Technologies and Societal Change; Springer Nature: Singapore, 2023; pp. 15–31. ISBN 978-981-19-8737-3. [Google Scholar]
- Ahmed, N.; Shakoor, N. Advancing agriculture through IoT, Big Data, and AI: A review of smart technologies enabling sustainability. Smart Agric. Technol. 2025, 10, 100848. [Google Scholar] [CrossRef]
- Karunathilake, E.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Nithinkumar, K.; Reddy, B.M.; Yenaidu, Y. Precision Agriculture: A Modern Technology for Crop Management. Agric. Mag. 2023, 2, 280–284. [Google Scholar]
- Kumar, R.; Farooq, M.; Qureshi, M. Advancing Precision Agriculture through Artificial Intelligence: Exploring the Future of Cultivation. In A Biologist’s Guide to Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 2024; pp. 151–165. [Google Scholar]
- Shahab, H.; Naeem, M.; Iqbal, M.; Aqeel, M.; Ullah, S.S. IoT-Driven Smart Agricultural Technology for Real-Time Soil and Crop Optimization. Smart Agric. Technol. 2025, 10, 100847. [Google Scholar] [CrossRef]
- Wu, P.; Zhong, Y. Artificial Intelligence in Sustainable Agriculture: Towards a Socio-Technical Roadmap. Smart Agric. Technol. 2025, 12, 101578. [Google Scholar] [CrossRef]
- Waqas, M.; Naseem, A.; Humphries, U.W.; Hlaing, P.T.; Dechpichai, P.; Wangwongchai, A. Applications of Machine Learning and Deep Learning in Agriculture: A Comprehensive Review. Green Technol. Sustain. 2025, 3, 100199. [Google Scholar] [CrossRef]
- Zouizza, M.; Lachgar, M.; Zouani, Y.; Hrimech, H.; Kartit, A. AIDSII: An AI-Based Digital System for Intelligent Irrigation. Softw. Impacts 2023, 17, 100574. [Google Scholar] [CrossRef]
- Haroon, Z.; Cheema, M.J.M.; Saleem, S.; Amin, M.; Anjum, M.N.; Tahir, M.N.; Hussain, S.; Zahid, U.; Khan, F. Potential of Precise Fertilization through Adoption of Management Zones Strategy to Enhance Wheat Production. Land 2023, 12, 540. [Google Scholar] [CrossRef]
- Minasny, B.; Bandai, T.; Ghezzehei, T.A.; Huang, Y.-C.; Ma, Y.; McBratney, A.B.; Ng, W.; Norouzi, S.; Padarian, J.; Sharififar, A. Soil Science-Informed Machine Learning. Geoderma 2024, 452, 117094. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C. Artificial Intelligence in Soil Science. Eur. J. Soil Sci. 2025, 76, e70080. [Google Scholar] [CrossRef]
- De Caires, S.A.; Martin, C.S.; Atwell, M.A.; Kaya, F.; Wuddivira, G.A.; Wuddivira, M.N. Advancing Soil Mapping and Management Using Geostatistics and Integrated Machine Learning and Remote Sensing Techniques: A Synoptic Review. Discov. Soil 2025, 2, 53. [Google Scholar] [CrossRef]
- Sharma, K.; Shivandu, S.K. Integrating Artificial Intelligence and Internet of Things (IoT) for Enhanced Crop Monitoring and Management in Precision Agriculture. Sens. Int. 2024, 5, 100292. [Google Scholar] [CrossRef]
- Singh, M.; Vermaa, A.; Kumar, V. Geospatial Technologies for the Management of Pest and Disease in Crops. In Precision Agriculture; Elsevier: Amsterdam, The Netherlands, 2023; pp. 37–54. [Google Scholar]
- Takahashi, S.; Sakaguchi, Y.; Kouno, N.; Takasawa, K.; Ishizu, K.; Akagi, Y.; Aoyama, R.; Teraya, N.; Bolatkan, A.; Shinkai, N.; et al. Comparison of Vision Transformers and Convolutional Neural Networks in Medical Image Analysis: A Systematic Review. J. Med. Syst. 2024, 48, 84. [Google Scholar] [CrossRef]
- Anastasiou, E.; Fountas, S.; Voulgaraki, M.; Psiroukis, V.; Koutsiaras, M.; Kriezi, O.; Lazarou, E.; Vatsanidou, A.; Fu, L.; Di Bartolo, F. Precision Farming Technologies for Crop Protection: A Meta-Analysis. Smart Agric. Technol. 2023, 5, 100323. [Google Scholar] [CrossRef]
- Maski, P.; Panigrahi, S.; Azad, A.; Thondiyath, A. Real-Time Identification of Plant Diseases Using Aerial Robots and Deep Learning Techniques. In Proceedings of the 2023 21st International Conference on Advanced Robotics (ICAR), Abu Dhabi, United Arab Emirates, 5–8 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 480–485. [Google Scholar]
- Abbas, I.; Liu, J.; Faheem, M.; Noor, R.S.; Shaikh, S.A.; Solangi, K.A.; Raza, S.M. Different Sensor Based Intelligent Spraying Systems in Agriculture. Sens. Actuators A Phys. 2020, 316, 112265. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Ampatzidis, Y.; Schueller, J.K.; Burks, T. Smart Spraying Technologies for Precision Weed Management: A Review. Smart Agric. Technol. 2023, 6, 100337. [Google Scholar] [CrossRef]
- Baltazar, A.R.; dos Santos, F.N.; Moreira, A.P.; Valente, A.; Cunha, J.B. Smarter Robotic Sprayer System for Precision Agriculture. Electronics 2021, 10, 2061. [Google Scholar] [CrossRef]
- Bechar, A.; Vigneault, C. Agricultural Robots for Field Operations: Concepts and Components. Biosyst. Eng. 2016, 149, 94–111. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-Based Navigation and Guidance for Agricultural Autonomous Vehicles and Robots: A Review. Comput. Electron. Agric. 2023, 205, 107584. [Google Scholar] [CrossRef]
- Khan, H.A.; Farooq, U.; Saleem, S.R.; Rehman, U.; Tahir, M.N.; Iqbal, T.; Cheema, M.J.M.; Aslam, M.A.; Hussain, S. Design and Development of Machine Vision Robotic Arm for Vegetable Crops in Hydroponics. Smart Agric. Technol. 2024, 9, 100628. [Google Scholar] [CrossRef]
- Liu, L.; Yang, F.; Liu, X.; Du, Y.; Li, X.; Li, G.; Chen, D.; Zhu, Z.; Song, Z. A Review of the Current Status and Common Key Technologies for Agricultural Field Robots. Comput. Electron. Agric. 2024, 227, 109630. [Google Scholar] [CrossRef]
- Guebsi, R.; Mami, S.; Chokmani, K. Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones 2024, 8, 686. [Google Scholar] [CrossRef]
- Ayamga, M.; Akaba, S.; Nyaaba, A.A. Multifaceted Applicability of Drones: A Review. Technol. Forecast. Soc. Change 2021, 167, 120677. [Google Scholar] [CrossRef]
- Ammad Uddin, M.; Mansour, A.; Le Jeune, D.; Ayaz, M.; Aggoune, E.-H.M. UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring. Sensors 2018, 18, 555. [Google Scholar] [CrossRef] [PubMed]
- Aijaz, N.; Lan, H.; Raza, T.; Yaqub, M.; Iqbal, R.; Pathan, M.S. Artificial Intelligence in Agriculture: Advancing Crop Productivity and Sustainability. J. Agric. Food Res. 2025, 20, 101762. [Google Scholar] [CrossRef]
- Screpnik, C.; Zamudio, E.; Gimenez, L. Artificial Intelligence in Agriculture: A Systematic Review of Crop Yield Prediction and Optimization. IEEE Access 2025, 13, 70691–70697. [Google Scholar] [CrossRef]
- Wang, C.; Xu, X.; Zhang, Y.; Cao, Z.; Ullah, I.; Zhang, Z.; Miao, M. A Stacking Ensemble Learning Model Combining a Crop Simulation Model with Machine Learning to Improve the Dry Matter Yield Estimation of Greenhouse Pakchoi. Agronomy 2024, 14, 1789. [Google Scholar] [CrossRef]
- Yewle, A.D.; Mirzayeva, L.; Karakuş, O. Multi-Modal Data Fusion and Deep Ensemble Learning for Accurate Crop Yield Prediction. Remote Sens. Appl. Soc. Environ. 2025, 38, 101613. [Google Scholar] [CrossRef]
- Correa, E.S.; Calderon, F.C.; Colorado, J.D. Ml-Enhanced Mechanistic Crop Modeling to Address Noise-Induced Uncertainty for Drought Environmental Monitoring in Rice. Discov. Food 2025, 5, 312. [Google Scholar] [CrossRef]
- Manivasagam, V.S.; Rozenstein, O. Practices for Upscaling Crop Simulation Models from Field Scale to Large Regions. Comput. Electron. Agric. 2020, 175, 105554. [Google Scholar] [CrossRef]
- Salau, A.O.; Demilie, W.B.; Akindadelo, A.T.; Eneh, J.N. Artificial Intelligence Technologies: Applications, Threats, and Future Opportunities. In Proceedings of the ACI@ ISIC, Guimarães, Portugal, 6–9 September 2022; pp. 265–273. [Google Scholar]
- Touch, V.; Tan, D.K.; Cook, B.R.; Li Liu, D.; Cross, R.; Tran, T.A.; Utomo, A.; Yous, S.; Grunbuhel, C.; Cowie, A. Smallholder Farmers’ Challenges and Opportunities: Implications for Agricultural Production, Environment and Food Security. J. Environ. Manag. 2024, 370, 122536. [Google Scholar] [CrossRef] [PubMed]
- Balana, B.B.; Oyeyemi, M.A. Agricultural Credit Constraints in Smallholder Farming in Developing Countries: Evidence from Nigeria. World Dev. Sustain. 2022, 1, 100012. [Google Scholar] [CrossRef]
- Vasavi, S.; Anandaraja, N.; Murugan, P.P.; Latha, M.R.; Selvi, R.P. Challenges and Strategies of Resource Poor Farmers in Adoption of Innovative Farming Technologies: A Comprehensive Review. Agric. Syst. 2025, 227, 104355. [Google Scholar] [CrossRef]
- Vignola, R.; Harvey, C.A.; Bautista-Solis, P.; Avelino, J.; Rapidel, B.; Donatti, C.; Martinez, R. Ecosystem-Based Adaptation for Smallholder Farmers: Definitions, Opportunities and Constraints. Agric. Ecosyst. Environ. 2015, 211, 126–132. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Cheema, M.J.M.; Saleem, S.R.; Elbeltagi, A.; Aqib, M. Implementation of Artificial Intelligence in Agriculture: An Editorial Note. AgriEngineering 2025, 7, 401. https://doi.org/10.3390/agriengineering7120401
Hussain S, Cheema MJM, Saleem SR, Elbeltagi A, Aqib M. Implementation of Artificial Intelligence in Agriculture: An Editorial Note. AgriEngineering. 2025; 7(12):401. https://doi.org/10.3390/agriengineering7120401
Chicago/Turabian StyleHussain, Saddam, Muhammad Jehanzeb Masud Cheema, Shoaib Rashid Saleem, Ahmed Elbeltagi, and Muhammad Aqib. 2025. "Implementation of Artificial Intelligence in Agriculture: An Editorial Note" AgriEngineering 7, no. 12: 401. https://doi.org/10.3390/agriengineering7120401
APA StyleHussain, S., Cheema, M. J. M., Saleem, S. R., Elbeltagi, A., & Aqib, M. (2025). Implementation of Artificial Intelligence in Agriculture: An Editorial Note. AgriEngineering, 7(12), 401. https://doi.org/10.3390/agriengineering7120401
